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Abstract: This paper presents a 220 GHz × 2 amplifier–doubler chain composed of a rat-race balun,
a 6-stage driver amplifier, and a frequency doubler. The presented amplifier–doubler chain was
fabricated in commercial 40 nm bulk CMOS technology. The maximum cutoff frequency fmax for the
NMOS transistor produced by this manufacturing process was 290 GHz. The saturation output power
of the six-stage driver amplifier at 110 GHz was 11.5 dBm. The transistor of the frequency doubler
consisted of a single-row interleaved Poly-Diffusion Contact balancing structure. Theoretically, the
single-row interleaved Poly-Diffusion Contact balancing structure was able to effectively avoid para-
sitic components. The simulated results demonstrate that the presented structure achieves a higher
output than the conventional designs. Based on these measured results, the presented amplifier–
doubler chain provides a peak output power of 7.9 dBm at 200 GHz and a 3-dB bandwidth of 30 GHz.
Based on the comparison with other reported results, the presented amplifier–doubler chain provides
the highest output power among reported frequency doublers fabricated in CMOS technology.

Keywords: doubler; frequency multiplier; terahertz (THz); millimeter wave

1. Introduction

The 220 GHz band is a frequency band of the millimeter wave [1]. This frequency band
is not yet fully developed, and the spectrum resources are very rich. Moreover, this band
has many advantages that electromagnetic waves in other frequency bands do not. The first
one is the long transmission distance [2,3]. The 220 GHz band is a high-frequency band, so
it is able to propagate over longer distances and is suitable for indoor communications [4,5]
and urban canyons [6,7]. The second is the large bandwidth. The 220 GHz band has a
large bandwidth, so it can support high-speed data transmission [8–12]. The third one
is strong penetration [13,14]. Millimeter waves can penetrate walls and other obstacles:
another reason for their suitability for indoor communications and communications in
urban canyon environments. The fourth is that it is not easy to disturb them. Due to its
shorter wavelength, the 220 GHz band has less interference compared to other frequency
bands. These characteristics make the 220 GHz band a very useful frequency band, which is
widely used in wireless communication [15,16], radar [17,18], satellite communication [19],
and other fields [20].

Currently, the main approach to generating electromagnetic waves at the 220 GHz
band is to obtain the local oscillator signal by oscillating at a low frequency and then
multiply the frequency by the desired frequency band. This means that the frequency
doubling circuit is crucial for generating the 220 GHz band signal.

The earliest frequency multiplier designs used in the 220 GHz band are mainly based
on III–V family semiconductors [21]. This is due to the high insulation of group III–V sub-
strates. Therefore, the High-Electron-Mobility Transistor high-electron-mobility Transistor
(HEMT) and Heterojunction Bipolar Transistor (HBT) based on the III–V group materials
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are used as the substrates’ transistor can achieve low insertion loss [22,23], and the pas-
sive devices fabricated under the III–V group process have a good quality factor [24]. In
recent years, with the increasing cut-off frequency of silicon-based processes, more and
more reports have been reported of implementing a 220 GHz frequency multiplier using
silicon [25,26]. Among silicon-based processes, the CMOS process is the most commercially
valuable [27,28]. It has the advantages of low noise, high reliability, fast response, low
power consumption, functionality, and economy. These advantages have led to an increas-
ing number of studies focusing on the design of the frequency multiplier in the CMOS
processes. In 2016, Navneet Sharma et al. demonstrated a 160–310 GHz frequency doubler
for rotational spectroscopy with a driver amplifier in a 65 nm bulk CMOS process [29].
At 0-dBm input power, the measured output power (Pout) varied from 3 to −8 dBm. In
2021, Akifumi Kasamatsu et al. implemented a ×9 frequency multiplier chain with a 3-dB
bandwidth of 213–233 GHz in a 40 nm bulk CMOS. The chain realized a 4.1 dBm peak
output power without using power combining [30].

In this paper, an amplifier–doubler chain including an integrated 110 GHz rat race
balancer, a driving amplifier (DA), and an active doubler with an output frequency covering
185–215 GHz was designed. The 110 GHz Rat race balancer converted the single-ended
signal to a differential signal with low insertion losses. The drive amplifier (DA) used
a sixth-order pseudo-differential structure to ensure sufficient power input to the fre-
quency doubler. The structure of the frequency doubler used a single-row interleaved
Poly-Diffusion Contact balancing structure to replace the traditional two-separated transis-
tors’ topology, which reduced the parasitic components of the frequency doubler. According
to the results of the measurement, the output power of the frequency doubler reached
7.9 dBm.

