i:;l?é electronics

Article

Multi-Agent Task Allocation with Multiple Depots Using
Graph Attention Pointer Network

Wen Shi L'*

check for
updates

Citation: Shi, W.; Yu, C. Multi-Agent
Task Allocation with Multiple Depots
Using Graph Attention Pointer
Network. Electronics 2023, 12, 3378.
https://doi.org/10.3390/
electronics12163378

Academic Editor: Jinwen Hu

Received: 11 July 2023
Revised: 31 July 2023
Accepted: 1 August 2023
Published: 8 August 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Chengpu Yu 12

School of Automation, Beijing Institute of Technology, Beijing 100081, China; yuchengpu@bit.edu.cn
Beijing Institute of Technology Chonggqing Innovation Center, Chongging 401120, China
* Correspondence: 3220200783@bit.edu.cn

2

Abstract: The study of the multi-agent task allocation problem with multiple depots is crucial for
investigating multi-agent collaboration. Although many traditional heuristic algorithms can be
adopted to handle the concerned task allocation problem, they are not able to efficiently obtain
optimal or suboptimal solutions. To this end, a graph attention pointer network is built in this paper
to deal with the multi-agent task allocation problem. Specifically, the multi-head attention mechanism
is employed for the feature extraction of nodes, and a pointer network with parallel two-way selection
and parallel output is introduced to further improve the performance of multi-agent cooperation and
the efficiency of task allocation. Experimental results are provided to show that the presented graph
attention pointer network outperforms the traditional heuristic algorithms.

Keywords: task allocation; attention mechanism; multi-agent system

1. Introduction

Artificial intelligence (Al) is one of the greatest technologies in the 21st century. In re-
cent years, with the rapid development of the new generation of Al technology, the research
and application of intelligent unmanned systems have received widespread attention.
Intelligent unmanned systems can not only complete simple and repetitive tasks but also
complex tasks that are difficult for humans. The core advantage of intelligent unmanned
systems lies in achieving high performance while having extremely low costs. Multi-agent
collaboration is one of the most important technologies in intelligent unmanned systems;
it is more effective than single-agent technology when facing complex task requirements.
Multi-agent collaboration technology describes the coordination of multiple agents to
achieve stronger performance, better efficiency, and higher adaptability than simple ad-
dition. The application of multi-agent systems will be more and more extensive with the
progress of Al technology, which will have a profound influence on future daily life and
industrial production.

Task allocation is one of the most important problems in multi-agent collaboration;
it has been a very important research topic in recent years. Task allocation mainly solves
the problem of allocating tasks to intelligent agents with reasonable strategies in complex
environments, so that the performance and efficiency of task completion are as high as
possible. The specific goal of task allocation is to ensure the constraint conditions and
to maximize the optimization of completion time and resource consumption. At present,
the technologies of multi-agent task allocation are not good enough, so improving and
innovating methods and algorithms is crucial.

The task allocation problem is usually represented as a combinatorial optimization
problem (COP). The traveling salesman problem (TSP) is a common single-agent task
allocation problem which is classical in the combinatorial optimization area. The TSP
describes how a travel merchant (agent) can visit multiple cities and return to the original
city of departure with the minimum path. It only needs to consider the order of task

Electronics 2023, 12, 3378. https:/ /doi.org/10.3390/ electronics12163378

https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12163378
https://doi.org/10.3390/electronics12163378
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-7850-7667
https://doi.org/10.3390/electronics12163378
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12163378?type=check_update&version=1

Electronics 2023, 12, 3378

20f16

execution of a single agent. Multi-agent task allocation problems are more complex as they
need to consider not only the execution order but also the executor of each task. Multiple
traveling salesman problems (MTSPs) [1] and vehicle routing problems (VRPs) [2] are
well-known for multi-agent task allocation. The MTSP expands the TSP to the multi-agent
scenario. Multiple agents start from the same starting point and finally return to this point
after completing a series of tasks. The goal of this problem is to obtain a set of task execution
plans that have the shortest total path. VRP is a kind of problem that adds constraints on
the basis of MTSP, such as the capacitated vehicle routing problem (CVRP) with capacity
constraints and the split delivery vehicle routing problem (SDVRP) with split constraints [3].
It is noteworthy that these kind of multi-agent task allocation problems require that all
agents must start from and return to the same point. The complexity and difficulty of
solving the multi-agent task allocation problem are far greater than the single-agent task
allocation problem. In recent years, many scholars have focused on this kind of multi-agent
task allocation problem, and have developed a number of solutions [4].

For the concerned multi-agent task allocation problem with multiple depots, the
initial positions of all agents need to be taken into account. This kind of problem can be
occasionally confronted in real life, and has important applications in many fields, such as
multiple unmanned aerial vehicles (UAVs), multiple unmanned ground vehicles (UGVs),
and multiple unmanned surface vessels (USVs). When the environment is dynamic and
changes during task execution, the subsequent allocation of agents can be regarded as a
new task allocation problem with multiple depots. Similarly, in the process of multi-agent
collaboration, if there is an emergency of some agent failures, a new solution can be obtained
immediately to handle the emergency. However, the multi-agent task allocation problem
with multiple depots is more difficult than the single-agent or the single-depot problem
due to the diverse locations of the agents. So far, there are few satisfactory solutions in
terms of accuracy and efficiency.

