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Abstract: In the rapidly evolving landscape of distributed systems, security stands as a significant
challenge, especially in the face of network node attacks. Such threats introduce profound com-
plexities into the dynamics of security protocols, trust management, and resource allocation, issues
further amplified by the metaverse’s exponential growth. This paper proposes an innovative solu-
tion, offering unique technical contributions to address these multi-faceted challenges. We unveil a
trust-based resource allocation framework designed to facilitate the secure and efficient sharing of
computational resources within the metaverse. This system has the potential to markedly diminish
latency, thereby enhancing overall performance. In parallel, we introduce a reputation system that
systematically monitors latency across a spectrum of metaverse entities, providing valuable insights
for making informed resource allocation decisions. Moreover, we advocate for a decentralized trust
management system, specifically designed to withstand potential security breaches without reliance
on a centralized authority. This significantly fortifies both system security and user trust. Alongside
this, we unveil an inventive proof-of-trust consensus mechanism that fosters trust and collaboration
among metaverse entities during resource allocation, thereby cultivating a more secure ecosystem.
Our proposed model poses a robust challenge to malicious entities, and it substantially bolsters the
security architecture. The simulation results lend substantial credence to the effectiveness of our
approach, demonstrating significant improvements in latency reduction, scalability, and the detection
of malicious nodes, thereby outperforming existing methodologies.

Keywords: trust management; latency reduction; metaverse; throughput; consensus mechanism;
reputation management; trustworthiness; privacy preservation

1. Introduction

The conception of the metaverse [1], which postulates a virtual environment that en-
ables interaction between physical and digital constituents [2], has taken tangible form, ow-
ing to the proliferation of virtual reality (VR) and augmented reality (AR) technologies [3].
This transcendent paradigm shift in human–digital interaction has piqued the interest of
technologists and futurists alike [4], extending its tendrils into a broad array of online
environments. Today, the metaverse’s realm encompasses social networks [5], gaming [6],
virtual real estate [7], digital art exhibitions [8], and more, attracting substantial attention
and investment from major technological corporations and startups [9].

As a potential successor to smartphones and personal computers, the metaverse’s vast
influence touches upon numerous sectors, including communication [10], education [11],
entertainment [12], and commerce [13]. Nevertheless, with this evolutionary stride towards
a digitally intertwined reality comes a plethora of challenges. Among these, latency [14],
defined as the delay between a user’s action and the system’s response [15], is of paramount
concern. High latency can drastically compromise user experience [16], underscoring the
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urgent need for efficient latency mitigation strategies to enhance the metaverse’s overall
performance [17].

Prior endeavors to alleviate latency have largely focused on the enhancement of
network infrastructure and optimization of content delivery [18], processes that often
necessitate significant resources yet yield marginal returns. This paper ventures into an
unexplored territory: the incorporation of distributed trust management strategies. Unlike
its centralized counterpart, which frequently poses as a bottleneck and a vulnerability
hotspot, distributed trust management decentralizes trust decisions across the network,
potentially ameliorating system efficiency and reducing latency. Our study introduces an
avant garde trust-based strategy, meticulously designed to address latency in the metaverse
and bolster performance. The contributions to the metaverse performance optimization in
our study include the following:

• Trust-based resource allocation: A novel methodology facilitating the secure and
efficient sharing of computational resources among various metaverse entities.

• Reputation-based latency reduction: A comprehensive rating system that routinely
monitors latency across distinct metaverse entities, aiming to minimize
user-experienced latency.

• Decentralized trust management: A resilient system, devoid of centralized authority,
specifically designed to resist attacks and reinforce user trust.

• Proof-of-trust consensus mechanism: An inventive mechanism enabling entities within
the metaverse to establish trust and coordinate resource allocation.

The remainder of the paper is structured as follows: Section 2 elaborates on the context
of trust management in the metaverse, dissecting the limitations of contemporary methods.
In Section 3, we explicate our proposed technique dedicated to enhancing metaverse
performance through trust management strategies for latency reduction. Section 4 provides
a comprehensive analysis of our method’s efficacy, encompassing a comparative evaluation
with extant methods. Finally, in Section 5, we explore prospective research trajectories and
summarize our findings, shedding light on their implications for the future evolution of
the metaverse.

2. Related Work

In the burgeoning field of metaverse-based Internet of Things (IoT), rapid advancement
has resulted in an unprecedented proliferation of interconnected devices. This expansion,
while promising, has led to certain challenges, primarily latency induced by network
congestion or capacity constraints, resulting in possible data inaccuracies or loss. To
mitigate these concerns, researchers have explored potential solutions, such as mobile edge
computing, service deployment strategies, low-latency wireless communication, hybrid
edge–cloud systems, and channel-sharing strategies. This section presents an extensive
review of these diverse latency reduction methodologies and their comparative assessment
as detailed in Table 1.

Our study explores an innovative methodology to address latency in the metaverse
through the integration of trust management strategies and a reputation system, which
distinguishes our approach from previous work in several ways. Prior work [19–22] pre-
dominantly focused on conventional techniques for latency reduction, such as service
placement algorithms, improvements in wireless communication technologies, and edge
computing. While these methods have made substantial contributions to minimizing la-
tency, they often do not account for the unique characteristics of the metaverse, particularly
the significant reliance on trust due to the absence of a centralized authority.
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Table 1. A comparative analysis of the existing approaches.

