
Citation: Kong, F.; Wang, X.; Pu, K.;

Zhang, J.; Dang, H. A Practical

Non-Profiled Deep-Learning-Based

Power Analysis with Hybrid-

Supervised Neural Networks.

Electronics 2023, 12, 3361. https://

doi.org/10.3390/electronics12153361

Academic Editors: Wei Hu, Jiaji He

and Haoqi Shan

Received: 4 July 2023

Revised: 1 August 2023

Accepted: 3 August 2023

Published: 6 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Practical Non-Profiled Deep-Learning-Based Power Analysis
with Hybrid-Supervised Neural Networks
Fancong Kong, Xiaohua Wang, Kangran Pu, Jingqi Zhang and Hua Dang *

School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
* Correspondence: danghuabit@163.com

Abstract: With the rapid advancement of deep learning, the neural network has become the primary
approach for non-profiled side-channel attacks. Nevertheless, challenges arise in practical applica-
tions due to noise in collected power traces and the substantial amount of data required for training
deep learning neural networks. Additionally, acquiring measuring equipment with exceptionally
high sampling rates is difficult for average researchers, further obstructing the analysis process. To
address these challenges, in this paper, we propose a novel architecture for non-profiled differential
deep learning analysis, employing a hybrid-supervised neural network. The architecture incorporates
a self-supervised autoencoder to enhance the features of power traces before they are utilized as
training data for the supervised neural network. Experimental results demonstrate that the pro-
posed architecture not only outperforms traditional differential deep learning networks by providing
a more obvious distinction, but it also achieves key discrimination with reduced computational costs.
Furthermore, the architecture is evaluated using small-scale and downsampled datasets, confirming
its ability recover correct keys under such conditions. Moreover, the altered architecture designed for
data resynchronization was proved to have the ability to distinguish the correct key from small-scale
and desynchronized datasets.

Keywords: side-channel analysis; differential deep learning analysis; hybrid-supervised learning;
autoencoder; data resynchronization

1. Introduction

Side-channel analysis is a technique used to uncover confidential information within
a device by extracting the physical information leaked during the operation of an encryption
device [1]. It exploits the side effects, or "side channels," that occur during the operation
of a device, such as power consumption, electromagnetic radiation, etc. [2]. Side-channel
attacks can be classified into two main categories: profiled attacks and non-profiled attacks.
In a profiled attack, the attacker possesses a device that is identical to the encrypted one,
and the key used by that device is both known and can be altered [3]. On the other hand,
a non-profiled attack involves the attacker having only the encryption device itself, with
the key being unknown but fixed. Although non-profiled attacks are more challenging
to execute compared to profiled attacks, they hold greater practical value because their
underlying assumptions are weaker than those of the latter.

Profiled attacks, such as template attacks [4,5], machine-learning-based attacks [6],
and stochastic attacks [7,8], have demonstrated promising results in experimental settings.
Profiled attacks require the attacker to conduct statistical analysis on the power signal.
However, it is difficult to find an identical and fully controllable device to collect the traces.
Among the non-profiled attack methods, correlation power analysis (CPA) [9,10] and
differential power analysis (DPA) [11] are noteworthy. CPA exploits the Pearson correlation
coefficient between the power trace and the intermediate value of the encryption algorithm
to reveal the correct key, whereas DPA utilizes the differences in power signals to infer the
correct key.

Electronics 2023, 12, 3361. https://doi.org/10.3390/electronics12153361 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12153361
https://doi.org/10.3390/electronics12153361
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4140-7029
https://doi.org/10.3390/electronics12153361
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12153361?type=check_update&version=2


Electronics 2023, 12, 3361 2 of 21

The rapid advancement of deep learning technology has enabled its extensive applica-
tion in various data classification problems, such as image classification. Furthermore, deep
learning techniques have been employed in several profiled attacks [12–15]. In recent years,
the common ground between deep learning technology and the underlying principles of
DPA in data classification has led to its utilization in non-profiled attacks.

In 2019, Timon proposed an innovative method called differential deep learning analy-
sis (DDLA) that applies deep learning techniques for non-profiled attacks [16]. Through his
research, Timon demonstrated the effectiveness of this method in compromising software-
implemented Advanced Encryption Standard (AES) encryption algorithms. Furthermore,
the DDLA method has the capability to decrypt encryption algorithms that are fortified
with masks, showing its versatility and robustness.

In practical applications, the collection of power signals is often affected by various
factors, including equipment and environmental conditions [17–19]. These factors can
introduce noise into the collected signals, thereby interfering with the feature extraction
process of data by the neural network. Currently, research on signal denoising in side-
channel attacks predominantly revolves around the traditional CPA algorithm [20–22]. In
2021, Kwon introduced a method that employs an autoencoder to denoise power trace
signals in side-channel attacks. Experimental results demonstrated an improved signal-to-
noise ratio (SNR) of the processed signal in relation to key information [23]. Nevertheless,
the application of this approach, utilizing an autoencoder to reduce noise, has not yet
been incorporated into DDLA [24,25]. In this paper, a hybrid-supervised neural network
incorporating a self-supervised autoencoder aiming to reduce noise and enhance feature in
side-channel analysis is proposed.

One of the fundamental characteristics of neural networks is their reliance on a substan-
tial amount of data to ensure the accuracy of algorithm outputs. Adequate data quantity
enables neural networks to effectively extract features embedded within the data. In the
realm of research on DDLA, studies typically employ large-sized datasets [26–28]. However,
practical applications often encounter difficulties in collecting such extensive datasets due
to device protection measures that restrict the number of user attempts [29]. In this paper,
we introduce a novel architecture for non-profiled differential side-channel attacks, aimed
at enhancing the performance of DDLA when confronted with small-scale datasets.

1.1. Our Contributions
1.1.1. Presenting a Novel Architecture with a Hybrid-Supervised Neural Network

In this paper, we introduce a novel architecture for non-profiled deep learning side-
channel attacks, which incorporates the technique of hybrid-supervised learning referred
to as hybrid-supervised side-channel analysis (HSSCA). The architecture consists of two
main components. The first part is a self-supervised autoencoder, which effectively reduces
noise in the power traces and enhances their features. The second part is a supervised deep-
learning-based differential power analysis network utilized to classify power traces. The
architecture is realized in two structures: multilayer perceptron (MLP) and convolutional
neural network (CNN). Through this innovative architecture, the power traces are more
easily classified, leading to increased visibility of the correct key compared to traditional
DDLA networks. Notably, the proposed architecture demonstrates remarkable robustness
even in the presence of masking countermeasures.

1.1.2. Applying the Proposed Architecture for Feature Enhancement

In engineering applications, encryption devices typically incorporate protection mech-
anisms that impose limitations on the number of attempts a user can make. As a result,
acquiring a large amount of traces, which are often required for most non-profiled side-
channel attacks, becomes exceedingly challenging. Additionally, for the power traces
collected from the device to contain ample information about the leaked value, it is crucial
that the data collection equipment possesses a high sampling rate. Typically, the sampling
rate needs to be several hundred times higher than the clock frequency. However, such



Electronics 2023, 12, 3361 3 of 21

equipment is not easily accessible. Therefore, the development of analysis methods that
require fewer data and a lower sampling rate would hold significant value. The experimen-
tal results demonstrate that the proposed novel hybrid-supervised architecture, designed
to reduce noise and enhance features in the training data, yields improved performance
even when working with significantly smaller and downsampled datasets.