For the NP-hard task allocation problem, there are two types of classical algorithms:
optimization algorithms [5] and heuristic algorithms [6]. The optimization algorithm can
yield an optimal solution, but the computational burden will increase exponentially, often
becoming too great to be accepted. Typical optimization algorithms for task allocation
problems are simplex algorithm, branch and bound, etc. In contrast, heuristic algorithms
are more practically useful. Although a heuristic algorithm can only yield an approximate
solution, its computational efficiency is much higher than the optimization method. Usually,
heuristic algorithms can be modified by changing the associated basis so as to achieve better
results or higher efficiency. However, heuristic algorithms usually require formulating
rules which may be highly dependent on human expertise and experience. The commonly
used heuristic algorithms in task allocation include the genetic algorithm (GA) [6], ant
colony optimization (ACO) [7], particle swarm optimization (PSO) [8], immune algorithm
(IA) [9], tabu search (TS) [10], simulated annealing (SA) [11], etc.

After heuristic algorithms had been widely used for decades, deep learning methods
for task allocation began to rapidly develop [12]. The encoding method, based on the
attention mechanism [13], and the decoding method, based on the pointer network [14],
are two important parts of the deep learning method of task allocation.

In the rapid development process of deep learning, the sequence generative model is
one of the most representative and most developed models [15]. It is now relatively mature
in machine translation [16] and speech recognition [17]. The attention mechanism and
the transformer model [18] are the most important achievements in sequence generation.
In traditional recurrent neural network (RNN) [19], it is difficult to summarize all the
context details in the sequence encoding process, and attention mechanisms can select
more important information from a large number of contexts. The attention mechanism
determines the correlation of context details that do not rely on time sequence in order to
extract more valuable detail segments from the input sequence. Specifically, the attention
mechanism calculates a variable context vector by weighted averaging and then adds the
context vector as additional information into the RNN to output the final sequence. The

Electronics 2023, 12, 3378

30f16

transformer model [18] is a new attention mechanism proposed in 2017. The transformer
attention mechanism no longer relies on the traditional RNN model, but only uses attention
mechanisms to build the encoder and decoder. A self-attention mechanism was proposed
in the transformer model, which completes parallel encoding of all input segments to
greatly reduce training time. In addition, a multi-head attention mechanism was proposed
to extract different features through multiple independent single-head attention layers,
further improving the performance of the model.

The pointer network (Ptr-Net) [14] is an important application of the attention mech-
anism in task allocation problems which solved the TSP using a deep learning method.
Ptr-Net combines a sequence generative model and the graph attention network (GAT) [20].
The encoder of Ptr-Net completes feature extraction of task points using the attention
mechanism to obtain graph embeddings, and the decoder outputs the generation of task
sequences. The output of Ptr-Net is a pointer to an input element, which is then sorted in a
new order. Specifically, Ptr-Net calculates the state vector of the current moment by the
pointer and the state vector of the previous moment, then uses the attention mechanism to
calculate the weight of all input elements corresponding to the current state, and finally
outputs the pointer according to the weight value. In Ptr-Net, all elements of the input
sequence are calculated independently of each other, so changing the order of the input
sequence will not change the final result. Ptr-Net contributes enormously in the task alloca-
tion area, which greatly improves the computational speed while ensuring task completion
accuracy.

On the basis of Ptr-Net, the reinforcement learning method [21] was proposed to
overcome the difficulty of label collection in COPs. The attention model [4] extended the
pointer network to multiple agents, effectively solving several VRP problems. The relational
attention model [22] modified the attention model and improved the performance and
computational efficiency. However, the above mentioned methods cannot handle complex
multi-agent COPs, and only a few studies have explored the multi-agent task allocation
problem with multiple depots [23,24].

Based on the above literature review, a multi-agent task allocation method with mul-
tiple depots is proposed, where an improved encoder-decoder architecture is developed.
A full-graph encoder with multi-head attention mechanism and a two-way selection de-
coder based on a pointer network are built. The encoder is an improved graph attention
network, which uses the multi-head attention mechanism to calculate the features of all
agents and tasks. The decoder is an improved pointer network which outputs the orders
of task execution in parallel by a two-way selected model. The proposed method can
yield several sequences which correspond to the task execution orders of multiple agents.
This encoder—decoder architecture is trained and tested using the reinforcement learning
method with baseline, which can calculate the selection probability of each agent and each
task, and output the final routes of multiple agents in parallel.

The main contributions are as follows.

* A full-graph encoder is built to enhance the correlation between agents and tasks by
calculating the features of the agents, tasks, and the current state.

* A two-way selection network of agents and tasks is proposed to ensure the perfor-
mance of task allocation.

¢ Anparallel pointer network is designed to output all the routes at the same time, which
enables effective cooperation among multiple agents.

* The experimental results show that the proposed task allocation algorithm outper-
forms traditional heuristic algorithms in terms of effectiveness and efficiency.

This paper is organized as follows. Section 2 formulates the multi-agent task allocation
problem with multiple depots. Section 3 builds an end-to-end model with a full-graph
encoder and a two-way selection decoder. Section 4 shows the performance of our proposed
model in the multi-agent task allocation problem with multiple depots. Section 5 provides
conclusions and future work.

Electronics 2023, 12, 3378

40f16

2. Problem Description

For the concerned multi-agent task allocation problem with multiple depots, there are
multiple agents and multiple tasks. Each agent is able to execute multiple tasks, and each
task only needs one agent to execute once. All agents need to start from their respective
depots and cooperate to complete all tasks. The goal of this problem is to obtain a set of
task execution plans with the shortest total path.

For a problem setting s, there are m agents {A1, ..., A} and n tasks {Ty, ..., T, }. The
depot coordinates of the agents and the task coordinates are represented by {C4,,...,Ca,, }
and {Cr,,...,Cr,}, respectively. C4 and Cr are the position vectors in 2D or 3D space.