Ref. Methods Key Findings Focus

[19] Latency Reduction Implemented a service placement algorithm to reduce service
response time and enhance IoT performance

Reduced service response
time

[20] Latency Reduction Systematic literature review exploring techniques for reducing la-
tency in IoT and cloud computing for real-time data transmission

Improvement techniques for
latency reduction

[21] Latency and
Reliability

Detailed study of technologies enabling low-latency and reliable
communication in IoT

Enabling technologies for
low-latency and reliable com-
munication

[22] Latency Reduction Mobile edge computing proposed to reduce latency in green IoT Reduced latency for
green IoT

[23] Latency Reduction Introduced a channel-sharing approach with artificial jamming to
reduce latency in secure wireless federated learning

Latency-oriented secure wire-
less federated learning

[24] Latency Reduction Explored narrowband IoT to enhance vehicular
communication performance

Enhanced vehicular commu-
nication performance

[25] Latency and Energy
Consumption

Edge computing used to understand latency and energy consump-
tion of convolutional neural network (CNN) models from an IoT
edge perspective

Latency and energy con-
sumption of CNN models

[26] Latency Reduction Adaptive network access proposed for industrial IoT based on
statistical learning to reduce latency

Adaptive network access for
industrial IoT

[27] Latency Reduction Introduced channel-aware latency tail taming to improve latency
in industrial IoT

Improved latency in indus-
trial IoT

[28] Networking
Optimization

Proposed a hybrid edge–cloud system for optimizing networking
service components using IoT

Networking service compo-
nents optimization using IoT

[29] Latency and Security Developed a new low-latency lightweight block cipher for infor-
mation security and cryptography

New low-latency lightweight
block cipher

Our work diverges from these traditional approaches by incorporating trust man-
agement to optimize resource allocation. This is achieved through the novel use of a
reputation-based system that not only facilitates effective sharing of computational re-
sources but also ensures secure interactions among various entities within the metaverse.
To our knowledge, this is the first study to exploit such a trust-based approach for latency
reduction in the metaverse. Moreover, we also introduce a decentralized trust management
system, independent of a centralized authority, which adds resilience against potential
security threats. This feature further accentuates the uniqueness of our contribution, as
most previous studies [23–25] focused on latency reduction in IoT or edge networks, often
reliant on centralized control mechanisms.

A service placement system for the Internet of Things was presented by Velazquez et al. [19]
that takes service–device relationships into account in order to reduce latency. The plan’s
goal is to reduce network latency by relocating the service physically closer to the end
user’s gadget. On the other hand, Shukla et al. [20] conducted a systematic literature review
on improving latency for real-time data transfer in IoT and cloud computing. They identi-
fied key factors affecting latency in these systems, including device limitations, network
topology, and protocol choice.

In [30], a new distributed messaging system called ‘Mez’, was designed to process
delay-sensitive multi-camera vision at the edge of IoT networks. The proposed approach
demonstrates the need for a low-latency messaging system that can process large amounts
of data generated by multiple cameras in real time. This article contains a detailed descrip-
tion of the system architecture, experimental results, and a comparative analysis with other
messaging systems. Results show that Mez outperforms existing messaging systems in
terms of end-to-end latency and message delivery speed. Mez has the potential to become
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a major disruptive technology with applications in large-scale machine vision, real-time
systems and virtual reality.

Horse et al. [21] researched fundamental and enabling technologies for high-reliability,
low-latency wireless communication for IoT. They presented a detailed analysis of the
challenges and solutions for reliable low-latency communications, including channel allo-
cation, power control, and modulation. In addition, Zhang et al. [22] proposed mobile edge
computing and network technologies that enable low-latency communication and green
computing in IoT. This approach allows edge devices to perform computing tasks tradi-
tionally performed in the cloud, significantly reducing latency and power consumption in
IoT networks.

Recently, Wang et al. [23] proposed a latency-oriented approach for secure wire-
less federated learning that applies artificial jamming to optimize channel sharing in
his IoT network. They aimed to address the challenges of maintaining privacy and
security in federated learning, which is becoming increasingly important in IoT. Fur-
ther, Hamarsheh et al. [24] introduced a narrowband IoT system that improves vehicle
communication performance with low latency and high reliability. They used narrow-
band technology to overcome the limitations of traditional broadband technology in
vehicular communications.

Hauschild and Hellbruck [25] examined the latency and power consumption of con-
volutional neural network models from the IoT edge perspective. They aimed to minimize
the latency and power consumption of these models for edge devices by investigating
various optimization techniques. Raza et al. [26] proposed a statistical learning-based
adaptive network access approach for industrial IoT that enables efficient data transmission
in demanding environments. We used machine learning techniques to optimize network
access and ensure reliable, low-latency communication.

In [27], a channel-aware latency tail-taming approach that effectively reduces end-
to-end latency in industrial IoT was explored. They used a new model to identify the
causes of latency tails in IoT networks and optimize channel allocation to reduce latency.
Fundal et al. [31] explored barriers to the adoption of IoT-based precision agriculture prac-
tices. They found that farmers’ concerns about privacy, lack of interoperability, and inade-
quate training were the main challenges for IoT adoption in precision agriculture. Finally,
Pal et al. [28] announced a hybrid edge–cloud system for optimizing network service
components with IoT. They proposed a new architecture that integrates edge and cloud
computing to optimize IoT network performance by reducing network latency and power
consumption.

3. Proposed Framework

The framework we propose for addressing latency in the metaverse consists of four
main interdependent components. Each of these components is intricately designed to
collectively enhance metaverse performance while simultaneously minimizing latency. In
the following subsections, we elucidate the functionality and interplay of each component
within the proposed framework.

