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Abstract: Multimodal learning is an expanding research area and aims to pursue a better understand-
ing of given data by regarding different modals. Multimodal approaches for qualitative data are used
for the quantitative proofing of ground-truth datasets and discovering unexpected phenomena. In
this paper, we investigate the effect of multimodal learning schemes of quantitative data to assess its
qualitative state. We try to interpret human fatigue levels through analyzing video, thermal image
and voice data together. The experiment showed that the multimodal approach using three types of
data was more effective than the method of using each dataset individually. As a result, we identified
the possibility of predicting human fatigue states.

Keywords: multimodal learning; fatigue detection; video analysis; tensor fusion; machine learning;
human state; human detection

1. Introduction

Our world consists of numerous dynamic events. These events are compiled in a
particular situation in a human sense or a similar way, which is called a modal. The
data of an event can be observed in various modals, and the comprehensive judgment
of these modals adds qualitative factors that are difficult to express quantitatively, such
as emotions and external conditions, and appear as a result of the event. With the rise
of multimodal AI [1], several studies have been conducted to analyze these modality
data. In general, these research studies aimed to provide a better understanding of a
given dataset from multiple modals. These works mainly intended to achieve specific
purposes by learning multiple modality data together. In this study, we deal with thermal
images and general video and voice data. Recently, there are many studies using multi-
modal fusion in the field of image analysis, which is covered in this study. Video data
is often used in combination with text data. In general, methods for generating images
from text or deriving text from images by applying a multimodal approach have been
proposed [2]. There are also many other studies, for example, including image prediction
using text data [3–7] and text prediction using image data [8]. In the case of thermal images,
the multimodal learning method is mainly used for object or motion detection [9]. Voice
data is also one of the most frequently used types of data in the multimodal approach,
and is often used together with text data. In many cases, it is used for judgment problems
about human emotions or facial expressions [10–12]. Furthermore, the research area is
expanding to human state analysis [13–15] and language processing [16–18]. We intend
to identify the possibility of analyzing the human fatigue state through the multimodal
approach. The human fatigue state is qualitative, and it is very difficult to determine it via
a single modality such as only recording thermal images or video or voice. We applied
two approaches to the analysis of human fatigue using three modalities: video, thermal
image and audio. In this study, we propose a method for classifying specific states of events
expressed as qualitative data through the analysis of quantitative data and verifying it
through experiments. We define video, voice, and thermal image data as different single
modalities, and analyze them integrally adapting a tensor fusion network (TFN) to classify
the fatigue level of a person, which is complex qualitative data. Our experiments show that
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multimodal models outperform single-modal models. This means that analysis methods
using multimodal data can extract (or imitate) qualitative judgments more effectively than
those using single-modal models on the same data. In order to review this phenomenon, we
separated the data input stage to compare and analyze the effect of each modality and its
combination, and our experiments show that the higher the dimension of the multimodal
model the higher the analysis performance. The outcomes that can be obtained through
this study are as follows.

1. Through experiments, we explore whether a given problem can be viewed and solved
from a complex perspective by combining multiple effects from data on the single-
modal side. In particular, quantitative analysis results were intended to confirm
whether they are effective in achieving indicators on qualitative evaluation criteria,
providing implications for AI research such as empirical and intellectual judgment
using complex human senses as inputs.

2. By comparing the effect of combining the results and analyzing each input data with
a high-performance model to the effect of analyzing the representations of the raw
input data, we propose an initial methodological study to discover new analysis
orientations such as viewpoint and intention.

The remainder of this paper is organized as follows. In Section 2, we first address the
related research studies concerning multimodal learning and measuring human fatigue.
Section 3 defines each modality and its fusion method. Subsequently, the experimen-
tal results are described in Section 4. Section 5 provides a brief overview of this study
and the experiments.

2. Related Works
2.1. Multimodal Learning

Multimodal learning or multimodal AI is an expanding research area. There are many
study areas, including image tagging [3], image captioning [4,5], text-to-image [6,7], visual
question answering [8], scene recognition by sound [11], and Speech2Face [12]. A common
aim of these various studies is to improve the effectiveness of existing modals through the
addition of other modals, or to enable the analysis of existing modals to reach new targets.

Converging multiple modals can be said to be a basic approach to problem solving
through multimodal learning. The most basic method is to connect feature vectors derived
from each modal, which is called early fusion [19–22].

However, multimodal model learning is a challenging task due to differences in format
or representation among the modalities, such as differences in feature space, and can result
in biased results for specific modalities. Recent attempts at multimodal learning have
suggested the importance of the proper use of tensors for multimodal representations [23].
Among the studies, we applied the TFNs [24] method to represent and control the multi-
modals through the meaningful manipulation of tensors to propose adaptive models.

2.2. Measuring Fatigue and Fatigue Levels

Fatigue can occur due to various causes such as human physiological characteristics,
sleep disorders, lifestyle habits, and stress. The most important factor is sleep disturbance,
which can be assumed to be fatigue in situations where performance is degraded because
sleep time affects concentration and decision-making [25].

Various methods such as questionnaires, biochemical/physiological tests, and re-
sponse tests are used to measure biological fatigue levels. For the questionnaire, statistically
significant results were shown when developing fatigue measurement tools based on the
multi-dimensional fatigue inventory (MFI) [26,27]. Actigraphy devices, electrocardiogra-
phy (ECG), and ecological instantaneous evaluation using skin temperature have also been
used [28,29].

These methods can include changes in levels due to differences in subjective judgment
and personal situations, and rarely set a categorical level of fatigue. Moreover, measuring
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through surveys and questionnaires requires a lot of resources, such as time, and cannot
ignore the effects of external factors such as nutrition, exercise, and infection [30].