The execution plan of the problem setting s can be represented as:

ni(s) = {mi(s),..., m(s)} 1)

7'[]‘(5):(le,...,T]’kj),]'E{1,...,”’[} (2)

where 77(s) is the set of all m agents’ task execution sequences and the 77;(s) is the task
execution sequence of the j-th agent. For the sequence 77;(s), T represents the first task
in the sequence and Tjk; represents the last task, and k; is the task sequence length of the
j-th agent.

The multi-agent task allocation problem is formulated as:

m
Minimize) L(7;(s)), ©)]

j=1

subject to
ki—1

£(m9) = €4, =yl + T 167, ~Cr 2 @
U]m:17'fj(5) = {Tl,...,Tn}, (5)
mi(s)Nm(s) =0, Vjl=1,...,m, (6)

Equation (3) is the objective function to minimize the sum of the path lengths of all
routes. Equation (4) provides an expression for the path length of the route 77;(s). Finally,
Equations (5) and (6) are the constraints that all tasks need to be completed, and each task
must be completed by only one agent.

3. Methods

A graph attention pointer network is proposed for the multi-agent task allocation
problem with multiple depots. Several improvements are made in both the encoder and
decoder based on Kool’s encoder-decoder framework [4], so that the model can effectively
handle the multi-agent task allocation problem with multiple depots.

The proposed model consists of a full-graph encoder and a two-way selection decoder.
First, the information of all depots and tasks are sent to the graph attention pointer network
to seek the relationship of all points in the graph. Second, the two-way selection decoder
chooses the bidirectional matching between the agent and the task, and outputs multiple
sequences at the same time. Finally, the model is trained by the policy gradient deep
reinforcement learning algorithm with baseline.

The deep learning model in this paper transforms the multi-agent task allocation
problem into a node ordering problem in a graph structure. The encoder constructs the
graph structure and the decoder obtains node sequencing. The details of the proposed
model are shown in Figure 1.

Electronics 2023, 12, 3378 50f 16

Input
¥
Fully Connected Layer

Multi-head Attention Layer

Skip Connection Layer | = xN
Fully Connected Layer
|
\
Embedding
|
R
State
Ly ! l
Query Key Value
[| |
v
. xn
Attention Layer
v
Probabilities
\
One-step Output
]

¥
Sequence Output

Figure 1. The structure of the proposed model. At first, the graph embeddings are calculated by
the full-graph encoder with N layers, which include multi-head attention layers, skip connection
layers, and fully connected layers. Then, a one-step output can be calculated by the two-way selection
decoder. Finally, the sequence can be output after the decoder has run for n times.

3.1. Full-Graph Encoder

This part studies the structure of the full-graph encoder. The full-graph encoder
constructs the graph structure to transform real-world problems into graph problems. It
extracts features from individual nodes and outputs the node embeddings.

The full-graph encoder builds a graph and transforms the information of each point
in real life (depots and tasks) into a feature vector that can be recognized by the machine.
Then, the encoder calculates the correlation among nodes using the multi-head attention
mechanism and outputs the node embeddings and graph embedding. The “full-graph”
attribute of the encoder is reflected in the unified processing of all depots and all tasks. The
structure of the encoder is shown in Figure 2.

Electronics 2023, 12, 3378

6 of 16

multl head

Encoder Graph
Attention

Network

Multi-head
e Attention
initial
input embedding

Fully Z Fully
Connected Connected
—>
Graph
Attention

node/graph
embedding

Network
*N

Skip Connection

hY

Figure 2. The structure of the proposed full-graph encoder. At first, the encoder takes as input the
coordinates of task points and agent depots and then moves to the next step, which calculates the
initial embeddings using a fully connected layer. Then, the embeddings of the hidden layer are
calculated by the graph attention network, which is the combination of a multi-head layer, a skip
connection layer, and a fully connected layer. Finally, the node embeddings and the graph embedding
can be calculated after N graph attention networks.

Firstly, the full-graph encoder constructs an undirected fully connected graph. The
points in the real-world problem are mapped to the graph nodes one by one. In this multi-
depot problem, there are m depots {Ay,..., Ay} and n tasks {Ty, ..., Ty}, so a graph with
m 4+ n nodes can be built. In this graph, each node will be connected to all other nodes and
also to itself, and all connections are undirected.

Secondly, the full-graph encoder generates a oy dimension vector (y = 128 in this
paper) for each node using the position information. The input comes from the real
problem, including the coordinates of all depots {C4,,...,Ca,,} and all tasks {Cr, ...,Cr, }.
Then, a fully connected neural network is used to transform the coordinate vectors into
r-dimensional feature vectors, completing initialization for the subsequent multi-head
attention network. The initial node embedding E(©) is calculated after passing through the
fully connected layer. In this paper, the uppercase letter E is used to indicate the embedding
of all nodes in the graph, and the lowercase letter ¢ is used to indicate the embedding of
one node. E() includes all m + 1 node embeddings ei(o), wherei=1,...,m+n.