3.1. Framework Design

The framework’s design integrates four main components in a synergistic manner:
trust-centric resource allocation, latency reduction via reputation mechanism, decentralized
trust management, and trust verification via consensus mechanism. These components
form an all-inclusive blueprint for latency reduction in the metaverse ecosystem. The
proposed framework operates on a decentralized network model with various entities in
the metaverse—which could be users, servers, or other nodes—interacting and exchanging
resources. These entities utilize trust-centric resource allocation and latency reduction via
reputation mechanism to ensure seamless operations.
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• Trust-centric resource allocation: Trust-centric resource allocation serves as the initial
stage in the proposed framework. Each entity in the network is assigned a trust score,
which is computed based on previous interactions and behavioral patterns. Resource
allocation is then guided by these trust scores, with entities boasting higher trust
scores receiving priority in resource allocation. This strategic prioritization guarantees
that reliable entities are well equipped with the necessary resources, thus potentially
reducing latency and bolstering the overall performance of the metaverse.

• Latency reduction via reputation mechanism: Operating in parallel with the trust-
centric resource allocation, the framework also employs latency reduction via rep-
utation mechanism. The latency of each entity is persistently monitored, and the
collected data are utilized to modify a latency reputation score. This score significantly
influences resource allocation, with entities exhibiting lower latency scores receiving
preference, thereby aiding in the reduction in the overall network latency.

• Decentralized trust management: The system manages trust scores and latency rep-
utation scores in a decentralized manner. Each node participates in the upkeep and
modification of these scores, eliminating the requirement for a centralized authority.
This decentralization not only bolsters the system’s resilience against potential attacks
but also fosters user trust in the absence of a centralized reliable entity.

• Trust verification via consensus mechanism: The trust verification via consensus
mechanism constitutes the final component of the framework. It is employed to modify
trust scores and latency reputation scores. When a transaction is conducted between
entities, the entities involved share the details of the transaction with the network. The
network nodes then utilize the trust verification via consensus mechanism to reach a
consensus on the transaction’s outcome, thereby updating the trust scores and latency
reputation scores correspondingly.

The proposed framework offers a groundbreaking solution for latency reduction
within the metaverse. By integrating trust-centric resource allocation, latency reduction
via reputation mechanism, decentralized trust management, and trust verification via
consensus mechanism, it optimizes resource allocation, minimizes latency, and ultimately
enhances the user experience within the metaverse.

3.2. Trust-Centric Resource Allocation

The trust-centric resource allocation (TCRA) protocol operates on a resilient trust
management scheme, an indispensable facet enabling the secure and efficient allocation of
computational resources across a broad spectrum of entities within the metaverse. The core
principle of this system lies in the quantification of trust, represented as a composite score.
This score emanates from a comprehensive evaluation of various parameters associated
with each entity, namely, honesty, reputation, cooperative behavior, and demonstrated
competence as illustrated in Algorithm 1.

The TCRA algorithm commences by initializing a set of n entities within the metaverse.
These entities could manifest as users, server nodes, or any other interactive elements
within the digital realm. Concurrently, a total of m interactions among these entities is also
initialized, encompassing the various communications and transactions that may transpire
within the metaverse. In terms of trust calculation, a multi-factor approach is employed,
considering honesty (Hij), reputation (Rij), cooperativeness (Cij), and competence (Kij) as
constituent elements of the trust score (Tij). Each of these factors is evaluated for every pair
of entities (i, j) within the system. The trust score is then calculated using the established
weights wh, wr, wc, and wk for honesty, reputation, cooperativeness, and competence,
respectively, as shown in Equation (1). Following this, the algorithm determines the
fairness coefficient Fi for each entity i, which is an essential element for ensuring equitable
resource distribution. This coefficient, derived using Equation (6), serves as a balancing
factor in resource allocation, factoring in the disparity among different entities’ capabilities
and needs.
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Algorithm 1: Trust-centric resource allocation algorithm.
Result: Trust-centric resource allocation (TCRA)

1 Initialize n entities, m total interactions, wh, wr, wc, wk, β, Rtotal, α, γ;
2 for each entity i do
3 for each entity j do
4 Compute honesty Hij; Evaluate reputation Rij; Determine cooperativeness

Cij; Assess competence Kij; Derive trust score Tij using Equation (1);
5 end
6 Determine fairness coefficient Fi using Equation (6); Allocate resources Ri using

Equation (5); Measure latency Li using Equation (7); for each interaction do
7 Monitor changes in Ti, denoted as ∆Ti; Adjust Ri proportionally using

Equation (12);
8 end
9 end

Next, the algorithm allocates resources Ri to each entity based on the fairness co-
efficient and the overall trust score. This allocation process, guided by Equation (5), is
designed to provide more resources to entities with higher trust scores, thereby promot-
ing trustworthiness and reliability in the system. Further, the algorithm estimates the
latency Li for each entity using Equation (7). The latency measurement here serves as
an integral part of the latency reduction approach of the system. Lower latency ensures
smoother, quicker interactions in the metaverse, thus enhancing user experience and system
efficiency. Finally, during each interaction within the metaverse, the algorithm monitors
changes in trust scores denoted by ∆Ti. If a significant change in the trust score occurs,
the algorithm adjusts the entity’s resource allocation proportionally using Equation (12).
This adaptive feature allows the TCRA protocol to respond dynamically to the evolving
behavior of entities, maintaining optimal resource distribution, latency reduction, and
overall system performance.