1.1.3. Altering the Proposed Architecture for Data Resynchronization

Another commonly used countermeasure utilized on encryption devices is introducing
desynchronization to the power traces. By adding a random jitter or delay in the program,
the execution time of the encryption algorithm is different every time. Therefore, the
positions of underlying features in the power traces are different. This method is low-cost
and particularly effective against algorithms that heavily rely on the positional information
of the power traces, such as MLP-DDLA. To cope with the method, the structure of the
autoencoder has been modified in order for it to have the ability to realign traces. The test
results demonstrate that the altered HSSCA implemented with a CNN structure exhibits
the capability to discern the correct key even in scenarios when only a limited amount of
misaligned traces are employed as input data.

1.2. Organization

The first part is the introduction, where a brief overview of the research background
and the the highlight of our contributions are provided. The second part, called preliminar-
ies, introduces key concepts such as deep learning, MLP and CNN structures, non-profiled
side-channel analysis, autoencoder principles, and the structure of DDLA. In the third
part, the architecture of HSSCA is presented, including its implementation using MLP
and CNN, and several variants of the architecture are proposed. Particularly, an altered
architecture with a new labeling scheme for data resynchronization is introduced in de-
tail. The fourth part is experiment results; in this section, the experiment environment is
introduced, and the comparison between the novel architecture and traditional DDLA on
complete datasets is demonstrated. Furthermore, the experiment results of the architecture
on reduced, downsampled and desynchronized datasets are demonstrated. In the end, the
fifth part concludes the works of paper.

2. Preliminaries

In this section, relevant basic knowledge about the new architecture of HSSCA pro-
posed in this paper is introduced.

2.1. Deep Learning

Deep learning (DL) is a novel research direction within the field of machine learning
(ML) aimed at advancing its original objective of achieving artificial intelligence (AI). DL
is designed to extract valuable information from data such as text, images, and sounds,
contributing to their interpretation. It is primarily employed in supervised learning tasks,
encompassing classification and regression problems. A neural network, an algorithm
specifically designed for DL, is utilized to calculate the probability that the data belong to
a particular class. The following Formula (1) provides a general depiction of the architecture
of a neural network:

Output = Net(Input) (1)

In Formula (1), Input represents the input data fed into the neural network. Output
refers to the output of the network, which can include predicted values or classification
results, etc. A neural network comprises a set of adjustable parameters that can be trained
to optimize the performance of network toward its desired objective. During training, a key
component is the utilization of a function referred to as the loss function that quantifies the
difference between the desired output and the current output generated by the network.



Electronics 2023, 12, 3361 4 of 21

2.2. Multi-Layer Perceptron and Convolutional Neural Network

A common neural network structure is a multilayer perceptron [30]. It is a type of
artificial neural network with a forward structure that consists of an input layer, an output
layer, and multiple hidden layers in between. In each layer of MLP, there are many percep-
trons whose function is to weigh and sum the inputs of this layer and add bias. The data
passing through the perceptrons in each layer is subjected to a nonlinear transformation
using an activation function before being propagated to the next layer. In neural networks,
a unit of a perceptron and an activation function is called a neuron. The operation of
a neuron is demonstrated in Figure 1.

𝑊1𝐼1

𝑊2𝐼2

𝑊𝑛𝐼𝑛

∑ Activation O

… …

𝐵

Input Weights Bias Activation Function Output

Figure 1. The structure of a neuron in a neural network.

A convolutional neural network is a type of artificial neural network designed for
processing structured gridlike data, such as images or signals [31]. Not only it is widely used
in computer vision tasks, such as image classification, but it also exhibits high performance
dealing with 1D data [32]. A typical CNN consists of convolutional layers which involve a
small filter/kernel over the input data and computing elementwise multiplications followed
by pooling layers which reduce dimensions of data by downsampling. The advantage of
CNN is that it extracts local features while preserving spatial relationships. Figure 2 shows
the process of convolution and pooling.

𝐼1

𝐼2

𝐼3

𝐼𝑛

…

𝑊1

𝑊2

𝐶1

𝐶2

…

𝐶𝑛

𝑃1

𝑃2

Input Convolution

Kernel

Convolved

Feature

Pooled

Feature

Figure 2. The process of convolution and pooling.

2.3. AES Encryption Algorithm

The advanced encryption standard is a widely used symmetric encryption algorithm [33].
It operates through multiple rounds of encryption. Each round, except the last one, consists
of four steps: SubBytes, ShiftRows, MixColumns, and AddRoundKey. The number of
rounds in AES iteration depends on the length of the plaintext. For a 16-byte plaintext,
AES performs 10 rounds of iteration. Among these steps, SubBytes is the only nonlinear



Electronics 2023, 12, 3361 5 of 21

operation. SubBytes is a simple operation that involves a lookup table. Specifically, it
employs an S-box to substitute each byte of the plaintext. The calculation process can be
summarized as follows:

D = Sbox(P⊕ K) (2)

where D is the intermediate value, P is the plaintext, K is the key, and ⊕ denotes the
XOR calculation.

2.4. Differential Deep Learning Analysis

In the context of classification using neural networks, when the label corresponding
to the data is correct, the neural network can easily establish a relationship between the
data features and the label. As a result, the loss function decreases rapidly during training,
leading to an increase in the accuracy. In the case of side-channel attacks, the intermediate
value of the encryption algorithm is directly linked to the power trace. Therefore, to create
the dataset for each hypothetical key, the same power traces are used as training data and
different intermediate values calculated from plaintext and hypothetical key are used as
labels, and if the correct intermediate value is used as the label and the corresponding
power trace is used as the data, the neural network can quickly learn the relationship
between them during training. Conversely, if an incorrect intermediate value is used, the
neural network training becomes slower and less effective. To exploit this behavior, an
attacker can iterate through all possible key values within a specific key range K. When
the correct key value is used, the neural network can observe the correlation between the
known plaintext and the correct intermediate value during the training process, thus the
loss and accuracy curve of the correct key is distinguished from other curves. Algorithm 1
outlines the steps involved in differential deep learning analysis (DDLA).

Algorithm 1 Differential Deep Learning Analysis
Input: N power traces {Ti}16i6N of length L with corresponding plaintexts {Pi}16i6N

Output: Estimated secret key value K∗ with the most distinguishable loss or accuracy
curve
1: define the network Net and epochs ne
2: for K ∈ K do
3: Re-initialize the parameters of Net
4: Compute the hypothetical intermediate values {Hi,k}16i6N
5: Compute the training labels with {Hi,k}16i6N according to the labeling scheme
6: Perform ne epochs of deep learning training with {Ti}16i6N as the input of Net
7: Record the loss and accuracy curve of each key
8: end for
9: return K∗ with the most distinguishable loss or accuracy curve

2.5. Autoencoder and Supervision Methods in Deep Learning

Autoencoder is an unsupervised learning model [34]. It leverages the backpropagation
algorithm and optimization methods, such as gradient descent, to train a neural network
using the input data X as supervision. The goal is to learn a mapping relationship that
can reconstruct the input data, resulting in a reconstructed output XR. Autoencoders are
commonly used for tasks such as pretraining neural networks and reducing the dimension-
ality of data [35]. Self-supervised learning is a technique that transforms an unsupervised
learning problem into a supervised one [36]. It differs from manually generating labels in
traditional supervised learning. Instead, self-supervised learning calculates and generates
labels from data samples to train neural networks. Hybrid-supervised learning refers to
a deep learning approach that combines elements of both supervised learning and unsu-
pervised or self-supervised learning, aiming to leverage the advantages of both approaches
by incorporating labeled and unlabeled data during the training process.