Finally, the node embeddings and graph embedding are calculated by the multi-head
attention mechanism. In the complex multi-depot problem, shallow embeddings cannot
effectively represent the features of nodes (the network depth is not enough). Therefore,
this paper adopts improved graph attention networks to carry out calculations for deeper
embedding. Each graph attention network contains a multi-head attention layer [18], a
fully connected layer, and a skip connection layer [25]. The graph attention network is
shown in Figures 1 and 2. The multi-head attention layer is the core structure of the graph
attention network; it aims to obtain the features of each node and the correlation among
multiple nodes. The fully connected layer ensures that the input and output have the
same dimension of t, allowing the graph attention networks to stack with each other. The
skip connection layer retains the useful features from the previous layers to prevent them
becoming invisible in subsequent calculations. Increasing network depth is crucial in
deep neural networks, so the skip connection layer is also crucial to avoid the problem of
gradient vanishing and exploding. The number of the stacked graph attention networks N
should be selected moderately (N = 3 in this paper).

The multi-head attention layer is the core of the graph attention network, and its
structure is shown in Figure 3. It can update from the current embedding E() to the

Electronics 2023, 12, 3378

7 of 16

next layer E!*1). Specifically, for the embedding ei(l) of the I-th layer, the r-th single-
head attention layer can calculate the query qi(,lr), key kl(lr) and value vl(lr)

(D ki(l) Ui(l):

parameters w,;"’, w,’’, and w,

according to the

R A S
z(r) 1(1) wi, r=1,...h @
v()—ef” Wi =1, h

Lr

where h represents the number of heads in the multi-head attention layer.

(l+1)(heo:d1)
\ / (1+1)(head;) \

(l) —_— (1+1)
‘/ \‘ (l+1)(headh) /
O rask

‘ © Depot
Task/Depot

Figure 3. The details of the multi-head attention sublayer. Firstly, the weight vector of each node
is calculated by the query of the node itself and the keys of all nodes. Secondly, the result of a
single-head attention layer is obtained by weighted averaging the values of all nodes using the
weight vector. Finally, the output of the multi-head attention layer can be obtained by stacking all
single-head results.

After obtaining the query q() , key k(), and value v() of the r-th head, the embedding

e(l+1)

., of the next layer can be calculated by:

n () 0
e =) " softmax =iyt > o) 8)
zr = f (/*dk) s,r

In this formula, the query q() can give weights to other nodes by calculating the
matching degree, which is equal to the cosine value of the angle between these two vectors

q(l) and k§2 Then, the softmax function is used to calculate the weight from the cosine
value. The greater the cosine value, the greater the weight given. The adjustment factor

()

V/dy is used to prevent the result of softmax being too close to 0 or 1. Finally, the values v ,

of all nodes are linearly combined to calculate the node embedding e(lﬂ)

The multi-head attention layer repeats the above single-head attentlon layer several

times, and outputs e(2 by splicing all heads e(l+1).
A(141 I+1 I+1
ei(+) — = (e l(1+),...,ef,,f)) 9)

Electronics 2023, 12, 3378

8 of 16

Afterwards, the result of the graph attention network eZ(ZH) can be calculated by éflﬂ)

after passing through a fully connected layer and a skip connection layer:

e§l+1) _ wl(lﬂ)(éi(lﬂ)) + bl(l+1) + el(l) (10)
It is worth noting that the dimension of each head’s embedding eflrﬂ) is the quotient
of the embedding dimension y and the number of heads k. The dimension of the vector
must be an integer, so y must be divisible by h. In addition, the parameters w,i(l), wfi 0

0

4

and w,""" of each head are different to extract different features.

3.2. Two-Way Selection Decoder

This part studies the structure of the two-way selection decoder. The two-way selection
decoder reasonably allocates tasks to multiple agents and arranges the task execution orders
of individual agents.

The pointer-network-based decoder is a sequence generator, but the classical pointer
network can only output one pointer, which cannot achieve the goal of selecting an agent
for a task in a multi-depot problem. Therefore, this paper proposes a two-way selection
pointer network that can output two pointers at the same time, allocating tasks reasonably
to agents while considering the task execution order.

The routes of all agents (sequences of all tasks) can be obtained when the two-way
selection decoder runs multiple times. Each run of the two-way selection decoder obtains
the best single step in the current state, and updates the state information every step.
All tasks can be allocated after the decoder repeatedly runs. The process of the decoder
outputting multiple routes is shown in Figure 4.

State
) [] o ° [] % > 4 b 4 % % ®
current ° X o ° X o ° X o PY
location
[] —> © —> —> [] —> ©
unvisited ° ° ® ° ° ® *® % hd ® »
nodes °) ® ® % b 4 ®
visited *® PY) PY L] ° % °
nodes
S B T I R e e
Action .\ e © o\ o——® .——v/' c——'/
(one-step output)
® o ® o * > 4
agent @
° o ° o o I — ° — ®
task @ ° . ° ./ \ ./ \‘
[] [J
route —» ° ® ° \ ./ .\ /‘

Figure 4. The process of obtaining the final solution from the problem example. Each action represents
an agent executing a task, then each state updates the position of the agent and moves the executed
task out of the candidate task set. The final strategy can be obtained by repeating actions and updating
states continuously until all tasks are completed.

The input of the decoder includes a static part and a dynamic part. The node embed-
dings obtained in the full-graph encoder are used as the static input of the decoder. The
dynamic input includes all information about the current state, which is an important factor
affecting the final results. The current location of the agents will obviously affect the node
selection in the multi-depot problem, and the “visited state” of all nodes will influence the
results as well. To be specific, the “visited state” means that only the tasks that have not
been visited can become candidates, while the visited tasks cannot be selected again. So,

Electronics 2023, 12, 3378

9o0f 16

the dynamic input consists of the current locations of agents and the tasks that have not
been visited.