This protocol emphasizes the critical role of trust in managing the allocation of compu-
tational resources within a heterogeneous metaverse environment. By assessing individual
behavioral characteristics and translating these into a trust score, it ensures an equitable
distribution of resources. This process serves to improve the overall performance and
reduce latency within the metaverse, while simultaneously preserving the system’s security.
Moreover, by dynamically adjusting the resource allocation based on the changes in trust
scores, the TCRA protocol maintains an adaptable environment that mirrors the evolving
dynamics of interactions among the entities.

3.2.1. Constructing Trust Metric

We introduce a trust metric T, quantifying the reliability of an entity. This metric
constitutes a composite function encompassing four essential behavioral aspects: honesty
H, reputation R, cooperativeness C, and competence K. The trust score Tij, reflecting the
trustworthiness of entity i as judged by entity j, is mathematically encapsulated as

Tij = wh Hij + wrRij + wcCij + wkKij (1)

In the equation, wh, wr, wc, and wk represent the respective weights assigned to honesty,
reputation, cooperativeness, and competence, ensuring that wh + wr + wc + wk = 1. These
component scores contributing to the trust metric are evaluated as follows:

• Honesty Hij: This facet quantifies the veracity of entity i as perceived by j over n
interactions. It is mathematically rendered as

Hij =
1
n

n

∑
l=1

Il
ij (2)
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Here, Il
ij denotes the truthfulness of the lth interaction of i with j, coded as 1 for honest

behavior and 0 for dishonesty.
• Reputation Rij: This element encapsulates the standing of entity i in the eyes of j,

influenced by i’s interactions with all other entities k, with k 6= j:

Rij =
1
m

m

∑
k=1,k 6=j

Tki (3)

Here, m symbolizes the aggregate entities i has had interactions with.
• Cooperativeness Cij: This parameter gauges the propensity of entity i to collaborate

with j across n interactions:

Cij =
1
n

n

∑
l=1

Pl
ij (4)

In the equation, Pl
ij represents the cooperativeness of i during its lth interaction with j,

scored as 1 for a cooperative stance and 0 for non-cooperation.
• Competence Kij: This factor assesses the ability of entity i to offer high-quality service

to j over n interactions:

Kij =
1
n

n

∑
l=1

Ql
ij (5)

In this context, Ql
ij signifies the quality of i’s lth service provided to j, gauged via a

relevant service quality metric.

The assignment of weights wh, wr, wc, and wk is carried out aligning with the specific
demands and norms of the metaverse milieu.

Theorem 1. Assuming honesty is symmetric (i.e., Iij = Iji for all interactions i and j), the average
honesty value over all entities will remain the same regardless of the entity from which the system
is observed.

Proof. Let us define H as the total honesty over all entities, such that

H =
n

∑
i=1

n

∑
j=1,j 6=i

Hij

By the symmetry assumption,

H =
n

∑
i=1

n

∑
j=1,j 6=i

Hji

which simplifies to
H/n2 = H′/n2

Therefore, the average honesty is constant across all entities.

Theorem 2. Given the defined weights and the bounded honesty, reputation, cooperativeness, and
competence values, there exists a maximum possible trust score.

Proof. Each of the components Hij, Rij, Cij, and Kij is bounded by [0, 1]. Given that

wh + wr + wc + wk = 1

the maximum value of Tij will occur when each of these components is at their maximum,
resulting in

Tij,max = wh + wr + wc + wk = 1



Electronics 2023, 12, 3362 8 of 20

Theorem 3. Given that all trust scores are normalized to 1, changes in the weights of the trust
score components will influence the trust scores more significantly for entities with higher initial
trust scores.

Proof. Let us consider a small variation δ in weight wh. This will cause a variation in the
trust score as δTij = Hijδ. Given

Tij = wh Hij + wrRij + wcCij + wkKij

and since
wh + wr + wc + wk = 1

we have
Hij = (Tij − wrRij − wcCij − wkKij)/wh

leading to a relative change in trust score

δTij/Tij = δ/(1− wrRij/Tij − wcCij/Tij − wkKij/Tij)

This shows that the relative change is larger for entities with higher initial trust scores,
as these terms subtract smaller quantities in the denominator.

3.2.2. Strategy for Resource Allocation

The strategy for allocating computational resources revolves around trust scores. We
introduce a fairness coefficient Fi, acting as a regulatory function to ensure that the allocation
of resources R aligns with the respective trust scores. The computational resources allocated
to entity i are mathematically defined by

Ri = Rtotal × Fi ×
Ti

∑n
j=1 Tj

(6)

In this equation, Rtotal represents the total available computational resources, Ti de-
notes the trust score of entity i, and the denominator accumulates the trust scores of
all entities.

The fairness coefficient Fi is computed, employing a logistic function to yield a smooth
and adjustable transition, encouraging superior resource allocation for entities possessing
trust scores significantly above the average. This function is formulated as

Fi =
1

1 + e−β(Ti−Tavg)
(7)

In this function, Tavg represents the average trust score, β is a tunable parameter that
determines the steepness of the curve, and e is the base of the natural logarithm. This
incorporation of the fairness coefficient engenders a balanced and equitable allocation
strategy, promoting fairness and incentivizing positive behavior within the metaverse.

Theorem 4. The fairness coefficient Fi as defined by Equation (7) is bounded between 0.5 and
1, with the value increasing as the entity’s trust score Ti exceeds the average trust score Tavg.
Furthermore, Fi tends toward 0.5 as Ti tends toward negative infinity, and toward 1 as Ti tends
toward positive infinity.

Proof. The fairness coefficient Fi is defined as

Fi =
1

1 + e−β(Ti−Tavg)
(8)
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As Ti increases, the value of the exponent decreases, causing e−β(Ti−Tavg) to decrease.
Therefore, the overall value of the denominator decreases, which in turn increases the value
of Fi.

