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Abstract: Pavement cracks are the primary type of distress that cause road damage, and deep-
learning-based pavement crack segmentation is a critical technology for current pavement mainte-
nance and management. To address the issues of segmentation discontinuity and poor performance
in the segmentation of irregular cracks faced by current semantic segmentation models, this paper
proposes an irregular pavement crack segmentation method based on multi-scale convolutional
attention aggregation. In this approach, GhostNet is first introduced as the model backbone network
for reducing parameter count, with dynamic convolution enhancing GhostNet’s feature extraction
capability. Next, a multi-scale convolutional attention aggregation module is proposed to cause
the model to focus more on crack features and thus improve the segmentation effect on irregular
cracks. Finally, a progressive up-sampling structure is used to enrich the feature information by
gradually fusing feature maps of different depths to enhance the continuity of segmentation results.
The experimental results on the HGCrack dataset show that GMDNet has a lighter model structure
and higher segmentation accuracy than the mainstream semantic segmentation algorithms, achieving
75.16% of MIoU and 84.43% of F1 score, with only 7.67 M parameters. Therefore, the GMDNet
proposed in this paper can accurately and efficiently segment irregular cracks on pavements that are
more suitable for pavement crack segmentation scenarios in practical applications.

Keywords: pavement cracking; semantic segmentation; lightweight model; dynamic convolution;
multi-scale convolutional attention

1. Introduction

With the ever-accelerating pace of urbanization, pavement construction has become
one of the key projects of national and local governments. Pavement cracks are one of
the inevitable problems in pavement construction and maintenance, and they seriously
affect traffic safety and pavement life. Traditional methods for detecting pavement cracks
typically require a significant amount of manual labor and time [1], which are inefficient
and prone to missing or misidentifying cracks. Therefore, timely and accurate identification
of pavement cracks is crucial for effective pavement maintenance and repair.

Image processing techniques have been widely used in early pavement crack detection.
Common image processes include edge detection, morphological operations and filtering.
Hu et al. [2] designed a crack extractor on the basis of a simplified locality binary pattern
subset, assuming that this subset can extract pavement cracks using information from
edges, corners and planar regions, but ignoring the complexities of background textures.
Zala-ma et al. [3] employed Gabor filters to extract visible features for crack detection.
To overcome the difficulty of parameter selection, they used Ada-boosting to combine
several sets of weak classifiers for feature extraction, achieving good results. Li et al. [4]
suggested an approach to crack detection using quadratic threshold segmented technology,
which used threshold segmentation algorithm to remove pavement markings and perform
image segmentation. Shi et al. [5] suggested a pavement crack detection framework called
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CrackForest, which applied the structure of random forest to crack detection. The frame-
work introduced a crack description to describe cracks and distinguish them by noise.
Although machine vision techniques have been applied for pavement crack detection in
various ways, there are also some problems. Because image processing techniques focus
only on the local features of images, processing the entire image can result in information
loss or incompleteness. For example, when dealing with complex backgrounds and multi-
layered cracks, the influence of noise and other factors may lead to inaccurate detection or
missed detection. As a result, these methods, which rely on traditional imaging techniques,
cannot be used in practice.

In recent years, many investigators began to investigate the application of deep learn-
ing techniques to pavement crack detection. Compared to traditional methods, deep
learning can better handle the identification of large data and complex features, which en-
ables more accurate detection of pavement cracks [6–8]. Therefore, many researchers have
started to apply deep learning methods for the detection of pavement cracks. Cha et al. [9]
coupled convolutional neural networks (CNN) with sliding window techniques for crack
detection, resulting in significant improvements in validation accuracy and inspection
speed. Dorafshan et al. [10] used CNN in combination with edge detection to identify crack
images, achieving higher efficiency compared to edge detection methods. Shim et al. [11]
used DenseNet [12] as a backbone and streamlined the coding stage by using thin feature
maps throughout, resulting in a substantial reduction in parameters. Liu et al. [13] em-
ployed the U-Net method for concrete crack identification, which showed higher efficiency
and better accuracy compared to Fully Convolutional Networks (FCNs) [14], although some
edge smoothing and detail loss issues were observed. Ren et al. [15] suggested a modified
deep fully convolutional network called CrackSegNet, which effectively eliminates noise
interference and performs end-to-end crack segmentation with complex background crack
images. The RDSNet model suggested by Wang et al. [16] features the fusion of detection
and segmentation information, which can enhance the detection accuracy to a certain
degree. However, the above deep learning-enabled approaches are limited in their ability to
identify pavement cracks [17]. Figure 1 shows the segmentation results of these approaches
for different pavement cracks, clearly showing the presence of multiple breakpoints in the
segmented cracks and poor identification performance when faced with irregular cracks of
different scales.

Figure 1. Segmentation results of pavement cracks, the red mask portion represents the segmented
crack area.