Electronics 2023, 12, 3361 6 of 21

3. Proposed Hybrid-Supervised Side-Channel Analysis

In this section, the model of hybrid-supervised side-channel analysis is elucidated,
including its design principle, configuration, and variants for different situations and
extreme conditions. The reason for combining a self-supervised autoencoder and a super-
vised deep-learning classification model is elaborated first; thereafter, two structures of
it, that is, MLP-HSSCA and CNN-HSSCA, are introduced. Subsequently, the design of
HSSCA aiming to solve problems encountered in practical applications is introduced and
proved to be effective in theory, including the design for feature enhancement and data
resynchronization.

3.1. Design Principle of Hybrid-Supervised Side-Channel Analysis

The construction of the neural network model for hybrid-supervised side-channel
analysis is motivated by the observation that a self-supervised autoencoder network alone
cannot directly extract the correct key from power traces. However, it can be used as
a preprocessing step so that a supervised network can effectively calculate the correct
key. Unlike in ideal cases, the traces collected in practical applications usually cannot
be used directly due to various reasons. For instance, countermeasures deployed on
encryption devices by designers or noise introduced during trace acquisition can severely
diminish the performance of side-channel analysis. Therefore, it is essential to go through
a preprocessing procedure to optimize the features of data. A hybrid-supervised side-
channel analysis is composed of two parts: the first part is a self-supervised autoencoder,
and the second part is an non-profiled deep learning network for data classification. To
be noted, both the autoencoder and classifier network can be realized in two forms: MLP
and CNN.

The self-supervised autoencoder follows a structure similar to a traditional autoen-
coder, but its purpose is not to reduce data dimensions. It consists of an encoder that
compresses the original input data into a lower-dimensional representation and a decoder
that reconstructs the data back to the same dimension as the input. After the autoencoder is
trained, the decoder will not be removed because its goal is not to reduce data dimensions.
However, its labels are different from the traditional autoencoder. Instead of using the
original input data as labels, the labels in self-supervised autoencoders are computed from
the original input data. The process of computing the label for each power trace is referred
to as the labeling procedure, which will be introduced in detail in Sections 3.4 and 3.5.
The main objective of the self-supervised autoencoder is to enhance the features of the
data. Power traces collected from the device often contain interference or noise that can
obstruct the classification of the traces. With the self-supervised autoencoder, the data
are transformed to be more similar to the ideal data, which are assumed to be free of
interference, making it easier to identify the correct key. The specific procedure for deriving
the ideal data can vary depending on the countermeasures and noise present in the data.
Algorithm 2 summarizes the procedure of training a self-supervised autoencoder.

Algorithm 2 The Procedure of training the Self-supervised Autoencoder
Input: N power traces {Ti}16i6N of length L with corresponding plaintexts {Pi}16i6N

Output: Trained autoencoder AE∗ for feature enhancement

1: Define the autoencoder AE and epochs nae
2: Compute the labels of each trace {Li}16i6N according to the labeling procedure
3: for 1 6 n 6 nae do
4: Perform an epoch of autoencoder training with {Ti}16i6N as the input of Net
5: end for
6: return trained autoencoder AE∗ for feature enhancement

After the autoencoder has been trained, it is connected to the non-profiled deep
learning side-channel network. Each power trace is passed through the self-supervised
autoencoder initially, and the output is employed as the training data for the network. In



Electronics 2023, 12, 3361 7 of 21

brief, the implementation of an HSSCA involves two phases: during the first phase, the
self-supervised autoencoder is trained using power traces and the labels generated from
them; in the second phase, the same power traces are processed using the trained autoen-
coder, and the resulting data is used to train the subsequent neural network. Following
training with each hypothetical key, the estimated correct key is distinguished. Algorithm 3
introduces the working mechanism of HSSCA and demonstrates the modifications made
to the traditional procedures in Algorithm 1. To verify the effectiveness of the proposed
model, two of the most straightforward neural network models, MLP and CNN, are im-
plemented to realize the model as they have been proved in related works to be the solid
choices to perform non-profiled side-channel analysis and they can realize the most simple
architecture of autoencoder.

Algorithm 3 Hybrid-Supervised Side-Channel Analysis (HSSCA)
Input: N power traces {Ti}16i6N of length L with corresponding plaintexts {Pi}16i6N

Output: Estimated secret key value K∗ with the most distinguishable loss or accuracy
curve
1: define the network Net and epochs ne
2: Train the self-supervised autoencoder AE with Algorithm 2
3: for K ∈ K do
4: Re-initialize the parameters of Net
5: Compute the hypothetical intermediate values {Hi,k}16i6N
6: Compute the training labels with {Hi,k}16i6N according to the labeling scheme
7: Calculate feature-enhanced training data {T′i }16i6N using the trained autoencoder

AE∗

8: Perform ne epochs of deep learning training with {T′i }16i6N as the input of Net
9: Record the loss and accuracy curve of each key

10: end for
11: return K∗ with the most distinguishable loss or accuracy curve

3.2. Architecture of MLP-HSSCA

In the scenario of side-channel analysis, the MLP model is often considered a straight-
forward and effective choice for extracting features from the input data. When the clas-
sifier network is an MLP model, it is necessary for the autoencoder to have the same
MLP structure.

1. The MLP self-supervised autoencoder primarily consists of two fully connected (FC)
layers. The first layer takes an input of nt data points and produces 50 output neurons.
The second layer then takes these 50 inputs and outputs nt neurons, matching the
number of sample points in a data trace (nt). After the first layer, a hard sigmoid
activation function is applied. The output of the second layer is passed through
a sigmoid activation function. The following formulas describe the operation of the
MLP self-supervised autoencoder:

ENCMLP(X) = HardSigmoid(FCE(X)) (3)

DECMLP(X) = Sigmoid(FCD(X)) (4)

AEMLP(X) = DECMLP(ENCMLP(X)) (5)

LossAE,MLP = MSE(Label(X); AEMLP(X)) (6)

In the formulas above, ENCMLP and DECMLP denote the encoder and decoder real-
ized with FC layers, and Label(X) denotes the labeling procedure of the autoencoder.
After training, the output data of the autoencoder is closer to the ideal data cal-



Electronics 2023, 12, 3361 8 of 21

culated by the labeling procedure. Figure 3 illustrates the architecture of an MLP
self-supervised autoencoder.

Raw Trace

Encoder Input

Encoder

Code

Decoder

Decoder Output

Processed Trace

Labeling

process

MLP Self-

supervised 

Autoencoder

Figure 3. The architecture of MLP self-supervised autoencoder.

2. The architecture of the non-profiled deep learning side-channel network is an MLP
model. It is composed of two hidden layers of 70 and 20 neurons, respectively. The
first layer has nt input data, and between each layer, the Rectified Linear Unit (ReLU)
activation function is implemented, and at the output of the second hidden layer, the
probability of the two classes is generated through a SoftMax activation function. For
the labeling scheme, the Least Significant Bit (LSB) is chosen as the label of the data.
The overall architecture of MLP-HSSCA can be observed in Figure 4.