When Ti = Tavg, the exponent becomes 0 and Fi evaluates to 0.5:

Fi =
1

1 + e0 =
1

1 + 1
=

1
2

(9)

As Ti tends toward positive infinity, e−β(Ti−Tavg) tends toward 0, and Fi tends toward 1:

lim
Ti→+∞

Fi =
1

1 + 0
= 1 (10)

As Ti tends toward negative infinity, e−β(Ti−Tavg) tends toward infinity, and Fi tends
toward 0.5:

lim
Ti→−∞

Fi =
1

1 + ∞
=

1
∞

= 0 (11)

3.2.3. Latency Reduction and Performance Enhancement

By facilitating resources to trusted entities, TBRA aims to diminish latency and amplify
metaverse performance. It assures that trusted entities have the resources necessary for
efficient operations, thus reducing potential bottlenecks that induce high latency. The
latency L experienced by an entity i is inversely proportional to the allocated resources Ri
and can be modeled as

Li =
α

Ri
(12)

where α is a constant that depends on the specific requirements of the metaverse environment.

Theorem 5. Given the model for latency Li =
α
Ri

, the latency experienced by an entity decreases as
the resources allocated to that entity increase, assuming α is a positive constant.

Proof. Consider the derivative of Li with respect to Ri:

dLi
dRi

= − α

R2
i

. (13)

Since Ri is positive, the square of any positive number R2
i is also positive. Therefore,

the derivative dLi
dRi

is negative, which signifies that Li decreases as Ri increases. Hence, the
theorem is proven.

Theorem 6. Assuming a latency model Li =
α
Ri

, the asymptotic latency experienced by an entity
tends to zero as the resources allocated to that entity approach infinity. Furthermore, the rate of
decrease of latency follows a hyperbolic decay model.

Proof. Consider the limit of Li as Ri approaches infinity:

lim
Ri→+∞

Li = lim
Ri→+∞

α

Ri
= 0. (14)

This verifies that as the resources allocated to an entity become infinitely large, the
latency experienced by the entity tends towards zero.

Now, let us examine the rate of decrease of latency. The derivative of Li with respect
to Ri is

dLi
dRi

= − α

R2
i

. (15)
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The magnitude of this rate decreases as Ri increases, which signifies that the latency Li
decreases at a decreasing rate as resources increase. This rate of change follows a hyperbolic
decay model.

3.2.4. Secure Sharing of Computational Resources

The TBRA mechanism assures a secure computational environment by tying the
resource allocation with the trustworthiness of entities. Entities engaging in malicious
behavior or failing to fulfill their duties experience a reduction in resources, fostering a
secure metaverse environment. This relationship can be modeled as

∆Ri = −γ∆Ti (16)

where ∆Ri is the change in resources allocated to entity i, ∆Ti is the change in the trust
score of entity i, and γ is a proportionality constant. This equation illustrates the resource
diminution for entities involved in malicious behavior, thus ensuring the overall security
of the metaverse.

Theorem 7. In a secure computational environment facilitated by the TBRA mechanism, the
change in resources allocated to an entity is linearly proportional to the change in its trust score.
Furthermore, a negative change in trust score results in a proportional decrease in allocated resources,
ensuring a safe metaverse environment.

Proof. Given the relationship
∆Ri = −γ∆Ti, (17)

we have that for a given entity i, any change in its trust score ∆Ti will result in a change in its
resource allocation ∆Ri that is directly proportional to ∆Ti with proportionality constant −γ.

Suppose ∆Ti < 0 (i.e., the trust score of entity i decreases). Substituting this into our
relationship, we find that

∆Ri = −γ(−|∆Ti|) = γ|∆Ti| > 0. (18)

Conversely, suppose ∆Ti > 0 (i.e., the trust score of entity i increases). Substituting
this into our relationship, we find that

∆Ri = −γ|∆Ti| < 0. (19)

These results confirm that a decrease in trust score results in a proportional increase in
allocated resources, and vice versa. Therefore, the trust-based resource allocation (TBRA)
mechanism fosters a secure computational environment by adjusting resource allocation in
response to fluctuations in trust scores.

3.3. Reputation-Based Latency Reduction

The next component of our approach is a reputation-based system designed to combat
latency issues within the metaverse. The basis of this system lies in tracking the performance
of different entities and assigning reputation scores accordingly, which are then utilized
for resource allocation and latency management as the complete process is shown by
Algorithm 2.

3.3.1. Reputation Score Computation

The reputation score of an entity i, denoted as Ri, is calculated based on its historical
latency records. This score encapsulates the entity’s latency performance over time. We
quantify this performance using the following equation:

Ri(t) =
1
N

N

∑
k=1

Li,k (20)
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where N is the total number of interactions the entity i has had up until time t, and Li,k is
the latency of the k-th interaction.

Algorithm 2: Reputation-based latency reduction.
Result: Reputation score computation and update

1 Initialization: Set initial reputation score Ri(0) = 0 for each entity i;
2 for each interaction k of entity i do
3 Compute latency Li,k;
4 Update reputation score: Ri(k) = 1

k ∑k
j=1 Li,j;

5 end
6 Reputation Score Update:;
7 for each new interaction of entity i do
8 Compute latency Li,t;
9 Update reputation score: Ri(t) = (1− λ)Ri(t− 1) + λLi,t;

10 end
11 Resource Allocation:;
12 for each entity i do
13 Compute allocated resources: Ralloc,i =

Rtotal
Ri

;
14 end

3.3.2. Reputation Score Update

As entities continue to interact within the metaverse, their reputation scores are
updated accordingly to reflect their most recent performance. This dynamic update is
achieved using an exponential decay function:

Ri(t) = (1− λ)Ri(t− 1) + λLi,t (21)

where λ is a decay factor that determines the extent to which the most recent latency value
Li,t affects the updated reputation score.