From the research described above, this study suggests a novel network called GMD-
Net for irregular crack segmentation in pavements. The main contributions of this study
include the following:

1. This study employs and enhances DeepLabv3+ [18]. A lightweight backbone network,
GhostNet [19], is utilized to reduce the model’s parameter count. By taking into
account the diverse scales of crack features, dynamic convolution [20] is employed to
improve GhostNet, enabling it to adaptively adjust convolution kernel parameters
and enhance feature extraction capability. Additionally, a multi-scale convolutional
attention aggregation module (MCAA) is proposed to improve the model’s segmenta-
tion performance for irregular cracks. A progressive upsampling scheme is introduced
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to address the issue of segmentation result discontinuity. Finally, the effectiveness of
the proposed module is validated through ablation experiments;

2. Pavement crack segmentation in practical applications necessitates a lightweight
model structure and high-quality segmentation performance. This study conducts
a comparative analysis between GMDNet and mainstream semantic segmentation
networks using the same dataset to substantiate the superiority of our algorithm in
real pavement segmentation scenarios;

3. This study enriches the Crack500 [21] dataset by incorporating pavement crack images
captured by smartphones. The augmented dataset provides a broader spectrum of
data, facilitating a more comprehensive evaluation of the model’s performance.

The remaining sections are organized according to the following: Section 2 introduces
common semantic segmentation models and attention mechanisms. Section 3 presents the
structure of GMDNet. Section 4 conducts ablation experiments on GMDNet and provides
visual comparisons of segmentation results with other networks. Finally, Section 5 sums up
the overall contributions of this paper.

2. Related Work

In this section, a comprehensive investigation was conducted on commonly used
semantic segmentation models and attention mechanisms, revealing their close relevance to
the research objectives of this paper. Understanding the advantages and limitations of these
commonly used semantic segmentation methods allows for a better grasp of their char-
acteristics. Moreover, attention mechanisms aid in focusing the model on critical regions,
thereby improving segmentation accuracy and robustness. The subsections below describe
in detail their working principles and distinctive features. By elucidating these methods,
readers will gain a comprehensive knowledge background that forms the foundation for
the proposed semantic segmentation models in the subsequent sections.

2.1. Semantic Segmentation

In computer vision detection tasks, semantic segmentation enables fine-grained classi-
fication at the pixel level. Currently, mainstream semantic segmentation frameworks adopt
an encoder–decoder architectural design [22]. The encoder typically comprises several
convolutional layers that extract high-level features from the image while gradually reduc-
ing its size. In contrast, the decoder uses operations such as upsampling and transpose
convolution to recover low-level features to their initial image scale and to predict the
category of each pixel. Additionally, links between the encoder and decoder can transmit
high-resolution features, which helps to overcome the problem of detail loss that occurs
during the decoding process.

The core idea of the Fully Convolutional Network (FCN) [14] is to replace the fully
connected layers in image classification networks with transpose convolutional layers and
thus recover the feature map size, thereby achieving pixel-wise classification. U-Net [23],
proposed for medical cell segmentation. It essentially is made up of a sequence of succes-
sive convolutional layers and downsampling layers, which capture contextual semantic
information through a contractional path. During decoding, horizontal connections from
the encoder are utilized to upsample deep-level and shallow-level features for accurate
segmentation mappings. For capturing rich contextual information and improving seg-
mentation performance in complex regions like boundaries, Chen et al. [24] proposed the
Deeplab network. It introduces a new convolutional operation using dilated convolutions
with upsampling filters, which expands the sensing area to pick up more contextual data
with no increase in computational complexity. In addition, this network incorporates
conditional random fields to enrich the segmentation data to capture finer details. Based
on this, the researchers further proposed Deeplabv2 [25] to derive multi-scale features of
the targets. This method utilizes the atrous spatial pyramid pooling (ASPP) module, which
detects feature maps from dilated convolutions with distinct sampling rates for multi-scale
information. Subsequently, DeepLabv3 [26] developed an encoder–decoder structure using
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dilated convolutions for clearer object delineations, and used depth-separable convolutions
for improved computational efficiency. Finally, Chen et al. [18] introduced the Deeplabv3+
network model through the addition of a simple and effective decoder module to extend
Deeplabv3 and improve segmentation performance. The Deeplab series of networks have
achieved satisfactory segmentation results through a series of optimizations, and have
become one of the mainstream networks for semantic segmentation.

2.2. Attention Mechanism

In visual detection challenges involving object detection, classification and segmenta-
tion, the attention mechanism is commonly utilized. In semantic segmentation, the attention
mechanism is useful for improving the focus brought by convolutional neural networks
on important regions or features. Adding the attention mechanism to neural networks
allows more weight to be given to significant features, further enhancing the network’s
segmentation performance.

Hu et al. [27] first proposed the SE attention, which applies attention to the channel
dimension. It enhances useful feature channels and suppresses irrelevant feature channels
by adaptively learning the importance weights between channels. CBAM attention [28]
calculates attention weights simultaneously in both the channel and spatial dimensions. It
adaptively focuses on the significance of various channels and spatial positions within the
image to improve feature representation. Effective Channel Attention [29] proposes the
idea of not reducing the channel dimension during the process of channel information inter-
action. Instead, it uses one-dimensional convolution to allocate channel attention weights
and reduce information loss. Wang et al. [30] suggested classical Non-Local attention,
which captures global information and long-range dependencies through computing the
correlations among all positions of the input feature. DANet [31] introduces the Non-Local
idea into both the channel domain and the spatial domain. It performs attention calcula-
tions in the channel and spatial dimensions separately to capture feature dependencies in
both dimensions.