Trained

Autoencoder

FC layer FC layer Network OutputNetwork Input

𝑂1

𝑂2

Figure 4. The architecture of MLP-HSSCA.

The details of hyperparameter of proposed MLP-HSSCA model are presented in
Table 1 below.



Electronics 2023, 12, 3361 9 of 21

Table 1. Hyperparameters of MLP-HSSCA.

Parameter MLP Autoencoder MLP Classifier

Hidden layer 1 (50 FC) 2 (70 FC ×20 FC)
Output size 700 2 (SoftMax)
Label Plaintext/Binary Binary
Initialization Uniform Uniform
Optimization Adam Adam
Learning rate 0.001 0.001
Batch size 1000 1000

3.3. Architecture of CNN-HSSCA

The network architecture of CNN determines one of its crucial properties: translation
invariance. Because a convolutional filter of CNN would scan the complete data to yield
a result. This means that local features within the data have the same impact on the output
regardless of their position. As a result, when applying CNNs to side-channel attacks, 1D
convolutional filters can effectively extract local information leakage from power traces,
regardless of the leakage location within the traces. This characteristic becomes particularly
valuable when the input traces are desynchronized. In such cases, CNNs can capture the
same leakage and distinguish the correct key. Conversely, models such as MLP struggle
with this task because their parameters are position-dependent.

1. The encoder of a CNN self-supervised autoencoder is constructed with convolutional
layers and pooling layers, and the decoder is constructed with convolutional layers
and upsampling layers. The first layer of the encoder is an 1D convolutional layer
with 4 output channels, kernel size of 17, and padding of 8 to keep the 1D input data in
the same length. Following is a MaxPooling layer with kernel size of 2 to make output
data length half of the input. After that is an 1D convolutional layer with 8 output
channels, same kernel size and padding followed by another same MaxPooling layer.
The input of the encoder is 1D power trace data whose size is (nt, 1), and the output
of the encoder is a code whose size is (nt/4, 8). As for the decoder, the structure is
symmetric to the encoder, only the pooling layers are replaced by linear upsampling
layers. In the autoencoder, after each convolutional layer there is a Randomized leaky
Rectified Linear Unit (RReLU) activation funtion. In the end, the output size of the
decoder is restored to (nt, 1). The following formulas describe the operation of the
CNN self-supervised autoencoder:

ELCNN,n(X) = MaxPool(RReLU(ConvE,n(X))) (7)

ENCCNN(X) = ELCNN,2(ELCNN,1(X)) (8)

DLCNN,n(X) = RReLU(ConvD,n(Upsampling(X))) (9)

DECCNN(X) = DLCNN,2(DLCNN,1(X)) (10)

In the formulas above, ELCNN,n and DLCNN,n denote the encoding and decoding
layers composed of convolutional layers, pooling layers, upsampling layers, and
activation functions. Moreover, ENCCNN and DECCNN denote CNN encoders and
decoders. The architecture of a CNN self-supervised autoencoder is demonstrated
in Figure 5.



Electronics 2023, 12, 3361 10 of 21

Convolution
&

MaxPooling

Convolution
&

MaxPooling

Convolution
&

Up-sampling

Convolution
&

Up-sampling

Code

Raw Trace Processed Trace

Convolutional
Self-supervised 

Autoencoder

Labeling
process

Figure 5. The architecture of CNN self-supervised autoencoder.

2. The CNN non-profiled deep learning side-channel network is composed of 3 hidden
convolutional layers with the kernel size of respectively 32, 16, and 8, and they all
have 4 output channels. The first layer has nt input data, and after every convolutional
layer, the ReLU activation function is implemented. Between convolutional layers,
there are 3 AveragePooling layers. After the last AveragePooling layer, the data are
flattened and passed through 2 hidden FC layers. At the output of the second hidden
FC layer, the probability of the two classes is generated through a SoftMax activation
function. The labeling scheme are the same as MLP. Figure 6 elaborates the structure
of CNN-HSSCA.

𝑂1

𝑂2

Trained

Autoencoder

Convolution & AveragePooling layers Flatten FC layers
Network Input

Network Output

Figure 6. The architecture of CNN-HSSCA.

It can be seen from Figure 6 that the overall structure of CNN-HSSCA is the same
as that of MLP-HSSCA, consisting of an autoencoder and a classifier network. Each
power trace is preprocessed by the convolutional self-supervised autoencoder and
used as the training data of the classifier network.

Table 2 below demonstrates the hyperparameters of CNN-HSSCA.



Electronics 2023, 12, 3361 11 of 21

Table 2. Hyperparameters of CNN-HSSCA.

Parameter CNN Autoencoder CNN Classifier

Hidden layer 3 4
4 × 17 × 1 filters 4 × 32 × 1 filters
8 ×17 × 1 filters 4 × 16× 1 filters
4 × 17 × 1 filters 4× 8 × 1 filters

18 FC
Output size 700/350/2000 2 (SoftMax)
Label Plaintext/Binary/Realign Binary
Initialization Xavier Normal Xavier Normal
Optimization Adam Adam
Learning rate 0.001 0.001
Batch size 1000 1000

3.4. HSSCA for Small-Scale Datasets

The size of the dataset is a critical factor in the training of a network. Sufficient training
data allows the network to learn and extract relevant features from the input data. When the
dataset is limited in size, the impact of noise becomes more significant. This is because the
influence of noise is less likely to be compensated for when the number of samples is small.
However, if the training data possesses strong features and contains minimal noise, the
network can still achieve promising results even with a smaller dataset. A self-supervised
autoencoder in HSSCA can diminish the noise and strengthen the features of training data.
With the application of HSSCA, the original data is processed to be more trainable with
a small-scale dataset.

To reduce the noise in the training data, there are two main labeling schemes to train
the autoencoder. The first one, referred to as plaintext labeling, is to use the average value
of traces with the same plaintext. In scenarios where the key is fixed, the intermediate
value calculated with Formula (2) is determined once the plaintext P is known. Since the
intermediate value D exhibits a strong association with the data in the power traces, it is
reasonable to assume that the sensitive data in traces with the same plaintext should be
identical. To implement this labeling scheme, the traces are classified into 256 categories
based on their plaintext values (for an 8-bit key). The average value of each category is then
calculated, resulting in the ideal data serving as the label for each trace in that category.
With this method, the autoencoder only needs to be trained once and can be used by every
hypothetical key. This is because the traces with the same plaintext are consistently in the
same category, regardless of the actual key value.

{Li}16i6N =
∑ {Ti,p}16i6Np

Np
(11)

In Formula (11), {Li}16i6N represents the labels calculated according to the plaintext
labeling scheme, {Ti,p}16i6Np represents all power traces with the same plaintext p, and
Np represents the number of traces for each p.

The second labeling scheme named binary labeling uses the average value of traces
with the same Least Significant Bit (LSB) or Most Significant Bit (MSB) in the intermediate
value. In practical trace classification, the intermediate value is usually not directly used
as the label, but the LSB or MSB of it. Therefore, classifying the traces by this method is
more straightforward. However, the MSB or LSB of the intermediate value changes with
the value of key. Under this circumstance, the parameters of the autoencoder have to be
reinitialized and trained for every hypothetical key, adding complexity to the structure.