3.3.3. Reputation-Based Resource Allocation

The reputation scores of entities are then integrated into our resource allocation
strategy. Entities with lower reputation scores (i.e., those with lower latency) are prioritized
in resource allocation:

Ralloc,i =
Rtotal

Ri
(22)

where Ralloc,i is the amount of resources allocated to entity i, and Rtotal is the total available
resources. Through the use of reputation scores, our system is able to dynamically adjust
resource allocation in favor of entities with lower latency. This feature has the potential
to dramatically reduce overall latency in the metaverse, leading to a more seamless and
enjoyable user experience.

Theorem 8. Assuming that the total computational resources Rtotal are finite and the reputation
score Ri is a positive real number for every entity i, the reputation-based resource allocation strategy
results in entities with lower reputation scores receiving a larger proportion of total resources,
thereby optimizing latency in the metaverse.

Proof. Let us consider two entities i and j such that their reputation scores Ri and Rj
satisfy Ri < Rj. Based on the given resource allocation strategy, we can write the allocated
resources for entities i and j as Ralloc,i and Ralloc,j, respectively:

Ralloc,i =
Rtotal

Ri
and Ralloc,j =

Rtotal
Rj

. (23)
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Dividing the first equation by the second, we obtain

Ralloc,i

Ralloc,j
=

Rj

Ri
> 1. (24)

This equation shows that the ratio of resources allocated to entity i to those allocated
to entity j is greater than one, meaning that entity i receives more resources than entity
j. This result holds for any pair of entities such that the entity with the lower reputation
score receives more resources, hence confirming the proposed reputation-based resource
allocation strategy.

3.4. Decentralized Trust Management

A fundamental aspect of our approach is the implementation of decentralized trust
management, circumventing the potential weaknesses inherent in centralized systems and
significantly bolstering the resilience of the metaverse to potential attacks. The shift from
a centralized to a decentralized management system involves a restructuring of the trust
computation and resource allocation processes. This section elaborates the procedural steps,
mathematical modeling, and resultant benefits of our decentralized trust management
system. The complete computational process of the decentralized trust management is
shown in Algorithm 3.

Algorithm 3: Decentralized trust management system.
Result: Decentralized trust management system

1 initialization;
2 for each entity i in metaverse do
3 compute initial trust management workload Ti for entity i;
4 compute likelihood of entity i being attacked Ai;
5 compute latency of the entity i in the centralized system Li

centralized;
6 compute latency of the entity i in the decentralized system Li

decentralized;
7 compute trust value from interaction Cj for entity i;
8 end
9 compute decentralized process D using Equation (25);

10 compute resilience of the system R using Equation (26);
11 compute latency reduction ratio Lreduction using Equation (27);
12 compute user trust Tuser using Equation (28);

3.4.1. Decentralization Process

The decentralization process commences by distributing the computational work-
load of the trust management system across multiple entities within the metaverse. The
decentralization process can be denoted mathematically as follows:

D =
1
N

N

∑
i=1

Ti, (25)

where D represents the decentralized process, N denotes the total number of entities in the
metaverse, and Ti stands for the trust management workload for entity i.

3.4.2. Benefits of Decentralized Trust Management

The primary advantage of our decentralized trust management system lies in its
resilience. This resilience can be quantified as the likelihood of the system continuing to
operate despite potential attacks:

R = 1− 1
N

N

∑
i=1

Ai, (26)
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where R represents the resilience of the system, N is the total number of entities, and Ai
denotes the likelihood of entity i being attacked.

3.4.3. Decentralization and Latency Reduction

The role of decentralization in latency reduction is quantifiable through a latency
reduction ratio, which is computed as

Lreduction =
Lcentralized − Ldecentralized

Lcentralized
, (27)

where Lreduction is the latency reduction ratio, Lcentralized is the latency of the centralized
system, and Ldecentralized is the latency of the decentralized system.

3.4.4. Ensuring User Trust

The trust value of each user, represented as Tuser, is maintained and updated through
local computations and interactions. This decentralization of trust computation not only
strengthens the resilience of the system but also enhances user trust:

Tuser =
1
M

M

∑
j=1

Cj, (28)

where M denotes the total number of interactions for the user, and Cj stands for the trust
value from interaction j.

The aforementioned processes and computations provide insights into the workings
and benefits of our decentralized trust management system, highlighting its potential in
enhancing security and performance within the metaverse.

3.5. Proof-of-Trust Consensus Mechanism

This section presents our innovative proof-of-trust (PoT) consensus mechanism. PoT
works on the principle of validating the trustworthiness of each entity within the meta-
verse, which promotes trust and cooperation on resource allocation whereas the complete
computational flow is illustrated by Algorithm 4.