3. Materials and Methods

Pavement crack segmentation is an important task in pavement inspection, as accurate
segmentation of cracks in pavement images can effectively guide pavement maintenance
and management efforts. In practical applications of pavement crack segmentation, seg-
mentation models need to meet the requirements of the lightweight model architecture
and accurate segmentation results. However, existing semantic segmentation models have
not been optimized specifically for real-world pavement cracks. This paper proposes an
irregular pavement crack segmentation network called GMDNet. In the encoder stage,
a lightweight GhostNet [19] is employed as the backbone network for crack feature extrac-
tion. In terms of irregular cracks, multi-scale convolutional attention aggregation enhances
segmentation performance. In the decoder stage, a novel progressive upsampling scheme
is utilized to improve the continuity of pavement crack segmentation. Ultimately, GMD-
Net achieves efficient and accurate pavement crack segmentation. Figure 2 illustrates the
general structure of the GMDNet model.

The encoder stage of GMDNet utilizes an improved GhostNet [19] network model
as the primary feature extraction network. The input image undergoes feature extraction
through Ghost bottlenecks within the GhostNet model, progressively obtaining low-level
features containing enriched semantic content and decreasing degree of details, as well
as mid-level and high-level features. To further enhance the semantic information in the
high-level features, the high-level features are passed through the multi-scale convolution
attention aggregation (MCAA) module for multiscale feature aggregation. This yields
feature blocks with rich semantic information, which serve as input for the decoder.
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Figure 2. The general structure of the proposed GMDNet. Backbone represents the improved Ghost-
Net, MCAA represents the multi-scale convolutional attention aggregation module, DUC represents
dense upsampling convolution,

⊕
represents the concatenation operation, and C represents the

number of channels in the current feature map.

In the decoder stage, GMDNet adopts a progressive upsampling structure. This
structure upsamples by progressively integrating low-level detail information into high-
level semantic feature maps, while considering both global and detail features. Specifically,
the high-level semantic feature maps from the MCAA module are adjusted in channels
and then upsampled to the appropriate size. They are then concatenated with the middle-
level feature maps for feature fusion, followed by the same operation with the low-level
feature maps to merge the features. Lastly, a 3 × 3 convolution is used to refine the feature
information, and spatial information is restored and segmentation results are outputted via
dense upsampling convolution (DUC).

The following sections detail the improvements to GhostNet, multi-scale convolu-
tional attention aggregation (MCAA), and dense upsampling convolution (DUC) of the
progressive upsampling structure.

3.1. Lightweight Feature Extraction Network Design

Pavement crack segmentation technology often does not work well in practice because
the model is too bloated. How to lighten the model is the crucial issue to be addressed
in the practical application of pavement crack segmentation algorithms. In convolutional
neural networks, the deep feature map has strong semantic information, which is important
for accurate crack and background discrimination. However, obtaining deep feature maps
requires multiple layers of convolutional operations, a process that can create redundancy
of information and thus increase the computing effort of the model. Therefore, many
optimization methods [32–34] for deep neural networks were suggested to reduce com-
putational complexity and improve segmentation accuracy. A common approach is to
use lightweight feature extraction networks or introduce attention mechanisms to reduce
unnecessary computation and information redundancy while maintaining model validity.

GhostNet [19] is a lightweight neural network structure proposed by Huawei Noah’s
Ark Laboratory in 2020. Compared with other popular lightweight network structures,
GhostNet stands out in terms of computational performance. For a significant volume of
convolutional computation in deep neural networks, the Ghost module in the GhostNet
network starts from the problem of feature map redundancy and exploits the similarity
of feature maps to obtain a rich feature map with less computation. Although GhostNet
has achieved excellent performance in extracting features from regular objects, the model’s
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feature extraction capability needs further improvement for the complex and variable
pavement cracks in realistic environments. According to the literature [20], dynamic
convolution allows adaptive adjustment of convolution kernel parameters based on the
input image. Therefore, this paper rethinks the structure of the Ghost module and improves
it using dynamic convolution. Figure 3 illustrates the modified Ghost module [19].

Input feature
Output feature

Main feature

Main feature

Redundant feature

Concat

Deep dynamic Conv

1×1

Conv

Global Average Pooling
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4K1K 3K

Sigmoid

3×3

Conv

2K

Input feature
Output feature

Main feature

Main feature

Redundant feature

Concat

Deep dynamic Conv

1×1

Conv

Global Average Pooling

Dropout

Full connection

4K1K 3K

Sigmoid

3×3

Conv

2K

Figure 3. The overall structure of the improved Ghost module, which is the main building block
of GhostNet.

Specifically, the linear transformation in the Ghost module divides the input feature
into two branches. The first branch performs a standard convolution operation, using 1 × 1
convolution to achieve information interaction between channels and extract the dominant
feature layer from input feature. The second stage processes dominant features layer by
layer through linear transformation to produce similar feature maps. By concatenating
the above two types of feature layers, the final output feature layer will be generated.
The improvement made in this paper introduces dynamic convolution into the process
of generating similar feature maps in the second branch. Dynamic convolution does not
increase the width and depth of the neural network. It can adjust the convolution kernels
based on the features of the input data to better capture the crack features. In dynamic
convolution, the convolution kernel parameters are obtained by weighted computation of
four identical convolution kernels, and the weights of the four kernels are computed from
the input feature. For input-dominant feature, the process of dynamic convolution can be
described as:

Output (x) = σ((α1 K1 + α2 K2 + α3 K3 + α4 K4 ) ∗ x) (1)

where σ represents the activation function, αi represents the weighted parameters that
depend on the input sample, Ki represents each convolutional kernel, and ∗ represents the
convolution operation. The calculation process of αi can be described as follows:

αi (x) = Sigmoid(GAP(x)A) (2)

where parameter A represents a matrix that maps the dimension of input features to
the number of convolutional kernels. GAP stands for global average pooling, which
is used to compress the feature layer and obtain global spatial information. Sigmoid
represents the activation function used to generate weighted parameters for the four
convolutional kernels.