The outputs of the decoder are the routes of multiple agents, corresponding to several
sequences of all tasks, and its set 77(s) can be represented as:

ni(s) = {mi(s),..., mm(s)} (11)

where 77(s) is the set of all task execution routes of m agents, which is the same as the
allocation plan in Section 2.
The structure of the two-way selection decoder is shown in Figure 5.

:" query ‘\
sk Decoder

location state
embedding

attention one-step
mechanism
\ output

visited
tasks \ agent
S @ ' value probabilities i

graph
embedding

update state

) J
\. /
v "

Figure 5. The structure of the two-way selection decoder. Firstly, the decoder calculates the state
embedding with the current location of agents and the set of candidate tasks (visited tasks). Secondly,
the attention mechanism is used to obtain the probability of each agent executing each task. Thirdly,
an agent and a task are chosen as a one-step output. Finally, the state of the current location of agents
and the set of candidate tasks can be updated.

In fact, the output of the two-way selection pointer network is the probability distribu-
tion p(A;, Tj|t) of selecting each node in the current state, where A; € {Ay,..., Ay} and
T; € {To, ..., Tu} represent the selected agent and task. The calculation of the probability
distribution is an important process of the network, and its core principle is similar to the
weight calculation process of the attention mechanism. When calculating the probability,
the query, key, and value vectors are crucial. The key and value are produced from the
static node embeddings, while the query is dynamic, which directly affects the quality of
the results. A critical part of the network is whether the query can fully obtain the state
information.

The core concept of the two-way selection pointer network is to design two queries,
one for an agent and the other for a task. The query q](-A)
current location, completing the selection of a task that is suitable for the agent. On the
contrary, the query g(") for the task comes from its node embedding and the “visited state”,
completing the selection of an agent that is suitable for the task. Then, the comprehensive
probability is calculated based on the results of the two selections, which better reflects the
matching situation between the agent and the task. The detailed calculation process of q(A)

]
and ql(T)

for the agent is calculated by the

are as follows:

A — pe(el?
q](T) o 12)
q; ' = FC(ej,e(u))

Electronics 2023, 12, 3378

10 of 16

where e]@ represents the embedding of the task of the j-th agent located at moment ¢. e(u)

represents the average embedding of all tasks that have not been visited. FC means a fully
connected layer whose output dimension is the embedding dimension .

(4) (T)

After obtaining g j and gq; ', the relationship R; ; between agent j and task i can be
calculated by the two-way selection rules:
(A) 1(T) (T) 1.(4)
<q; k7 >-<q 0 kT >
Rij = ——— — (13)
’ dk

Subsequently, in order to satisfy the constraint of non-repeated task visitation, it is
necessary to add a mask function. The purpose of the mask function is to ensure that the
probability of all visited tasks is equal to 0. The mask function searches the relationships
R of all visited tasks and changes them to negative infinity, so that the probabilities can
be equal to 0 after the softmax function. The calculation process of the mask function is
as follows:

Mask(Ri,j) _ { oo, visited (14)
Ri,j , others

Then, the probability p(Aj, T;|t) of selecting agent j and task 7 can be calculated by the

softmax function:
p(Aj, Ti|t) = softmax(Mask(R;;)) (15)

After calculating the probability distribution, the decoder will select one agent and one
task according to the probability distribution to obtain a single-step output. The algorithm
for selecting the single-step output varies in different circumstances, and it comes from the
following three algorithms: greedy search, beam search, and sampling selection.

When training, the sampling selection algorithm should be chosen. It will randomly
select a node according to the probability distribution p(A;, T;|t). This algorithm can hardly
obtain a good solution, but is more suitable for gradient calculation.

When testing, the greedy search or beam search algorithm should be chosen. The
greedy search algorithm selects the highest probability every time. The greedy search
algorithm has a very high computational efficiency, but ultimately the performance of the
feasible solution is not always the best. The beam search algorithm selects several high
probabilities as candidates every time, and finally selects the best plan from all candidates,
resulting in better performance but lower computational efficiency.

3.3. Reinforcement with Baseline

The policy gradient deep reinforcement learning algorithm with baseline [21] is used
to train the model due to the difficulty of collecting labels. In the policy gradient algorithm,
the probability of the action is determined by the state, where the action is the behavior of
the node selection. A loss function is needed for the policy gradient algorithm, so that it can
use a gradient descent method to minimize the loss and to determine a model. Based on
the model parameters, W, p(7t|s, W) is the probability distribution of all feasible solutions
under the problem instance s, then the loss function can be defined as:

L(68]5) = Eypy) |7 (71(5))] 16)
T(n|(s)) = ic<nj<s>> a7
L

where .Z(6|s) indicates the loss function, and 7 (7t|(s)) indicates the cost (the length of all
routes). Then, the gradient of the loss function is:

VZ(5,0) = Ep(nfse) [T (7](s))V Inp(7ls, 0)] (18)

Electronics 2023, 12, 3378 11 of 16

In the calculation of the gradient, the addition of baseline b, which is independent of
7T, does not affect the result, because Vb satisfies:

Ep(rr\s,e) [bv lnp(T['S/g)] =b- Ep(n\s,ﬂ) [V lnp(”\srf’)] =b- ;P(”‘SIQ) : VInp(n‘ng)

dlnp(nls,0) 1 ap(mls,0)

:b.;p(ﬂ‘sﬂ) mne el :b.;p(n\s,G).p(n‘S/g). 50 (19)
_, vop(mls,0) . 0x,p(nrls) , o1 _
=b-), 0 0 90 =5 =0

T

Therefore, the gradient of the loss for the problem instance s can be expressed as:

V.2(5,0) = Eynjo) [T (]()) VIn p(t]s, 6)] 20
)

= Eymen) (T (21(5)) —)V In (el 6)]

So (J (7t|(s)) — b) can be used instead of 7 (7t|(s)) in the policy gradient as long as b is
not related to action 7r. The addition of b will not affect the correctness of the policy gradient
itself. More importantly, the policy gradient algorithm in deep reinforcement learning is
performed from Monte Carlo approximation, which is a kind of sampling method. When
the baseline b is close to J (7|(s)), the variance can be reduced so that the convergence of
the neural network can speed up [26].