The PoT consensus mechanism consists of two major components: trust verifica-
tion and trust update. In the trust verification phase, each metaverse entity i checks the
trustworthiness Tij of another entity j against a predetermined threshold Tthreshold:

verify(Tij) =

{
true if Tij ≥ Tthreshold

false otherwise
(29)

This process determines if an entity is trustworthy enough to participate in the resource
allocation process. After the verification phase, the trust update phase begins. Here, entities
adjust their trust values based on their interactions. We model this process as a Markov
decision process (MDP), where each state s corresponds to a different level of trust. The
transition probabilities Pa

ss′ depend on the action a taken by an entity and its corresponding
reward R(s, a). The transition function and the reward function can be described as follows:

Pa
ss′ = Pr(st+1 = s′|st = s, at = a) (30)

R(s, a) = E[rt+1|st = s, at = a] (31)

By adopting this MDP approach, we ensure that the trust value of each entity is contin-
ually updated and accurately represents their behavior within the metaverse, thus creating
a secure and efficient ecosystem. Our PoT consensus mechanism forms the backbone of our
system, promoting trust and fostering cooperation amongst entities, thereby enhancing the
overall user experience within the metaverse. Together, these four subsections will form the
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backbone of our methodology. By interweaving these components, we aim to demonstrate
a comprehensive solution to metaverse latency and provide a novel path to optimizing
metaverse performance.

Algorithm 4: Proof-of-trust consensus mechanism.
Result: Proof-of-trust consensus mechanism

1 Input: Entities E = {e1, e2, ..., en}, trust values T = {T11, T12, ..., Tnn}, threshold
Tthreshold

2 Output: Updated trust values T
3 for each entity i in E do
4 for each entity j in E, j 6= i do
5 if verify(Tij) == true then
6 participate in resource allocation with entity j;
7 end
8 end
9 end

10 while Not converged do
11 for each entity i in E do
12 for each entity j in E, j 6= i do
13 for each action a in Actions do
14 Compute Pa

ss′ and R(s, a) based on interactions with entity j;
15 Update Tij;
16 end
17 end
18 end
19 end
20 return Updated trust values T

4. Outcomes of Simulation

In this section, the outcome of the simulation analysis for the proposed approach
to reducing latency and facilitating resource allocation in the metaverse is presented.
The proposed strategy is juxtaposed with two other strategies, namely SPLR [19] and
MHECF [23]. To carry out the simulations, we leveraged the OMNeT++ simulator, a
recognized framework conducive to experimental simulations. The approach in this
study was custom fitted to the OMNeT++ description. Our comparative analysis utilized
several performance metrics, including efficiency of resource allocation, latency reduction,
performance of trust management, security performance, and scalability. These measures
are fundamental to understanding the viability of the proposed method in the context of
large-scale metaverse environments.

4.1. Efficiency in Resource Allocation

In this subsection, we present an assessment of resource allocation efficiency, where
our proposed trust-based resource allocation mechanism is compared with the existing
SPLR [19] and MHECF [23] techniques, utilizing simulation.

In contrast to conventional methods, our proposed method demonstrates superior
performance in terms of reducing waiting times and maximizing resource availability.
Figure 1 demonstrates the results of a comparative analysis of resource availability among
the proposed method (96%), and the SPLR and MHECF methods (87% and 88%, respec-
tively) as shown in Figure 2. Similarly, the proposed method manifests a significantly
lower resource waiting time (1.7 s), as compared to the SPLR and MHECF techniques,
which exhibit waiting times of 3.2 s and 2.8 s, respectively, as shown in Figure 3. These
results substantiate that our proposed method provides a more effective resource allocation
strategy, significantly reducing user wait times.
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Figure 1. Comparative analysis of efficient resource utilization.

To delve into the results demonstrated in the figures, let us commence with Figure 1.
This figure elucidates the efficiency of resource utilization in the proposed method as com-
pared to the SPLR and MHECF techniques. The proposed method exhibits a significantly
higher resource availability, suggesting that it more effectively harnesses computational
resources within the metaverse. In a similar vein, Figure 2 underscores the comparison of
resource availability across the three techniques. The proposed method manifests superior
performance, with an impressive 96% resource availability. This is substantially higher than
the resource availability of the SPLR and MHECF methods, which stand at 87% and 88%,
respectively. Finally, Figure 3 elucidates the comparison of resource waiting times among
the three techniques. The proposed method emerges superior once more, showcasing
a remarkably shorter resource waiting time (1.7 s) compared to the SPLR and MHECF
techniques, which exhibit waiting times of 3.2 s and 2.8 s, respectively. This suggests that
the proposed method is more efficient in reducing user wait times, thereby enhancing user
experience within the metaverse.

Figure 2. Comparative study of resource availability.

Figure 3. Comparative analysis of resource waiting time.
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4.2. Analysis of Latency Reduction

Latency reduction is a significant metric indicative of the effectiveness of a resource
allocation mechanism. In this context, we juxtapose the efficacy of our proposed tech-
nique in latency reduction against two established methodologies, namely SPLR [19] and
MHECF [23]. Figure 4 illustrates the outcome of the comparative simulation analysis
performed under homogeneous conditions.

Figure 4. Comparative analysis of latency reduction.

An intriguing observation from Figure 4 is the discernible spike in latency during the
second run across all methodologies. This sudden surge can be attributed to unanticipated
network congestion during our simulation, a scenario not uncommon in real-world settings,
which can sporadically impact system performance. While this occurrence provides valu-
able insights into the response of these methodologies to unforeseen network fluctuations,
it should be emphasized that, this anomaly notwithstanding, the overall performance trend
of our approach surpassing the alternatives remains consistent.

The simulation results substantiate that our proposed methodology exhibits a consid-
erable reduction in latency compared to the other techniques. The graph indicates that our
method achieves a latency reduction of 45%, outstripping the SPLR and MHECF methods,
which achieve reductions of 32% and 28%, respectively. This outcome suggests that our
proposed approach has the potential to expedite system performance by curtailing the
time required for resource assignment to service requests. The efficient trust management
system embedded in our proposed solution ensures the engagement of only trustworthy
nodes in the resource allocation process, thereby contributing to enhanced performance.