{Li}16i6N =
∑ {Ti,b}16i6Nb

Nb
(12)

In Formula (12), {Ti,b}16i6Nb represents all power traces with the same MSB or LSB
denoted as b, and Nb represents the number of traces for each b.



Electronics 2023, 12, 3361 12 of 21

3.5. HSSCA for Datasets with Desynchronized Traces

One of the most commonly implemented countermeasures to protect the encryption
device is adding random delay to the encryption program. This technique introduces varia-
tions in the execution time of the encryption process, resulting in misaligned power traces
during side-channel attacks. As a result, extracting leakage information of the intermediate
value becomes challenging. Although structures like CNN-DDLA can study features in
different positions, the computational cost would be higher because they require a larger
amount of training data and more parameters in the model. By applying an self-supervised
autoencoder for data preprocessing, it becomes possible to realign the data to make it
easier to study instead of using a complex model and more training data to extract the
desynchronized features. Algorithm 4 describes a new labeling procedure exploiting the
statistical knowledge of power traces utilized for data resynchronization.

In Algorithm 4, P represents all possible values of plaintext, which are integers from
0 to 255 in the case of AES-128. By choosing the trace in {Ti,p}16i6Np with the highest
average Pearson Correlation Coefficient, the trace considered at the center of the desyn-
chronized traces is selected as label. Without considering the noise, traces in {Ti,p}16i6Np

should be the same data sequence with different level of shifting. Therefore, the function
of the autocoder with the new labels should be shifting the traces toward the label to
realign them. To exploit the property of translation invariance, the labeling procedure in
Algorithm 4 is implemented on the proposed CNN-HSSCA structure.

Algorithm 4 Labeling Procedure of desynchronized traces
Input: N power traces {Ti}16i6N of length L with corresponding plaintexts {Pi}16i6N

Output: Reference traces as labels of autoencoder {Li}16i6N

1: for p ∈ P do
2: Group the traces with the same plaintext p into {Ti,p}16i6Np
3: for 1 6 i 6 Np do
4: Calculate average value of the Pearson Correlation Coefficient between

Ti,p and every other trace in {Ti,p}16i6Np denoted as Ci,p
5: end for
6: Choose Tm,p where Cm,p = max({Ci,p}16i6Np) as the label {Li,p}16i6Np

for every trace in {Ti,p}16i6Np

7: Group labels {Li,p}16i6Np with the same plaintext into {Li}16i6N
8: end for
9: return Reference traces {Li}16i6N

4. Experiment Results

In this part of the paper, the performance of the proposed novel architecture is vali-
dated. In the first subsection, the construction of experiment environment and information
of datasets used in the experiments are introduced. In the second subsection, the perfor-
mance of HSSCA for feature enhancement is verified. Both MLP and CNN realization of
the architecture are evaluated. The results are compared with the traditional DDLA archi-
tecture on both complete and small-scale datasets, including the dataset with fewer traces
and dataset with downsampled traces. In the third subsection, CNN-HSSCA is proved to
outperform the traditional DDLA on small-scale datasets with desynchronized data.

4.1. Experiment Environment and Datasets
4.1.1. Experiment Environment

The experimental neural networks are implemented using PyTorch version 1.12.1. The
computations are performed using CUDA version 11.6. The experiments are conducted on
a personal computer equipped with an NVIDIA GeForce RTX 2070 SUPER GPU, an Intel
i5-4590 CPU, and 16 GB RAM.



Electronics 2023, 12, 3361 13 of 21

In all experiments, for both the proposed model and the traditional DDLA model, the
Adam optimizer is selected with a learning rate of 0.001, the Mean Square Error (MSE)
with the regularization factor of 10−8 is chosen as the loss function, and the batch size is
determined as 1000. All input data are preprocessed by removing its average value and
scaling it in the range of [−1, 1] before training.

4.1.2. ASCAD Dataset

ASCAD is a publicly available database that contains power traces and corresponding
information designed for deep-learning-based side-channel analysis [37]. The power traces
included in the ASCAD dataset are obtained from a first-order protected software imple-
mentation of the AES algorithm running on an 8-bit AVR ATMega8515 development board.
The power traces are captured using an electromagnetic sensor operating at a frequency of
2 GHz. To ensure the quality and relevance of the data, an SNR analysis is performed. This
analysis helps identify the 700 sampling points that contain the relevant information about
the SubByte step of the third byte in the first round of AES encryption. The selected power
traces are divided into two parts: 50,000 profiling traces and 10,000 attacking traces.

4.1.3. Desynchronized ASCAD Dataset

On the basis of the original ASCAD dataset, a parametrized desynchronization is
employed on the power traces to imitate the jitter of devices. The desynchronization of the
traces are simulated by generating for each trace a random number δ in [0. . . Nmax] and by
shifting the original trace of δ points to the left, where Nmax is 50 in the experiment.

4.1.4. AES_RD Dataset

AES_RD Dataset is introduced by Coron and Kizhvatov [38]. The power traces in
the AES_RD dataset are obtained from a software AES implementation executing on
an 8-bit Atmel AVR microcontroller with a countermeasure of random delay. Each delay
is a multiple of 3 processor cycles. In the experiments, the attacks are conducted against
the first byte of the key, targeting the first SubByte operation. The dataset consists of
50,000 traces of 3500 features each. The information of datasets is demostrated in Table 3.

Table 3. Summary of datasets in the experiments.

Dataset Traces Samples Protection

ASCAD 60,000 700 First-order Boolean Mask
ASCAD_desync 60,000 700 First-order Boolean Mask & Random Delay

AES_RD 50,000 3500 Random Delay

4.2. Implementation Results of HSSCA on Feature Enhancement

To primarily test the efficiency of HSSCA in finding the correct key, 10,000 attacking
traces in the ASCAD dataset are used as training data. The labeling scheme in Formula (11)
is selected because it is effective in recovering the correct key when there is sufficient data.
The experiment also includes the performance of DDLA with binary labeling under the
same conditions for comparison. Instead of using the rank of each key candidate as the
evaluation metric, which is the standard procedure of profiled analysis, the estimated
key is selected based on the loss and accuracy curve of each key for deep-learning-based
non-profiled analysis.

It is shown in Figure 7 that when there is sufficient data, the two structures of HSSCA
and DDLA all recover the correct key successfully. In all graphs, the blue curves that
represent the correct key are separated from the gray curves that represent the wrong
keys, which indicates that all attacks are successful. Notably, the result of HSSCA presents
the correct key with more distinction. Additionally, MLP-HSSCA is able to distinguish
the correct key within only five epochs of training, while DDLA requires more epochs to



Electronics 2023, 12, 3361 14 of 21

identify the most distinct curve. This advantage of HSSCA over the traditional DDLA
indicates a reduction in computational complexity.

Figure 7. Loss and accuracy of DDLA and HSSCA with 10,000 training data over the training epochs.
Upper: DDLA. Center: MLP-HSSCA. Lower: CNN-HSSCA.

In order to evaluate the capability of HSSCA in distinguishing the correct key with
a smaller amount of data, the first 2000 traces from the attacking traces in the ASCAD
dataset are utilized as training data. Both labeling schemes described earlier are imple-
mented on HSSCA to assess their effectiveness under this extreme condition. The tradi-
tional DDLA is put through the experiment under the same condition as the comparison.
Figure 8 presents the experiment results of HSSCA and DDLA when the number of training
data is 2000.