2. Circuit Design

As shown in Figure 1, the presented amplifier–doubler chain was fabricated in com-
mercial 40 nm bulk CMOS technology. The maximum cutoff frequency fmax of the NMOS
transistor by this manufacturing process was 290 GHz. The supply voltages of VDD and
VB were set to 0.9 V and 0.75 V, respectively.
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Figure 1. Diagram of the designed module of driver amplifier and frequency doubler.

At the input port of the designed amplifier–doubler chain, the single-ended signal
was converted to a differential by an integrated 110 GHz rat race balun. The topology of
the DA was given by the pseudo-difference structure, and the topology of the doubler was
given by the push–push structure.

2.1. 110 GHz Balun and Driver Amplifier (DA)

Providing equally distributed in-phase and inverted-phase RF signals, rat race balun
is a popular microwave passive component. It is used in many RF circuits [31]. Physical
dimensions [32], frequency bandwidth [33], and insertion loss [34] are key indicators of
balun’s performance.
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In this design, the rat race balun, which converts the signal from a single end to a
differential form, was made of thick copper layers at the top of the chip. In this way, the
insertion loss could be effectively reduced.

As shown in Figure 2, the rat-race balun consists of three λ/4 transmission lines and a
3
4λ transmission line. The performance of the rat-race balun with respect to the magnitude
and phase imbalance was simulated, and the simulated results are shown in Figure 3.
As shown in Figure 3, the S21 and S31 were about −4.4 dB and −4.8 dB, respectively, at
110 GHz for the rat-race balun.
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The design of the drive amplifier was similar to the design of the low-power amplifier.
However, the signal amplified by the drive amplifier should be ensured to be as distortion-
free as possible.

According to Figure 1, the circuit used to amplify the power level of the 110 GHz
signal was a six-stage DA. The DA was designed as a pseudo-difference structure. This
structure is characterized by the fact that the capacitance Cgd between the gate and drain
of the transistor can be compensated by the capacitance of the cross-coupling. As shown
in Figure 4, the final stage of DA consisted of four NMOS transistors. The input signal at
this stage was uniformly distributed to feed the gates of the NMOS transistors. The drains
of the transistors were connected at the center, while the source was directly connected to
the ground.
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Figure 4. (a) Schematic and (b) Diagram of the final stage of the DA.

The output power versus the frequency of the six-stage DA was simulated with an
input power level of −10 dBm, and the simulated results are shown in Figure 5. According
to Figure 5, the DA gain became saturated at the 110 GHz frequency point. The saturation
output power at 110 GHz was 11.5 dBm. Figure 5 shows that if the input power level of the
DA was no less than −10 dBm, the power transmitted from the DA end to the frequency
doubler could be up to 11.5 dBm.
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2.2. 220 GHz Frequency Doubler

As shown in Figure 1, the frequency doubler is a balanced structure that was con-
structed using NMOS transistors. Due to the nonlinearity of the NMOS transistors, the
signal input from the DA into the NMOS transistor excited the high-order harmonics. The
output matching network was used to extract the second harmonics among the high-order
harmonics, achieving the frequency doubling function.

In the design of the frequency doubler layout, the transistor consists of a single-row
of staggered distribution. As shown in Figure 6a, the single row interleaving distribution
meant that the policies of two transistors were interleaved, and the diffusion contact used
as the ground or output port was placed between two policies. These diffusion contacts
were reused by both transistors.

As can be seen from Figure 6, this design had two advantages over the regular two-line
design. First, the length of the metal connection line between the ground and output ports
was effectively reduced, which effectively reduced the parasitic components. Second, the
area of the layout became more compact because the number of diffusion contacts was
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halved. The above discussion shows that the single-row interleaving distribution design
can achieve more efficient parasitic parameters and a greater compact layout.
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The output power of a frequency doubler with a single-row interleaved Poly-Diffusion
Contact balancing structure and a conventional structure at 220 GHz was simulated with
different input power levels and different bias voltages. In the simulations, considering
the absence of the transistor model in the cadence virtuoso with the structure, as shown
in Figure 6b, the parallel connections of multiple single-gate ideal transistors were used
equivalent to the single-row interleaving distribution structures. The simulated results
of the power contours for different bias voltages are compared in Figure 7. According
to Figure 7, the output power of a frequency doubler with the single-row interleaved
Poly-Diffusion Contact balancing structure was able to reach a maximum of 7.8 dBm with
a drive power of 11.5 dBm and a gate bias voltage Vgs of 0 V, while the output power of a
frequency doubler with a conventional structure could only reach a maximum of 6.8 dBm
with a drive power of 11 dBm and a gate bias voltage Vgs of 0 V.