GhostNet [19] consists of a series of Ghost bottlenecks, which are based on the residual
structure of ResNet [35] and leverage the Ghost module to achieve efficient compression
and information transfer of feature maps. As depicted in Figure 4, the improved Ghost mod-
ule is utilized to construct Ghost bottlenecks [19], where (a) represents a Ghost bottleneck
with a stride of 1, and (b) represents a Ghost bottleneck with a stride of 2. The Ghost bottle-
neck with a stride of 1 is employed to extract more feature information while maintaining
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the size of the feature map. Conversely, the Ghost bottleneck with a stride of 2 compresses
the feature map, reducing computational complexity and memory consumption. To strike
a balance between feature resolution and feature range, the improved GhostNet, with dy-
namic convolution, is adjusted to have four downsampling operations as the backbone
network for GMDNet for this study. Specific network layer configurations can be found in
Table 1.

Input

Ghost module

Ghost module

Output

Input

Ghost module

Ghost module

Output

DWConv Stride=2

Input

Ghost module

Ghost module

Output

Input

Ghost module

Ghost module

Output

DWConv Stride=2

(a) stride = 1

Input

Ghost module

Ghost module

Output

Input

Ghost module

Ghost module

Output

DWConv Stride=2

Input

Ghost module

Ghost module

Output

Input

Ghost module

Ghost module

Output

DWConv Stride=2

(b) stride = 2

Figure 4. The overall structure of the Ghost bottleneck.
⊕

represents the concat operation.

Table 1. The specific network structure of GhostNet as a backbone network. Input represents the
size and number of channels in the input feature map. G-bneck represents the Ghost bottleneck,
exp denotes the expansion size of channels within the Ghost bottleneck, out indicates the number of
output channels, and SE denotes whether the SE attention module is utilized.

Input Operator Exp Out SE Stride

5122 × 16 Conv2d 3 × 3 - 16 - 2
2562 × 16 G-bneck 16 16 - 1
2562 × 16 G-bneck 48 24 - 2
1282 × 24 G-bneck 72 24 - 1
1282 × 24 G-bneck 72 40 1 2
642 × 40 G-bneck 120 40 1 1
642 × 40 G-bneck 240 80 - 2
322 × 80 G-bneck 200 80 - 1
322 × 80 G-bneck 184 80 - 1
322 × 80 G-bneck 184 80 - 1
322 × 80 G-bneck 480 112 1 1

322 × 112 G-bneck 672 112 1 1
322 × 112 G-bneck 672 160 1 1
322 × 160 G-bneck 960 160 - 1
322 × 160 G-bneck 960 160 1 1
322 × 160 G-bneck 960 160 - 1
322 × 160 G-bneck 960 160 1 1

3.2. Multi-Scale Convolutional Attention Aggregation Module (MCAA)

Irregular pavement cracks have always been a significant challenge in pavement
crack segmentation, given their diverse shapes and scales. Some cracks are extremely
thin, while others are relatively wide. Using a single-scale feature makes it difficult to
effectively segment all types of cracks [36]. DeepLabv3+ [18] is a deep learning-based
semantic segmentation network that employs an ASPP module with multiple parallel
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convolution branches, incorporating dilated convolutions of different scales to capture
information at various scales. However, these parallel convolution and pooling operations
often merge unrelated pixel regions when dealing with diverse-shaped cracks, resulting
in decreased segmentation accuracy. To address these issues, this study draws inspiration
from the segnext [37] network and proposes a novel multi-scale convolutional attention
aggregation module, as illustrated in Figure 5. Multiple parallel convolution branches
are used to aggregate more comprehensive and rich crack features, enabling the model to
accurately identify and segment crack regions in the image. The detailed implementation
approach of this module will be described below.

1×1 Conv rate=1

3×3 Conv rate=6

3×3 Conv rate=12

3×3 Conv rate=18

1×7 Conv 7×1 Conv1×7 Conv 7×1 Conv

1×11 Conv 11×1 Conv1×11 Conv 11×1 Conv

1×21 Conv 21×1 Conv1×21 Conv 21×1 Conv

Global Average Pooling

F
'F

1
×

1
 C

o
n
v

Figure 5. The overall structure of MCAA.
⊗

represents the attention weight calculation,
⊕

represents
the concat operation.

The multi-scale convolutional attention aggregation (MCAA) module mainly consists
of two branches: the multi-scale feature extraction branch and the global average pooling
branch. The multi-scale feature extraction branch employs four square kernel convolutions
with dilation rates of 1, 6, 12, and 18, as well as six stripe kernel convolutions, to capture
multi-scale feature information. The use of dilated convolutions expands the network’s
receptive field without increasing additional computational costs. Setting various dilation
rates allows acquisition of various reception areas, thereby capturing contextual information
on cracks at different scales. In designing the structure of the MCAA module, this paper
concatenates two stripe convolutions to mimic standard convolutions [37]. This approach
reduces the computational cost and enhances the perception of stripe features, which is
beneficial for crack segmentation scenarios.