As is demonstrated in Figure 8, when the number of training data is reduced to 2000,
the DDLA network fails to distinguish the correct key. For the experiment results of HSSCA,
although the distance between the correct curves and wrong curves becomes shorter, they
can still be distinguished as the correct key, especially for CNN-HSSCA, whose performance
remains stable as in the previous experiment. It is noted that the binary labeling scheme
yields better results than the former in the early epochs. This observation aligns with the
theoretical understanding that the self-supervised autoencoder employed in HSSCA is
effective in identifying the Points of Interest (PoI) in a power trace and reducing noise in
the signal.



Electronics 2023, 12, 3361 15 of 21

Figure 8. Loss and accuracy of DDLA and HSSCA with 2000 training data over the training epochs.
Upper Left: MLP-DDLA. Center Left: MLP-HSSCA with plaintext labeling. Lower Left: MLP-
HSSCA with binary labeling. Upper Right: CNN-DDLA. Center Right: CNN-HSSCA with plaintext
labeling. Lower Right: CNN-HSSCA with binary labeling.

Table 4 lists the number of traces and epochs required to reveal the correct key in some
previous models and the proposed model. It is demonstrated in the table that although all
models can distinguish the correct key, the amount of data needed to train HSSCA in both
architectures is significantly less than related works on attacking the ASCAD dataset.

Table 4. A review of related works of deep-learning side-channel attacks on ASCAD dataset.

Reference Network Architecture Number of Traces Epochs

[26] MLP 30,000 100
[16] MLP 20,000 50
[19] MLP/CNN 20,000 50
[39] CNN 20,000 50
[24] profiled CNN 60,000 -
[40] profiled MLP/CNN 10,000 -
[28] MLP/BNN 10,000 100

This work MLP-HSSCA 2000 50
This work CNN-HSSCA 2000 50

To push the performance of CNN-HSSCA to the limit, an experiment where down-
sampled power traces are used as input data is conducted. The experiment has practical
meaning because in the process of collecting power leakage data from encryption devices,
a digital oscilloscope with extremely high sampling rate and accuracy is required to gather
sufficient data in a very short period of time. However, this kind of equipment is unreach-
able for average researchers. Under this circumstance, it would be significant to design
a method of analysis that is able to reveal the correct key with data collected by devices
with lower sampling rate. The downsampled dataset is utilized to imitate such case. In the



Electronics 2023, 12, 3361 16 of 21

following experiment, only plaintext labeling is implemented on CNN-HSSCA because the
structure is simpler and the results are similar with that of binary labeling. The details of
the performance of the two labeling schemes are introduced in Section 4.4.

It can be observed from Figure 9 that the novel architecture of CNN-HSSCA main-
tains the ability of revealing the correct key when the function of CNN-DDLA has been
compromised. The 700 points in a power trace of ASCAD dataset are downsampled to
350, simulating a scenario where the sampling rate of the device is reduced to half of the
original rate. As for CNN-DDLA, it is constructed with the same layers as the classifier
network in CNN-HSSCA. To be noted, parameters of the network such as kernel size of
convolutional layers are all reduced to half to match the size of input data. It indicates that
the novel architecture can capture the sensitive data to associate it with key information
even if the data are sampled at a lower rate.

Figure 9. Loss and accuracy of DDLA and HSSCA with 2000 downsampled training data over the
training epochs. Upper: CNN-DDLA. Lower: CNN-HSSCA with plaintext labeling.

4.3. Implement Results of HSSCA on Desynchronized Datasets

In order to evaluate the efficiency of HSSCA in exploiting the leakage from desynchro-
nized datasets, two datasets are chosen as the input data of the proposed novel architecture
with the labeling procedure in Algorithm 4. As the comparison, the two datasets are also
used to train the CNN-DDLA, which is expected to be capable of distinguishing the correct
key from desynchronized traces. Moreover, because the function of feature enhancement of
the self-supervised autoencoder still exists in the new labeling procedure, the experiments
are conducted with fewer data than in related works.

For desynchronized ASCAD dataset, all 700 shifted data are collected in the process
of attacking the third byte of the key. However, for AES_RD dataset, the 3500 points
contains irrelevant information about other bytes of the key, making it difficult to train
the network. Therefore, a larger number of traces are needed in the analysis against the
AES_RD dataset. The feature selection process such as principal component analysis (PCA)
is difficult to conduct because of the desynchronization countermeasure; thus, a simple
solution is employed to choose the first 2000 points, as the first byte is the target.

From Figures 10 and 11, it can be concluded that while CNN-DDLA is capable of
extracting leakage from desynchronized datasets when there is a sufficient amount of data,
it fails to distinguish the correct key when the input data is both desynchronized and



Electronics 2023, 12, 3361 17 of 21

limited. For instance, on the upper left of Figure 11, an incorrect key is distinguished,
indicating that the analysis has failed. On the other hand, although it takes more epochs for
desynchronized ASCAD, CNN-HSSCA still succeeds in revealing the correct key in both
datasets, and the results resembles the results on the synchronized datasets. It proves that
the self-supervised autoencoder can realign the features in data for the classifier.

Figure 10. Loss and accuracy of DDLA and HSSCA with 4000 desynchronized training data in
ASCAD over the training epochs. Upper: CNN-DDLA. Lower: CNN-HSSCA with labeling procedure
in Algorithm 4.

Figure 11. Loss and accuracy of DDLA and HSSCA with 6000 desynchronized training data in
AES_RD over the training epochs. Upper: CNN-DDLA. Lower: CNN-HSSCA with labeling proce-
dure in Algorithm 4.



Electronics 2023, 12, 3361 18 of 21

4.4. Reliability and Computational Efficiency Analysis of HSSCA

To evaluate the reliability of the proposed model, 100 independent replicate experi-
ments are conducted on all of the experiments above, and the success rates of side-channel
analysis of each experiments are demonstrated in Figure 12.

Figure 12. Success rate of DDLA and HSSCA in the experiments.

From the results shown in Figure 12, it can be observed that both the traditional
model and the proposed model possess high success rate when the size of dataset is large.
However, the traditional model fails to distinguish the correct key almost every time when
the number of traces is reduced to 2000. On the contrary, the success rates of the proposed
model remains acceptable under the same condition. The situation is similar when the
data are downsampled or desynchronized. Moreover, it is concluded in the experiments
that when an attack with the proposed model fails, all the curves are mixed so there is not
a distinguished incorrect key that could be mistakenly considered as the correct key by the
attacker. Under this circumstance, if an analysis with the proposed model fails, the attacker
simply has to perform the analysis again and again until a curve is distinguished.

To evaluate the computational efficiency of the proposed model, the average execution
time of one side-channel analysis of the traditional DDLA and the proposed HSSCA in the
experiments is recorded and illustrated in Figure 13.

Figure 13. Execution time of DDLA and HSSCA in the experiments.

From Figure 13, it is obvious that the average execution time of HSSCA exceeds
that of DDLA because HSSCA consists of two training processes: the training process of
autoencoder and classifier. The CNN-HSSCA model is more time-consuming than MLP-
HSSCA and DDLA under the same condition because there are more parameters to train.
The HSSCA with binary labeling scheme consumes more time because the autoencoder
needs to be trained for every hypothetical key. Despite that, the increased time is acceptable
because it does not increase dramatically under the same condition and the real-time
demand for a side-channel analysis is usually not high in practice.