The baseline in the model is as follows:

{b(s) = J(m|(s)), firstiteration 1)

b(s) < Bb(s)+ (1 —PB)T(m|(s)), others
where b(s) is the cost of the baseline policy, and f is an inertia parameter.

4. Experiments and Results

The experiments in this paper are conducted through random positions of task points
and agent depots.

This section is organized as follows. Section 4.1 gives the parameter settings and the
training resources in this paper. Section 4.2 describes the comparative experiment and the
numerical results. Section 4.3 shows some figures of the experiment. Section 4.4 provides
the analysis of the model based on the experimental results.

4.1. Parameter Settings and Training Details

In most deep learning models, the construction of training and validation sets is crucial.
The model can only use training data for training and cannot use samples in the validation
set. In this paper, a set of validation samples is generated before training, with the number
of agents and task points in the validation set unchanged. The positions of agent depots
and task points in each sample are randomly generated in a 1 X 1 map. The generation
of the training set is the same as the validation set, using a fixed quantity and random
location. However, due to the large number of samples in the training set, it is necessary to
randomly divide it into multiple batches for training before each epoch training. Then, the
model is validated one time after completing each epoch. Specifically, the policy gradient
algorithm calculates the baseline required for validation, then the loss between the model
and the baseline on the validation set is calculated and finally uses the Adam optimization
algorithm to update the weights of the neural network. The final result of each training is
selected from the model that performs best in the validation set. Some model parameters
and training resources are shown in Table 1 for reference.

Electronics 2023, 12, 3378

12 of 16

Table 1. Some model parameters.

Parameter Value
Embedding dimension 128
Hidden layer dimension 128
Attention layer number 3
B 0.8
Batch size 256
Epoch size 12,800
Epoch number 100
Validation size 1000
Learning rate 0.0002

In the above table, the embedding dimension is for the graph encoder, and the hidden
layer dimension is for both the encoder and decoder. The attention layer number refers to
the number of multi-head attention layers in the encoder. The inertia parameter is defined
in Equation (21). The batch size is set to 256, and a total of 100 epochs are trained with each
epoch containing 12,800 batches. The validation size means the number of instances in the
validation set. The learning rate is set to 0.0002.

In addition, the proposed graph attention pointer network was trained on 2 GPUs
“NVIDIA Tesla V100 sxm30 32 GB” for about 6 h.

4.2. Comparative Experiment

The Gurobi and LKH3 methods, which are two commonly used solvers, are selected as
comparative experiments. The Gurobi method is one of the most widely used mathematical
programming optimizers; it is often used to solve integer programming problems. However,
due to limited equipment resources, Gurobi cannot be used to handle larger-scale problems.
The LKH3 is an algorithm that optimizes the solution by constantly exchanging edges; it
is an excellent solver for TSP and VRP at present. For the LKH3 algorithm, the higher
the number of exchanged edges, the better the quality of the solution. In this paper, the
solution of the LKH3 algorithm is defined as a solution calculated within an acceptable
time. Meanwhile, for the comparison purpose, the particle swarm optimization (PSO) and
the genetic algorithm (GA) are also designed to solve this problem. PSO is a well-known
heuristic algorithm which is able to deal with large-scale problems. GA can hardly deal
with large-scale problems due to the huge memory resources required during genetic
computing, so GA is not available when there are more than 10 agents. As for deep learning
methods, there are few similar deep learning methods for reference due to the fact that the
method in this paper is an extension of the attention model [4]. The simulation results of
the five methods are shown in Table 2.

Table 2. The results of different models.

Map Scale Our Model Gurobi LKH3 PSO GA
Agent/Task Length Time Length Time Length Time Length Time Length Time
5/20 4.67 <0.1s 4.17 3m 4.35 9m 4.56 23s 451 37s
5/50 7.23 <0.1s - - 7.09 23 m 7.89 56 s 8.12 2m
10/50 6.91 <0.1s - - 6.83 2h 8.10 5m - -
10/100 9.89 <0.1s - - 9.83 13h 11.39 12m - -

Overall, the most obvious advantage of the method proposed in this paper lies in the
computational speed, which can be faster by over 100 times compared to all optimization
methods and heuristic algorithms mentioned in this paper (such fast computing speed
is based on a long training period). In terms of performance, the method proposed in
this paper is not as good as the optimization methods but performs better than heuristic
algorithms in large-scale problems.

Electronics 2023, 12, 3378

13 of 16

Specifically, the performance of the deep learning method proposed in this paper varies
among problems with different scales. At the amount of five agents with 20 task points,
the performance of our method lags behind all other methods. Moreover, in this scale of
problems, the optimization methods and heuristic algorithms also have fast computational
speed, so the advantage of a fast speed does not seem to be important. At the amount
of five agents with 50 task points, the performance of our method lags behind LKH3 but
leads PSO and GA. At the amount of 10 agents with 50 task points and 100 task points, the
performance of our method lags behind LKH3 but significantly leads PSO and GA, and
in such large-scale problems, the advantage of the fast speed in our method is even more
important (not all problems can accept taking 13 h to find a solution).