In order to aggregate the contextual information of cracks of different shapes, the mod-
ule fuses the six feature maps obtained from the multi-scale feature extraction branch,
interacts the information across channels by 1 × 1 convolution, and the output is directly
used as the attention weight to weight the original features extracted from the 1 × 1
convolution branch pixel by pixel, and finally, the weighted feature map is stitched with
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the globally averaged pooled feature map as the output feature map F′. The multi-scale
convolutional attention aggregation module is computed as follows:

F′ = F
⊗

Conv1×1 (
7

∑
i=1

Scalei(F))
⊕

GAP(F) (3)

where F indicates an input feature, F′ indicates an output feature,
⊗

is the element-by-
element matrix multiplication operation in Scalei, i ∈ {0, 1, 2, 3} denotes the i-th branch in
the multi-scale feature extraction branch,

⊕
is the feature merging operation, and GAP is

the global average pooling.
The multi-scale convolutional attention aggregation module achieves feature extrac-

tion for different scales by introducing multiple convolutional kernels of different sizes
and setting different Dilated Convolution expansion rates. The introduction of banded
convolution can compensate for the deficiency of traditional convolution in handling fea-
tures at different scales, and further improve the model’s feature perception at different
distance ranges. It combines the multi-scale information of traditional convolution and
banded convolution, which can provide better feature extraction and expression when
dealing with complex and variable pavement crack shapes, and thus has a better ability to
segment irregular pavement cracks.

3.3. Dense Upsampling Convolution (DUC)

For pavement crack segmentation, conventional upsampling techniques can lead to
indistinct and fragmented crack boundaries in the segmented results. To obtain high-
resolution semantic feature maps, convolutional neural networks typically capture deeper
semantic information by performing downsampling operations. However, this approach
also decreases the quality of the feature maps, resulting in a lack of intricate space data
in images. Deep feature maps are spliced with shallow feature maps in certain networks,
gradually restoring the resolution to match the high-resolution size of the original map
through the utilization of up-sampling techniques like bilinear interpolation. However,
simple bilinear interpolation alone cannot solve this problem, because deep semantic
features lose their positional alignment with shallow features after padding, convolution,
and other operations.

Dense upsampling convolution (DUC) is a structure depicted in Figure 6 [38]. It
upscales the downsampled feature maps to the target resolution by learning a series of
magnified filters. If the initial image size is H ×W and the downsampling factor during
the coding phase is d, then the input feature map size for DUC is H

d ×
W
d × C(h× w× C).

First, a 1 × 1 convolution is performed to generate feature maps of size (h× w× d2)× L,
which can be understood as L feature maps of size h× w× d2. Each feature map of size
h× w× d2 is transformed into H ×W × 1, which represents a label map for a category.
During this process, DUC uses learnable parameters to generate magnified filters. There
are L categories in total, and they are combined to form the label map of size H ×W × L
for all categories. The central concept for DUC involves dividing the entire label map into
subsets of the same size as the input feature map, i.e., to transform the whole label map
into smaller multichannel label mappings. This conversion can be applied directly through
convolution operations on both feature maps, with no need to insert additional values
as in deconvolution. Therefore, while training the neural network, DUC can adaptively
learn how to restore missing detailed information, effectively resolving the problem with
segmentation discontinuity for pavement crack segmentation results.
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Figure 6. The overall structure of DUC.

4. Experiments and Results

This section introduces the dataset and experimental setup utilized in this study. Next,
a description is presented for the conducted ablation experiments aimed at validating the
effectiveness of the proposed GMDNet model. These experiments involve quantitatively
analyzing each module to demonstrate their effectiveness. Lastly, a comparison is con-
ducted between the GMDNet model presented in this paper and mainstream semantic
segmentation models. The comparison is performed using the Gaps384 and HGCrack
datasets, with the aim of demonstrating the efficiency of the proposed pavement crack
segmentation model.

4.1. Data Collection

The Crack500 [21] dataset is an open-source public dataset that consists of 500 high-
resolution images depicting cracks in cement concrete pavement. These images were taken
with a digital camera from various distances at different angles, encompassing diverse
lighting conditions, angles, and surface textures of the pavement. To overcome the limited
image count in the Crack500 dataset and assess the algorithm’s generalization ability
effectively, this study supplemented the dataset by collecting pavement crack data on
campus using smartphones of the same resolution. Consequently, a new dataset named
HGCrack was acquired. Figure 7 illustrates a selection of pavement crack images collected
on campus.

Figure 7. Pavement crack image data collected on campus.

The HGCrack dataset includes diverse crack data that has been added to simulate
complex pavement crack scenarios in practical applications, based on the Crack500 dataset.
Prior to conducting experiments with the HGCrack dataset, various data augmentation
methods, including random cropping and flipping, were employed to broaden the dataset.
Ultimately, we obtained 2000 images of pavement cracks, along with their corresponding
segmentation masks. Among these, 1400 images were designated as the training set,
400 images as the validation set, and 200 images as the test set. Several sample examples
from the HGCrack dataset are presented in Figure 8.
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Image

Label

Figure 8. Some images and labels in the HGCrack dataset.