The proposed methodology, by considering various trust attributes such as knowl-
edge, reputation, and experience, ensures the selection of only highly reliable and capable
nodes for resource allocation. Consequently, latency is mitigated, and the time required
for resource allocation is significantly reduced. Furthermore, the effective resource allo-
cation strategy of the proposed methodology aids in reducing latency. By considering
both resource availability and latency, our proposed method prioritizes the low-latency
assignment of service requests, leading to a significant reduction in the time required for
resource allocation to service requests.

4.3. Performance Evaluation of Trust Management

The effectiveness of our proposed method was further benchmarked against two
prevalent methodologies, SPLR and MHECF, in discerning compromised nodes within a
network. We directed our examination towards three distinct forms of cyber attacks, specifi-
cally on–off attacks, whitewashing attacks, and distributed denial-of-service (DDoS) attacks
whereas the outcome of the simulation is illustrated by Figure 5.
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Figure 5. Analysis of detection rate in Scenario 01.

Our proposed method, as the results indicate, displays superior performance in the
detection of all three categories of attacks. For instance, with respect to on–off attacks, the
proposed methodology showcases a detection rate of 0.89, surpassing both SPLR (0.82) and
MHECF (0.76). Furthermore, the proposed methodology demonstrates a 99.1% detection
rate against whitewashing attacks, closely mirroring the performance of SPLR and MHECF.
When pitted against DDoS attacks, our method offers a detection rate of 0.96, significantly
higher than that of SPLR (0.85) and MHECF (0.80). These observations underscore the fact
that the proposed method excels over established methodologies in accurately identifying
malicious and compromised nodes within a network, thereby bolstering the network’s
security and reliability.

As depicted in Figure 6, the proposed method significantly outperforms conventional
methodologies in detecting both good-mouthing and bad-mouthing attacks. With a detec-
tion rate of 0.98, our proposed method successfully surpasses SPLR and MHECF, both of
which demonstrate detection rates of 0.91 and 0.90, respectively, for bad-mouthing attacks.
For good-mouthing attacks, while both SPLR and MHECF register detection rates of 0.95,
our proposed methodology delivers a superior detection rate of 0.97. The increased detec-
tion rate by our proposed method can be attributed to its robust trust management system,
which identifies and isolates compromised and malicious nodes effectively. The proposed
method employs a dynamic trust management system that computes node trustworthiness
based on various parameters, including historical performance, real-time activity, and
behaviors of adjacent nodes. This nuanced approach enables our proposed methodology to
accurately identify both negative and positive mouthing attacks, thereby reinforcing its
overall effectiveness.

Figure 6. Comparative performance analysis against good- and bad-mouthing attacks.
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4.4. Evaluation of Scalability

The construction of a scalable system, capable of maintaining its performance as
the volume of processed information or network traffic increases, is pivotal in system
design. We examined the scalability of our proposed method vis à vis two prevalent
methods, SPLR and MHECF, in terms of both time and resources, as the number of network
entities escalates.

We performed a series of simulations, systematically increasing the number of entities
within the system from one hundred to two thousand, in order to evaluate the scalability
of our method. The time taken by the system to process the varying loads was recorded
and juxtaposed against the times recorded for SPLR and MHECF. Figure 7 elucidates
the results of our simulations. The x-axis represents the count of entities, while the y-
axis signifies the time in milliseconds required to process the corresponding load. The
simulation results illustrate that our proposed method possesses lower time complexity
in comparison to both SPLR and MHECF as the entity count increases. For instance, for
processing a load of 100 entities, our proposed method only necessitates 50 ms, while
SPLR and MHECF require 100 ms and 80 ms, respectively. Furthermore, the performance
disparity between our proposed method and the two comparison methods widens as
the number of entities escalates. In the case of processing 2000 entities, our proposed
method necessitates only 340 ms, while SPLR and MHECF require 520 ms and 425 ms,
respectively. The data demonstrate the superior scalability of our proposed method relative
to the existing techniques.

Figure 7. Comparative analysis of scalability.

5. Conclusions

This study elaborates on a systematically developed strategy designed to augment the
metaverse’s security framework. The multitudinous security challenges that the metaverse
infrastructure currently faces are explored in depth, followed by the proposal of a calculated
solution to mitigate these concerns. The methodology proposed in this study capitalizes
on trust management, the detection of malicious nodes, and latency reduction techniques,
thereby facilitating a secure and highly efficient metaverse environment. The efficacy of
our proposed solution is evaluated through extensive simulation studies and contrasted
against prevalent methodologies for additional verification. Our innovative trust man-
agement system employs reputation-based models to determine the trustworthiness of a
particular entity. Furthermore, our strategy integrates advanced detection technologies,
thereby empowering the system with the ability to identify malicious nodes and conse-
quently enhance the overall security. Additionally, the solution proposed encapsulates
latency reduction measures aimed at minimizing the response times within the metaverse
environment, resulting in a notable enhancement in performance. Simulation-based studies
are employed to rigorously validate our approach. The results gleaned from these studies
provide substantial evidence that our methodology outperforms the existing methods in
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the realms of resource availability, resource waiting time, latency reduction, and detection
rate, thereby substantiating its superiority. Potential enhancements to our methodology
could include the incorporation of blockchain technology. Such an advancement could
further fortify the security and privacy aspects of the metaverse ecosystem, thus setting the
stage for a robust and dependable environment.
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