Figure 8 illustrates the simulated output power versus the input power at 220 GHz
with a bias voltage of 0 V for two frequency doublers with different structures. As can be
seen from Figure 8, the frequency doubler with a single-row interleaved Poly-Diffusion
Contact balancing structure can obtain a higher output power than the doubler with a
conventional two-line structure when the power of the input doubler exceeds 7 dBm. In
addition, the peak output power of the frequency doubler with a single-row interleaved
Poly-Diffusion Contact balancing structure was 1 dB higher than that of the frequency
doubler with a conventional two-line structure. In short, when the DA provided suffi-
cient power, the frequency doubler with a single-row interleaved Poly-Diffusion Contact
balancing structure could obtain higher output power than the frequency doubler with
a conventional two-line structure. The difference in the peak output power between the
two kinds of frequency doublers exceeded 1 dB. This comparison demonstrates that the
presented structure can effectively reduce the parasitic components and achieve higher
output power.
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For a gate bias voltage Vgs of 0 V, Figure 9 shows the load pull diagram for a drive
power of 11.5 dBm. As can be seen from Figure 9, the output power reached a maximum of
7.8 dBm. The topology of the output impedance matching network was L-C-L.
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3. Measurement

Figure 10 shows a microphotograph of the presented amplifier–doubler chain. Ac-
cording to Figure 10, the total area of the chip, including the pads, was 795 × 1000 µm2.
Measurements of the chip were performed on the wafer. The input port was probed using
a Cascade Infinity WR 8 waveguide probe. The input signal generated by the commer-
cial frequency multiplier module was injected into the chip, and the output power was
measured by a VDI Erickson PM5 power meter with a waveguide taper. Two different
measurement setups were used in the measurement since 220 GHz was the boundary of
the WR3 and WR5 waveguides which needed to be probed with Cascade Infinity WR3 and
WR5 waveguide probes, respectively.
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The results of the measurement are shown in Figure 11. According to Figure 11, the
presented amplifier–doubler chain reached its peak output power of 7.9 dBm at 200 GHz,
and the 3 dB bandwidth was 30 GHz (from 185 GHz to 215 GHz).
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Table 1 shows the performance of this frequency doubler compared to state-of-the-art
frequency doublers. According to Table 1, the presented amplifier–doubler chain provided
the highest peak output power of the reported frequency doublers when fabricated in
CMOS technology. A frequency doubler fabricated in SiGe technology obtained a larger
peak output power than the presented frequency doubler; however, the chip area of a fre-
quency doubler fabricated in SiGe technology was 2.5 times that of the presented frequency
doubler, and the DC power consumption of the frequency doubler fabricated in SiGe tech-
nology was more than three times as high as that the presented in the frequency doubler.
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Table 1. Comparison with other reported designs in the literature.

Tech. fmax
Freq

[GHz]
Last Multiplier

Topology
Multi.
Factor

DC-RF
[%]

Peak Pout
[dBm]

Size
[mm2]

DC
[mW]

[35] 90 nm
SiGe 350 200–230 DA + Mult. 2 0.23 8 3.63 2700

[36] 130 nm
SiGe 500 200–255 DA + Mult. + PA 8 1.60 12 * 2.15 990

[37] 130 nm
SiGe 250 165–230 DA + Mult. 2 0.87 5.2 NA 380

[29] 65 nm
CMOS NA 160–310 DA + Mult. 2 2.85 3 0.71 70

[30] 40 nm
CMOS 290 213–233 DA + Mult. + PA 9 1.39 4.1 1.7 185

[38] 65 nm
CMOS NA 237–263 Mult. 2 2.87 0.9 0.071 37

This
work

40 nm
CMOS 290 185–215 DA + Mult. 2 2.0 7.9 0.78 307

* 12 dBm w/o de-embedding the output balun and pad.

4. Conclusions

In this paper, an amplifier–doubler chain is presented. The presented amplifier–
doubler chain consists of a rat-race balun, a sixth-stage DA, and a frequency doubler. The
frequency doubler was designed with a single-row staggered distribution structure, which
effectively reduced the parasitic component. According to the measurements, the presented
amplifier–doubler chain provided a peak output power of 7.9 dBm at 200 GHz and a 3-dB
bandwidth of 30 GHz. The DC-RF efficiency was 1.87%.

In summary, the presented amplifier–doubler chain provided the highest output power
in CMOS technology at 200 GHz. The presented amplifier–doubler chain could be applied
to such fields as THz imaging, radar, sensing, biomedicine, and ultra-fast communications.
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