To further validate the effectiveness and generalization ability of the GMDNet model,
this study chose the publicly available benchmark dataset Gaps384 [39] for testing in the
field of pavement crack segmentation. Gaps384 comprises 384 pavement crack images
with a resolution of 1920 × 1080. These images primarily consist of small and irregular
cracks, thereby increasing the difficulty of crack segmentation and facilitating a more
comprehensive evaluation of the model’s performance. Figure 9 depicts a subset of sample
images from the Gaps384 dataset.

Image

Label

Figure 9. Some images and labels in the Gaps384 dataset.

4.2. Experimental Setup
4.2.1. Experimental Platform and Training Details

The proposed model GMDNet is implemented using the PyTorch deep learning
framework. To ensure consistent dataset quality, the image resolution is uniformly adjusted
to 512× 512 as the network input before training. The training GPU is the NVIDIA GeForce
RTX3060 (12 GB), the CPU is the Intel Core i7-11700 @ 2.50 GHz, and the memory size is
32 GB. To ensure effective training, this experiment adopts transfer learning by loading
the pre-trained weights of the backbone network for accelerating model convergence.
The training uses the Adam optimizer with adaptive capability, and the initial learning rate
is set to 5× 10−4. Due to GPU memory limitations, the batch size is set to 8, and we train
for a total of 100 epochs.

4.2.2. Evaluation Criteria

In this study, the following criteria were used to evaluate the accuracy and effectiveness
of the proposed GMDNet for pavement crack detection: MPA, MIoU and F1 score. Higher
values of these metrics indicate superior overall network performance [40]. The complexity
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of the model is evaluated based on the values of Params and FLOPs. Lower values of these
metrics indicate a more lightweight network. Params represents the number of parameters
within the model, where a higher number usually indicates a more complex model. FLOPs
quantifies the floating-point operations executed by the model during inference. Higher
FLOPs indicate greater computational resources and time required for inference. Other
performance evaluation metrics are calculated through the confusion matrix presented in
Table 2. Detailed calculation procedures for MPA, MIoU and F1 Score score are presented
below. The detailed calculation procedures for MPA, MIoU, and F1 score are outlined below.

Table 2. All the results of pavement crack prediction.

Predicted
Ground Truth

Pavement Crack Background

Pavement Crack True positive (TP) False positive (FP)
Background False negative (FN) True negative (TN)

MPA stands for mean pixel accuracy, indicating percentage correctly categorized
pixels for every category, which is subsequently accumulated and averaged. The formula
is as follows:

MPA =
1

K + 1

k

∑
i=0

TP + TN
TP + FP + TN + FN

(4)

MIoU can be understood as the average intersection over union (IoU) between pre-
dicted and ground truth regions of various pixels, which reflects the overlap between the
segmented and actual targets. The formula is as follows:

MIoU =
1

K + 1

K

∑
i=0

TP
FN + FP + TP

(5)

F1 Score represents a weighted mean of precision and recall, accounting for both
comprehensiveness of precision as well as accuracy of recall. The formula is as follows:

precision =
TP

TP + FP
(6)

recall =
TP

TP + FP
(7)

F1 Score = 2× precision× recall
precision + recall

(8)

In the above formula, TP represents the amount of pixels that are truly labeled as
cracks and correctly segmented as cracks. FP is the number of pixels truly labeled as
background that are incorrectly segmented as cracks. TN is the number of pixels truly
labeled as background and correctly segmented as background. FN is the number of pixels
that are truly labeled as cracks but incorrectly segmented as background [41]. Here, k + 1
represents the number of categories (there are two categories in this study, cracks and
background, where k is set to 1).

4.2.3. Training Process Evaluation

The binary cross-entropy is adopted as the loss function for training, since the semantic
segmentation of pavement cracks involves a classification problem with only two categories-
cracks and background. The binary cross-entropy loss function formula is:

Lbce = −
1
N

n

∑
i=0

[yilnpi + (1− yi)ln(1− pi)] (9)
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where Lbce represents the binary cross-entropy loss, N represents all pixels of the image, yi
represents the label values for the i-th pixel, and pi represents the prediction probability
value for the i-th pixel.

Figure 10 shows loss curves obtained from experiments using the GMDNet model on
the HGCrack dataset. Horizontal axis shows the epochs during model training. In each
epoch, the model updates and optimizes its parameters based on the training data. The ver-
tical axis represents the loss function values. A smaller loss function value indicates a better
fit of the model’s predicted results to the actual labels on the training data. The curves
in the graph correspond to the train loss and val loss, respectively. The train loss is com-
puted using the training data during model training and is primarily used to guide model
optimization and parameter updates for a better fit to the training data. On the other
hand, the val loss is calculated using the validation data after the model training process to
evaluate the model’s generalization ability. In this experiment, both the train loss and val
loss decrease as the training epochs increase. In the first training epoch, the train loss is
0.194, and the val loss is 0.154. By the 100th training epoch, the train loss has decreased
to 0.019, and the val loss has decreased to 0.032. The loss function experiences a rapid
decrease in the early training epochs, gradually stabilizing thereafter. The overall curve
trend is favorable, with both the train loss and val loss dropping below 0.05 by the end of
training. This demonstrates that the proposed GMDNet network effectively converges on
the HGCrack dataset.

Figure 10. The train loss curve and val loss curve obtained from GMDNet experiments on the
HGCrack dataset.