5. Conclusions

In this paper, we introduce a novel architecture for non-profiled differential side-
channel attacks with a hybrid-supervised neural network aiming to adapt the method of
DDLA for practical applications. The key feature of this architecture is its ability to reduce
power trace noise and enhance critical information using the self-supervised autoencoder.



Electronics 2023, 12, 3361 19 of 21

Experimental results demonstrate that the proposed architecture, utilizing both MLP
and CNN implementations, outperforms traditional DDLA in terms of distinction and
computational efficiency. This aligns with the notion that the architecture effectively
enhances data features. By training data with enhanced features, the architecture maintains
the capability to accurately distinguish the correct key even with significantly fewer data.
Additional experiments highlight the robustness of the architecture, showing that it can
recover the correct key in extreme conditions in practice. For instance, when the amount of
data is one-fifth of the amount in general situations or when the data are downsampled to
half, the novel architecture still can reveal the correct key. In contrast, DDLA fails to function
effectively under such conditions. Additionally, the versatility of the novel architecture
is demonstrated by its successful recovery of the correct key from desynchronized traces.
An altered version of the architecture specifically designed for data resynchronization
proves to be effective through experiments on two datasets in this regard. The reliability
and computational efficiency of the proposed model are demonstrated through statistical
analysis on the success rate and execution time of it. The results illustrate that the proposed
model reaches significantly higher success rate than the traditional DDLA model with
a reasonable cost of average execution time.

Author Contributions: Conceptualization, F.K. and K.P.; methodology, F.K., X.W. and K.P.; software,
J.Z.; validation, F.K. and K.P.; formal analysis, F.K.; investigation, F.K. and K.P.; resources, H.D.;
writing—original draft preparation, F.K. and K.P.; writing—review and editing, J.Z.; supervision, X.W.
and H.D.; project administration, H.D. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data can be provided upon reasonable request to the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this paper:

CPA Correlation Power Analysis
DPA Differential Power Analysis
DDLA Differential Deep Learning Analysis
AES Advanced Encryption Standard
SNR Signal-to-Noise Ratio
HSSCA Hybrid-Supervised Side-Channel Analysis
MLP Multilayer Perceptron
CNN Convolutional Neural Network
DL Deep Learning
ML Machine Learning
AI Artificial Intelligence
FC Fully Connected
ReLU Rectified Linear Unit
LSB Least Significant Bit
RReLU Randomized leaky Rectified Linear Unit
MSB Most Significant Bit
MSE Mean Square Error
PoI Points of Interest
PCA Principal Component Analysis



Electronics 2023, 12, 3361 20 of 21

References
1. Kocher, P.C. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In Proceedings of the Advances

in Cryptology—CRYPTO’96: 16th Annual International Cryptology Conference, Santa Barbara, CA, USA, 18–22 August 1996;
Springer: Berlin/Heidelberg, Germany, 1996; pp. 104–113.

2. Le, T.H.; Canovas, C.; Clédiere, J. An overview of side channel analysis attacks. In Proceedings of the 2008 ACM Symposium on
Information, Computer and Communications Security, Tokyo, Japan, 18–20 March 2008; pp. 33–43.

3. Standaert, F.X.; Koeune, F.; Schindler, W. How to compare profiled side-channel attacks? In Proceedings of the Applied
Cryptography and Network Security: 7th International Conference, ACNS 2009, Paris-Rocquencourt, Paris, France, 2–5 June 2009;
Springer: Berlin/Heidelberg, Germany, 2009; pp. 485–498.

4. Chari, S.; Rao, J.R.; Rohatgi, P. Template attacks. In Proceedings of the Cryptographic Hardware and Embedded Systems-CHES
2002: 4th International Workshop, Redwood Shores, CA, USA, 13–15 August 2002; Revised Papers; Springer: Berlin/Heidelberg,
Germany, 2003; pp. 13–28.

5. Rechberger, C.; Oswald, E. Practical template attacks. In International Workshop on Information Security Applications; Springer:
Berlin/Heidelberg, Germany, 2004; pp. 440–456.

6. Hettwer, B.; Gehrer, S.; Güneysu, T. Applications of machine learning techniques in side-channel attacks: A survey. J. Cryptogr.
Eng. 2020, 10, 135–162. [CrossRef]

7. Schindler, W.; Lemke, K.; Paar, C. A stochastic model for differential side channel cryptanalysis. In Proceedings of the Crypto-
graphic Hardware and Embedded Systems–CHES 2005: 7th International Workshop, Edinburgh, UK, 29 August–1 September 2005;
Springer: Berlin/Heidelberg, Germany, 2005; pp. 30–46.

8. Lemke-Rust, K.; Paar, C. Analyzing side channel leakage of masked implementations with stochastic methods. In Proceedings
of the Computer Security–ESORICS 2007: 12th European Symposium on Research in Computer Security, Dresden, Germany,
24–26 September 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 454–468.

9. Brier, E.; Clavier, C.; Olivier, F. Correlation power analysis with a leakage model. In Proceedings of the Cryptographic
Hardware and Embedded Systems—CHES 2004: 6th International Workshop, Cambridge, MA, USA, 11–13 August 2004;
Springer: Berlin/Heidelberg, Germany, 2004; pp. 16–29.

10. Sakamoto, J.; Tachibana, K.; Matsumoto, T. Application of Profiled Analysis to ADC-Based Remote Side-Channel Attacks. In
Proceedings of the 2023 IEEE 9th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High
Performance and Smart Computing (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), New York, NY,
USA, 6–8 May 2023; pp. 115–121.

11. Kocher, P.; Jaffe, J.; Jun, B. Differential power analysis. In Proceedings of the Advances in Cryptology—CRYPTO’99: 19th Annual
International Cryptology Conference, Santa Barbara, CA, USA, 15–19 August 1999; Springer: Berlin/Heidelberg, Germany, 1999;
pp. 388–397.

12. Maghrebi, H.; Portigliatti, T.; Prouff, E. Breaking cryptographic implementations using deep learning techniques. In Proceedings
of the Security, Privacy, and Applied Cryptography Engineering: 6th International Conference, SPACE 2016, Hyderabad, India,
14–18 December 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 3–26.

13. Wouters, L.; Arribas, V.; Gierlichs, B.; Preneel, B. Revisiting a methodology for efficient CNN architectures in profiling attacks.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020, 2020, 147–168. [CrossRef]

14. Lu, X.; Zhang, C.; Cao, P.; Gu, D.; Lu, H. Pay attention to raw traces: A deep learning architecture for end-to-end profiling attacks.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 2021, 235–274. [CrossRef]

15. Pfeifer, C.; Haddad, P. Spread: A new layer for profiled deep-learning side-channel attacks. Cryptol. Eprint Arch. 2018, 2018.
16. Timon, B. Non-profiled deep learning-based side-channel attacks with sensitivity analysis. IACR Trans. Cryptogr. Hardw. Embed.

Syst. 2019, 2019, 107–131. [CrossRef]
17. Le, T.H.; Clédière, J.; Serviere, C.; Lacoume, J.L. Noise reduction in side channel attack using fourth-order cumulant. IEEE Trans.