4.3. Figures

The performance and characteristics of this method can be further explored from
different simulation figures.

The convergence curve of the loss function is shown in Figure 6. In the training process
of 100 epochs, the loss function exhibits a decaying trend along with the number of epochs
and is very close to the minimum value after the 80th epoch.

50

40 -

Loss

30

20+

10 A

0 20 40 60 80 100
Epoch

Figure 6. The convergence curve of the loss function.

The visualization graphs can demonstrate the quality of the task allocation results, and
can also be used to analyze the advantages and drawbacks of the allocation results. The
visualization graphs of the multi-depot problem with 100 tasks and 10 agents are shown in
Figure 7.

In Figure 7, it can be found that the points distributed at the edge of the map are
selected much more preferentially than the dense points in the center. As a result, the
sequence is always generated from the edge to the center.

Additionally, the two models of Figure 7a,b yield completely different strategies for
the task allocation. The model of (a) tends to select neighbor points with a closer distance,
while the model of (b) gives priority to placing tasks of one path in the same area. The
reason for this phenomenon might be that the two models learned different features during
the training process. One model learns more about the distribution of nodes, and the other
learns more about the spatial distance between nodes.

Electronics 2023, 12, 3378

14 of 16

&

SN

00

o

10 0.0 02 0.4 0.6 08 10

o.

(a) total distance: 9.83 (b) total distance: 10.17

Figure 7. The visualization results of the simulation of 100 tasks for 10 agents. The lines of different
colors are used to represent the routes of different agents, and the agent will be represented by a
point if it is not assigned to any task.

4.4. Analysis

According to the simulation results in Section 4.2, the deep learning method proposed
in this paper has many advantages. Firstly, the deep learning method performs well
in large-scale problems and can be applied to some complex problems. Secondly, the
deep learning method has great computational efficiency that can handle some dynamic
problems which require high computing speed. Finally, the deep learning method can
collect lots of labels in a short time, which is helpful for many practical applications and
supervised learning models.

On the contrary, there are several drawbacks of the proposed deep learning method.
Firstly, a new model needs to be built when the problem description changes. Secondly,
the deep learning method needs a long training period, even if the problem is very simple.
Thirdly, the deep learning method cannot yield an optimal solution, so it is not as reliable
as classic solvers for some problems with high performance requirements. Finally, the deep
learning method yields a black-box model which may not be interpretable, so the strategy
may not be reasonable.

In the research of task allocation, various methods have their advantages and limita-
tions. All methods can find suitable application scenarios based on their own characteristics
and will not be completely replaced by other methods. Deep learning methods change
the solving mode of task allocation problems from the all-points output to point-by-point
output. This characteristic of deep learning methods makes the computational complexity
only dependent on the network itself and almost unchanged with a change in the problem
size. Therefore, deep learning methods can maintain highly efficient computation and good
performance even when the problem size is large. Compared to heuristic algorithms, deep
learning methods lack flexibility. When the problem becomes complex or the objective
changes, deep learning methods not only need to redesign all the networks but also spend
a lot of time adjusting parameters to complete training, while heuristic algorithms only
need to change the objective function and constraint conditions. Compared to optimiza-
tion methods, the performance of deep learning methods is not stable enough. When the
tolerance for poor performance is low, deep learning methods are often inadequate. Deep
learning methods may not perform well in certain examples, but optimization methods can
always obtain excellent solutions.

In summary, deep learning methods are better when the problem is large in scale or
the problem requires high computational speed; heuristic algorithms are better when the

Electronics 2023, 12, 3378 15 of 16

problem is complex enough or there are changes in objectives; optimization methods are
better when there is a high demand for optimality.

5. Conclusions

In this paper, a multi-agent task allocation method with multiple depots has been
proposed using the graph attention pointer network. Specifically, a full-graph encoder
with multi-head attention mechanism and a two-way selection decoder based on a pointer
network have been built to form an encoder-decoder architecture. Simulation results show
that the proposed task allocation method outperforms the traditional solvers and heuristic
algorithms in terms of computational speed and training resource consumption.

Our future work will further improve the network. A dynamic graph embedding
structure will be built, and the multi-head attention mechanism will be integrated into the
calculation of the state embedding in the decoder in order to improve the quality of the
state features. Moreover, the decoder structure will be modified in order to be applied to
more complex problems. In addition, the mode of training and the generation of data will
also be changed to reduce the time for training.

Author Contributions: Conceptualization, W.S. and C.Y.; methodology, W.S. and C.Y.; software,
WS.S,; validation, W.S.; formal analysis, W.S. and C.Y.; investigation, W.S. and C.Y.; resources, C.Y.;
data curation, W.S.; writing—original draft preparation, W.S.; writing—review and editing, C.Y,;
visualization, W.S.; supervision, W.S. and C.Y.; project administration, C.Y.; funding acquisition, C.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key Research and Development Project under
grant 2020YFC1512503, and the National Natural Science Foundation of China (grant no. 61991414,
62088101).