4.3. Ablation Experiments

To assess the efficacy of the proposed backbone network (GhostNet [19]), multi-scale
convolution attention aggregation module (MCAA), and progressive upsampling structure
(PU) in the GMDNet model, this study conducted ablation experiments based on the
classic DeepLabv3+ [18].The aim was to evaluate the accuracy and computational cost
of each module. Using the HGCrack pavement crack dataset, we performed four sets of
experiments in the same controlled environment to determine the optimal model. These
sets include: Group 1, which involved training solely on the classical DeepLabv3+ network;
Group 2, where the backbone network was replaced with the improved GhostNet built upon
the classical DeepLabv3+ network; Group 3, in which the ASPP module was substituted
with the proposed multi-scale convolution attention aggregation module (MCAA) based
on Group 2; and Group 4, where the proposed progressive upsampling structure (PU) was
utilized on the foundation of Group 3. The results of these four ablation experiments are
presented in Table 3.



Electronics 2023, 12, 3348 14 of 19

Table 3. Experimental results for different combinations of modules in GMDNet.

Group GhostNet MCAA PU MIoU (%) F1 Score (%) Params (M)

1 72.28 81.22 54.71
2 X 70.54 80.58 5.33
3 X X 74.89 82.97 6.14
4 X X X 75.16 84.43 7.67

From Table 3, it can be seen, that compared to the various evaluation indicators of
the original network in Experimental Group 1, Experimental Group 2, which replaces
the backbone network, has only a slight decrease of 1.74% in the model’s MIoU under a
significant reduction in model parameters. At the same time, the F1 score still remains
at a good level. This indicates that the improved backbone feature extraction network
(GhostNet [19]) not only can obtains crack features in an inexpensive computational way
but also extracts crack features more accurately with the help of dynamic convolution.
Furthermore, it can be observed from the results of Experimental Group 3 that, after intro-
ducing the multi-scale convolutional attention aggregation module (MCAA), the model’s
MIoU has increased by 4.35%, showing a significant improvement. Meanwhile, the model
parameters have only slightly increased, indicating that the inclusion of the stripe scale
and convolutional attention in this module enables the model focusing on more crack
features, resulting in a significant improvement in segmentation accuracy with minimal
impact on network computational costs. Experimental Group 4 simultaneously made three
improvements. Based on Experimental Group 3, it added a new progressive upsampling
structure (PU), which reduces the loss of detailed information compared to the original
upsampling method, and achieves better pixel segmentation effects in crack boundary
regions. As a result, the model’s MIoU reached the highest value of 75.16%, and other
performance evaluation indicators were also optimal. In summary, the network with three
improvements demonstrates the best overall performance, achieving a balance between
model accuracy and computational cost, thus being able to adapt to a wider range of appli-
cation scenarios while meeting the required accuracy. This experiment fully demonstrates
the ability of the proposed improvements in enhancing the segmentation effectiveness of
pavement cracks.

4.4. Performance Comparison

To objectively and quantitatively analyze this study’s proposed crack segmenta-
tion model, five mainstream methods for semantic segmentation, specifically FCN [14],
U-Net [23], DeepLabv3+ [18], PSPNet [42] and SegNet [43], were chosen for comparison.
FCN integrates features from multiple levels through upsampling and skip connections
to produce the final output. U-Net uses multiple skip connections to combine multi-
scale info, enhancing the accuracy for segmentation. The DeepLabv3+ algorithm employs
atrous spatial pyramid pooling modules for analyzing targets across various scale ranges,
and subsequently combines shallow features to recover boundary and detail information.
PSPNet aggregates context information from various regions to explore the global con-
text. SegNet’s decoder achieves nonlinear upsampling by utilizing max pooling indices
from the encoder, thus avoiding additional learning costs during the upsampling process.
Subsequently, the proposed model in this study is evaluated and compared against the
aforementioned five mainstream semantic segmentation models using the HGCrack dataset
and the Gaps384 dataset. The effectiveness of the proposed model is validated using the
HGCrack dataset, while the generalization ability is assessed using the publicly available
benchmark dataset Gaps384.

Table 4 displays the evaluation results from the HGCrack dataset. The GMDNet
algorithm attains MIoU, MPA, and F1 scores of 75.16%, 87.29% and 84.43%, respectively.
Our algorithm outperforms other algorithms in all three accuracy metrics. Our algorithm
demonstrates improvements of 2.24%, 3.06% and 2.52% over the best-performing Seg-
Net network and other algorithms [44], respectively. Furthermore, our model exhibits
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substantially fewer parameters and lower computational costs compared to the aforemen-
tioned algorithms.

Table 4. The performance of the proposed model is compared with other methods on the
HGCrack dataset.

Model MIoU (%) MPA (%) F1 Score (%) Params (M) FLOPs (G)

FCN [14] 70.64 79.69 79.85 49.5 57.91
U-Net [23] 71.36 80.61 80.29 29.06 197.76

DeepLabv3+ [18] 72.28 83.60 81.22 54.71 83.42
PSPNet [42] 69.83 79.02 79.04 48.97 178.45
SegNet [43] 72.92 84.23 81.91 29.44 105.99

GMDNet (proposed model) 75.16 87.29 84.43 7.67 19.48

Table 5 displays the evaluation results using the Gaps384 dataset. The proposed
GMDNet algorithm achieves MIoU, MPA and F1 values of 70.96%, 80.23% and 79.75%,
respectively. All three accuracy metrics are superior to other algorithms, indicating that
our model has better generalization ability in crack segmentation.