Inf. Forensics Secur. 2007, 2, 710–720. [CrossRef]
18. Das, D.; Maity, S.; Nasir, S.B.; Ghosh, S.; Raychowdhury, A.; Sen, S. High efficiency power side-channel attack immunity using

noise injection in attenuated signature domain. In Proceedings of the 2017 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), Mclean, VA, USA, 1–5 May 2017; pp. 62–67.

19. Do, N.T.; Hoang, V.P.; Doan, V.S.; Pham, C.K. On the performance of non-profiled side channel attacks based on deep learning
techniques . IET Inf. Secur. 2023, 17, 377–393. [CrossRef]

20. Cheng, K.; Song, Z.; Cui, X.; Zhang, L. Hybrid denoising based correlation power analysis for AES. In Proceedings of the
2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC),
Chongqing, China, 18–20 June 2021; Volume 4, pp. 1192–1195.

21. Tseng, C.C.; Lee, S.L. Minimax design of graph filter using Chebyshev polynomial approximation. IEEE Trans. Circuits Syst. II
Express Briefs 2021, 68, 1630–1634. [CrossRef]

22. Maghrebi, H.; Prouff, E. On the use of independent component analysis to denoise side-channel measurements. In Proceed-
ings of the Constructive Side-Channel Analysis and Secure Design: 9th International Workshop, COSADE 2018, Singapore,
23–24 April 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 61–81.

23. Kwon, D.; Kim, H.; Hong, S. Non-profiled deep learning-based side-channel preprocessing with autoencoders. IEEE Access 2021,
9, 57692–57703. [CrossRef]

http://doi.org/10.1007/s13389-019-00212-8
http://dx.doi.org/10.46586/tches.v2020.i3.147-168
http://dx.doi.org/10.46586/tches.v2021.i3.235-274
http://dx.doi.org/10.46586/tches.v2019.i2.107-131
http://dx.doi.org/10.1109/TIFS.2007.910252
http://dx.doi.org/10.1049/ise2.12102
http://dx.doi.org/10.1109/TCSII.2021.3065977
http://dx.doi.org/10.1109/ACCESS.2021.3072653


Electronics 2023, 12, 3361 21 of 21

24. Paguada, S.; Batina, L.; Armendariz, I. Toward practical autoencoder-based side-channel analysis evaluations. Comput. Netw.
2021, 196, 108230. [CrossRef]

25. Wu, L.; Picek, S. Remove some noise: On pre-processing of side-channel measurements with autoencoders. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020, 2020, 389–415. [CrossRef]

26. Kuroda, K.; Fukuda, Y.; Yoshida, K.; Fujino, T. Practical aspects on non-profiled deep-learning side-channel attacks against AES
software implementation with two types of masking countermeasures including RSM. In Proceedings of the 5th Workshop on
Attacks and Solutions in Hardware Security, Virtual Event, Republic of Korea, 19 November 2021; pp. 29–40.

27. Kwon, D.; Hong, S.; Kim, H. Optimizing implementations of non-profiled deep learning-based side-channel attacks. IEEE Access
2022, 10, 5957–5967. [CrossRef]

28. Won, Y.S.; Han, D.G.; Jap, D.; Bhasin, S.; Park, J.Y. Non-profiled side-channel attack based on deep learning using picture trace.
IEEE Access 2021, 9, 22480–22492. [CrossRef]

29. Hu, F.; Wang, H.; Wang, J. Cross subkey side channel analysis based on small samples. Sci. Rep. 2022, 12, 6254. [CrossRef]
30. Taud, H.; Mas, J. Multilayer perceptron (MLP). In Geomatic Approaches for Modeling Land Change Scenarios; Springer International:

Cham, Swizerland, 2018; pp. 451–455.
31. O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458.
32. Eren, L.; Ince, T.; Kiranyaz, S. A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier.

J. Signal Process. Syst. 2019, 91, 179–189. [CrossRef]
33. Daemen, J.; Rijmen, V. Reijndael: The advanced encryption standard. Dr. Dobb’s J. Softw. Tools Prof. Program. 2001, 26, 137–139.
34. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A.; Bottou, L. Stacked denoising autoencoders: Learning useful

representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408.
35. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with denoising autoencoders. In

Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 1096–1103.
36. Liu, X.; Zhang, F.; Hou, Z.; Mian, L.; Wang, Z.; Zhang, J.; Tang, J. Self-supervised learning: Generative or contrastive. IEEE Trans.

Knowl. Data Eng. 2021, 35, 857–876. [CrossRef]
37. Benadjila, R.; Prouff, E.; Strullu, R.; Cagli, E.; Dumas, C. Deep learning for side-channel analysis and introduction to ASCAD

database. J. Cryptogr. Eng. 2020, 10, 163–188. [CrossRef]
38. Coron, J.S.; Kizhvatov, I. An efficient method for random delay generation in embedded software. In Proceedings of the

Cryptographic Hardware and Embedded Systems-CHES 2009: 11th International Workshop, Lausanne, Switzerland, 6–9
September 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 156–170.

39. Do, N.T.; Hoang, V.P.; Doan, V.S. A novel non-profiled side channel attack based on multi-output regression neural network.
J. Cryptogr. Eng. 2023, 1–13. [CrossRef]

40. Nomikos, K.; Papadimitriou, A.; Psarakis, M.; Pikrakis, A.; Beroulle, V. Evaluation of Hiding-based Countermeasures against
Deep Learning Side Channel Attacks with Pre-trained Networks. In Proceedings of the 2022 IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Austin, TX, USA, 19–21 October 2022; pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.comnet.2021.108230
http://dx.doi.org/10.46586/tches.v2020.i4.389-415
http://dx.doi.org/10.1109/ACCESS.2022.3140446
http://dx.doi.org/10.1109/ACCESS.2021.3055833
http://dx.doi.org/10.1038/s41598-022-10279-9
http://dx.doi.org/10.1007/s11265-018-1378-3
http://dx.doi.org/10.1109/TKDE.2021.3090866
http://dx.doi.org/10.1007/s13389-019-00220-8
http://dx.doi.org/10.1007/s13389-023-00314-4

	Introduction
	Our Contributions
	Presenting a Novel Architecture with a Hybrid-Supervised Neural Network 
	Applying the Proposed Architecture for Feature Enhancement
	Altering the Proposed Architecture for Data Resynchronization

	Organization

	Preliminaries
	Deep Learning
	Multi-Layer Perceptron and Convolutional Neural Network
	AES Encryption Algorithm
	Differential Deep Learning Analysis
	Autoencoder and Supervision Methods in Deep Learning

	Proposed Hybrid-Supervised Side-Channel Analysis
	Design Principle of Hybrid-Supervised Side-Channel Analysis
	Architecture of MLP-HSSCA
	Architecture of CNN-HSSCA
	HSSCA for Small-Scale Datasets
	HSSCA for Datasets with Desynchronized Traces

	Experiment Results
	Experiment Environment and Datasets
	Experiment Environment
	ASCAD Dataset
	Desynchronized ASCAD Dataset
	AES_RD Dataset

	Implementation Results of HSSCA on Feature Enhancement
	Implement Results of HSSCA on Desynchronized Datasets
	Reliability and Computational Efficiency Analysis of HSSCA

	Conclusions
	References