Data Availability Statement: In this paper, we use randomly generated data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bektas, T. The multiple traveling salesman problem: An overview of formulations and solution procedures. Omega 2006,
34,209-219. [CrossRef]

2. Eksioglu, B.; Vural, A.V.; Reisman, A. The vehicle routing problem: A taxonomic review. Comput. Ind. Eng. 2009, 57, 1472-1483.
[CrossRef]

3. Toth, P.; Vigo, D. Vehicle Routing: Problems, Methods, and Applications; SIAM: Bangkok, Thailand, 2014.

4. Kool, W.; Van Hoof, H.; Welling, M. Attention, learn to solve routing problems! arXiv 2018, arXiv:1803.08475.

5. Khamis, A.; Hussein, A.; Elmogy, A. Multi-robot task allocation: A review of the state-of-the-art. In Cooperative Robots and Sensor
Networks 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 31-51.

6. Ye, E;Chen,].; Tian, Y,; Jiang, T. Cooperative task assignment of a heterogeneous multi-UAV system using an adaptive genetic
algorithm. Electronics 2020, 9, 687. [CrossRef]

7. Yang,].; Shi, X.; Marchese, M.; Liang, Y. An ant colony optimization method for generalized TSP problem. Prog. Nat. Sci. 2008,
18, 1417-1422. [CrossRef]

8. Li, M, Liuy, C; Li, K, Liao, X.; Li, K. Multi-task allocation with an optimized quantum particle swarm method. Appl. Soft Comput.
2020, 96, 106603. [CrossRef]

9. Li, L; Lin, Q.; Ming, Z. A survey of artificial immune algorithms for multi-objective optimization. Neurocomputing 2022,
489, 211-229.

10. Cordeau,].E; Laporte, G. Tabu Search Heuristics for the Vehicle Routing Problem; Springer: Berlin/Heidelberg, Germany, 2005.

11. Geng, X.; Chen, Z.; Yang, W.; Shi, D.; Zhao, K. Solving the traveling salesman problem based on an adaptive simulated annealing
algorithm with greedy search. Appl. Soft Comput. 2011, 11, 3680-3689. [CrossRef]

12. Zhang, K; Yang, Z.; Basar, T. Multi-agent reinforcement learning: A selective overview of theories and algorithms. In Handbook of
Reinforcement Learning and Control; Springer: Cham, Switzerland, 2021; pp. 321-384.

13. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.

14. Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer networks. In Advances in Neural Information Processing Systems; MIT Press: Cambridge,
MA, USA, 2015; Volume 28.

15. Rajan, K.; Harvey, C.D.; Tank, D.W. Recurrent network models of sequence generation and memory. Neuron 2016, 90, 128-142.
[CrossRef] [PubMed]

16. Stahlberg, F. Neural machine translation: A review. . Artif. Intell. Res. 2020, 69, 343-418. [CrossRef]

http://doi.org/10.1016/j.omega.2004.10.004
http://dx.doi.org/10.1016/j.cie.2009.05.009
http://dx.doi.org/10.3390/electronics9040687
http://dx.doi.org/10.1016/j.pnsc.2008.03.028
http://dx.doi.org/10.1016/j.asoc.2020.106603
http://dx.doi.org/10.1016/j.asoc.2011.01.039
http://dx.doi.org/10.1016/j.neuron.2016.02.009
http://www.ncbi.nlm.nih.gov/pubmed/26971945
http://dx.doi.org/10.1613/jair.1.12007

Electronics 2023, 12, 3378 16 of 16

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

Nassif, A.B.; Shahin, L; Attili, I.; Azzeh, M.; Shaalan, K. Speech recognition using deep neural networks: A systematic review.
IEEE Access 2019, 7, 19143-19165. [CrossRef]

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In
Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2017; Volume 30.

Mikolov, T.; Karafiat, M.; Burget, L.; Cernocky, J.; Khudanpur, S. Recurrent neural network based language model. In Proceedings
of the Interspeech. Makuhari, Chiba, Japan, 26-30 September 2010; Volume 2, pp. 1045-1048.

Veli¢kovi¢, P; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
Nazari, M.; Oroojlooy, A.; Snyder, L.; Takac, M. Reinforcement learning for solving the vehicle routing problem. In Advances in
Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2018; Volume 31.

Xu, Y.; Fang, M,; Chen, L.; Xu, G.; Du, Y.; Zhang, C. Reinforcement Learning with Multiple Relational Attention for Solving
Vehicle Routing Problems. IEEE Trans. Cybern. 2021, 52, 11107-11120. [CrossRef] [PubMed]

Liu, W.; Wang, R; Zhang, T.; Li, K.; Li, W.; Ishibuchi, H. Hybridization of evolutionary algorithm and deep reinforcement learning
for multi-objective orienteering optimization. IEEE Trans. Evol. Comput. 2022. [CrossRef]

Sankaran, P.; McConky, K.; Sudit, M.; Ortiz-Pena, H. GAMMA: Graph Attention Model for Multiple Agents to Solve Team
Orienteering Problem with Multiple Depots. IEEE Trans. Neural Netw. Learn. Syst. 2022. [CrossRef] [PubMed]

He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016; pp. 770-778.

Weaver, L.; Tao, N. The optimal reward baseline for gradient-based reinforcement learning. arXiv 2013, arXiv:1301.2315.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2019.2896880
http://dx.doi.org/10.1109/TCYB.2021.3089179
http://www.ncbi.nlm.nih.gov/pubmed/34236983
http://dx.doi.org/10.1109/TEVC.2022.3199045
http://dx.doi.org/10.1109/TNNLS.2022.3159671
http://www.ncbi.nlm.nih.gov/pubmed/35324449

	Introduction
	Problem Description
	Methods
	Full-Graph Encoder
	Two-Way Selection Decoder
	Reinforcement with Baseline

	Experiments and Results
	Parameter Settings and Training Details
	Comparative Experiment
	Figures
	Analysis

	Conclusions
	References