Table 5. The performance of the proposed model is compared with other methods on the
Gaps384 dataset.

Model MIoU (%) MPA (%) F1 Score (%) Params (M) FLOPs (G)

FCN [14] 67.62 77.07 75.52 49.5 57.91
U-Net [23] 69.05 78.09 77.80 29.06 197.76

DeepLabV3+ [18] 68.51 75.86 77.31 54.71 83.42
PSPNet [42] 68.64 79.78 77.53 48.97 178.45
SegNet [43] 68.78 78.55 81.91 29.44 105.99

GMDNet (proposed model) 70.96 80.23 79.75 7.67 19.48

For more immediate comparison and analysis about the segmentation results of each
model, we visualize and analyze the segmentation results of the proposed model in this
study, along with five other mainstream segmentation models, on the Gaps384 and HGCrack
datasets.

Figure 11 shows the visualization of segmentation results on the HGCrack dataset. It
can be observed the segmentation performed by the FCN [14] network shows the poor-
est results, with obvious segmentation discontinuity and incompleteness, and tends to
miss segmenting small cracks. U-Net [23] can segment the rough outlines of the cracks,
but severe false positives and false negatives occur with the detailed parts to the cracks.
DeepLabv3+ [18] and PSPNet [42] networks have difficulties in guaranteeing the conti-
nuity of crack edges when segmenting small cracks, leading to partial missed detections.
Compared to the previous four models, SegNet [43] shows some improvement in segmen-
tation continuity and completeness, but it still suffers from missed segmentations for some
small cracks. The proposed GMDNet model of this study performed best with respect to
segmentation completeness as well as segmentation continuity.

Figure 12 shows the visualization of segmentation results on the Gaps384 dataset. It
can be observed that mainstream segmentation models exhibit a wide range of missed
segmentations. Among them, FCN performs the worst in terms of segmentation. U-Net
demonstrates superior segmentation results regarding crack details. The suggested model
described in this study shows the fewest missed segmentations and false detections and
overall surpasses the other methods for segmentation.
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Image Ground truth FCN U-Net DeepLabV3+ PSPNet SegNet GMDNet

Figure 11. Visualization results of the segmentation on the HGCrack dataset. Dashed boxes indicate
missed detections, while solid boxes represent false detections.

Image Ground truth FCN U-Net DeepLabV3+ PSPNet SegNet GMDNet

Figure 12. Visualization results of the segmentation on the Gaps384 dataset. Dashed boxes indicate
missed detections, while solid boxes represent false detections.

Overall, the study suggests that the GMDNet model exhibits superior detection rate,
contour integrity, and continuity. It generates more refined crack segmentation results
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and effectively handles segmentation of irregular cracks. Furthermore, it can accurately
and fully segment cracks. Visual comparison tests performed with two datasets have
consistently shown that the suggested method is superior to other techniques in pavement
crack segmentation.

5. Conclusions

This article presents a lightweight multi-scale convolutional attention aggregation
segmentation network, which is built upon the enhancement of DeepLabv3+ [18]. In the
encoding stage of the network, GhostNet [19] enhanced with dynamic convolution is used
as the backbone network, reducing network complexity. By introducing the module for
multi-scale convolution attention aggregation (MCAA), the model’s focus on crack regions
at different scales is enhanced, enhancing the segmentation of irregular cracks. In the
decoding stage of the network, a progressive upsampling method is proposed to mitigate
the loss of detailed information in the segmented results and address disconnection in crack
segmentation. The effectiveness of each suggested module is verified through extensive
experimentation and analysis, all of which enhance the model’s performance. Finally,
the experiment findings using the HGCrack dataset indicate the suggested model offers
advancements in pavement crack segmentation, demonstrating significantly improved
segmentation results. It achieves an MIoU of 75.16% and an F1 score of 84.43% with a
parameter size of just 7.67 M. Therefore, the model proposed in this article exhibits excellent
effectiveness in pavement crack segmentation with fewer parameters, making it easier
to meet practical application requirements. Moreover, the model in this article focuses
on improving the segmentation accuracy of small irregular cracks, offering preventive
pavement maintenance strategies. For example, pavement maintenance personnel can
identify and locate potential problem areas at an earlier stage, preventing cracks from
expanding and developing into more severe pavement damage. This is crucial for achieving
sustainable pavement maintenance practices and mitigating the risk of traffic accidents.

Although this study has achieved good results in the segmentation of irregular cracks
on the pavement surface, further improvement and optimization are still necessary. Firstly,
the dataset currently has a limited number of crack scenarios; thus, it is necessary to ex-
pand the dataset and gather additional images of pavement cracks with different shapes,
sizes, and backgrounds. By including more samples of pavement cracks with complex
backgrounds, the model’s robustness can be improved, enhancing its accuracy and general-
ization in a wider range of scenarios. Secondly, the segmentation types of pavement cracks
in this study can be further refined, such as linear cracks, grid cracks, block cracks, etc.
Therefore, it is necessary to enhance the effectiveness of the model’s segmentation for these
various crack types and accurately identify and differentiate them in practical applications.
Through these efforts, the practical needs of pavement maintenance can be better met,
offering a more accurate, stable, and practical solution for pavement crack segmentation.
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