Some research works are ongoing concerning data collection and analysis related
to fatigue, such as the driver drowsiness detection dataset [31]. However, these studies
mainly focus on unimodal (single modality) motion detection, not multimodal approaches
or fatigue detection. We propose a fatigue level measurement method using a multimodal
approach to verify the efficiency of each known modality data.

2.3. Findings on Human Activities

One meaning in a situation can appear as an action.Motion detection in an image consti-
tuting the video is used to find its meaning or emotion. HOG (Histogram of Gradient) [32]
uses images of faces shot from the front as well as images of natural poses. The UCF101
dataset [33] defines 101 activity classes and contains 13,000 clips and 27 h of image data,
which are used to analyze human activity. Recent studies have used Convolution-3D [34].
We propose quantitative analysis methods to find comprehensive meanings such as fatigue,
rather than practical generalized methods such as behavior/activity recognition.

3. Detecting Fatigue Levels through Multimodal Tensor Fusion

We propose a fatigue level measurement model (F-TFN) that works through the tensor
fusion method. In order to derive fatigue levels, which are data expressed in qualitative
states, multimodal learning methods using three modalities, namely image, voice, and
thermal images, expressed in quantitative data. To train this model, we tried to derive
fatigue levels by appropriately fusing features or processing three input modalities to
tensors via SubModel or SubNet for each input data.

Our method adopted a TFN tensor fusion method, however, there are differences in
the type of input data and feature extraction or data processing method for each input type.
The input tensor of TFN is a feature derived by applying a new model (SubModel) for each
modality and vector embedding. However, in this work, we focused on simply reducing
the dimensions of the input data and representing the original data as it is, rather than
extracting the feature for each modality by applying a separate SubNet. These methods will
be meaningful in solving real-world problems, including qualitative data that are difficult
to express with tensors.

Therefore, we define our first model (F-TFN1) by defining the input process proposed
by the base TFN as a SubModel method, and we propose a second model (F-TFN2) by
applying and utilizing the newly proposed SubNet method in this study. We performed
comparative experiments on these two models. In addition, each system was compared
and analyzed through experiments in the unimodal scheme, deriving the fatigue levels
using a single modality. In the unimodal scheme, the fatigue level was derived through
the FCL (Fully Connected Layers) of the input tensor of modality to determine whether
each modality could derive a fatigue level separately without interference from the other
modalities. In the existing TFN approach, when the method of pre-processing and fusion
of each modality input data is applied to our high-dimensional data, the loss of original
data information is inevitable. Therefore, we propose a second method (F-TFN2) that
applies only the data reduction method for fusion to each input in order to maintain the
information of the original data as much as possible.

First, the input data of each modal is input into the corresponding SubModel (or
SubNet) and converted into a processed tensor. Each tensor then expands the dimension,
filling it with values of 1 for the TFN operations. Inside the TFN model, we generate
a new combined tensor, z f usion, through operations on three inputs using the Cartesian
product method. When expanding the dimension of the tensor for each modality, we fill
the dimension with values of 1 so as we can preserve both unimodal and biomodal tensors.
Therefore, the fused tensor retains the existing information corresponding to the unimodal
and biomodal tensors as well as the newly generated trimodal tensor by combining the
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three inputs. The fused tensor is then input into the FCL and finally a single sigmoid out
layer is applied to derive the final fatigue level.

3.1. F-TFN1: SubModels

Each modal represented by quantitative data has its own different forms and dimen-
sions. To ensure that reasonable tensor fusion is achieved in this situation, we first apply a
SubModel method, extracting features from the original data of each modal. The SubModel
method is a method of applying a specific model to the input, extracting the appropriate
feature, vector-embedding, and defining it as an input tensor. For three inputs, video,
speech, and thermal images, the SubModel generates a feature tensor zi for the fusion of
the three modals. Figure 1 shows the tensor fusion process applied with the SubModel and
the fusion tensor z f usion newly expressed through the tensor fusion.

Figure 1. F-TFN1: SubModels for extracting modality features.

Video-Embedding SubModel: the video data were taken by a typical camera from
the front with the target sitting for one minute, with an original resolution of 1280× 720.
During the analysis process, one video datum was decomposed into k frames, which was
reduced to a three-channel image of (H, W, 3) size for analysis. To extract the feature of the
image, the SubModel applied EfficientNet, showing the highest performance in the image
analysis among the CNN series. Feature zi for the entire video was expressed by extracting
the features of all the decomposed frames and connecting them. Figure 2 shows the feature
extraction process for each frame f j

i in the i-th video data. The EfficientNet-B0 model was
applied in the feature extraction process. Equation (1) shows the above process.

zi = (z1
i , z2

i , . . . , zk
i ), |zi| = k ∗ |zj

i |
Where 0 < i ≤ n (n : Dataset size)

0 < j ≤ k

(1)

Figure 2. Video SubModel.

Voice-Embedding SubModel: first, we extract the voice data from the video data.
Furthermore, the one minute raw voice data are represented by a vector size of T = 220,000.
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In the case of voice data, the reduction ratio of the voice data is most important for tensor
fusion with the available resources because its size is very large compared to the video and
thermal image data. In the case of using SubModel for the voice data, to extract features we
proposed a model that extracts the F0-mean value, a representative indicator of the voice
data. As shown in Figure 3, we extracted F0-mean values per specific interval t for the
i-th voice datum ai, combining them to generate a feature tensor zi of the corresponding
voice data. The combination process of the extracted F0-mean values is the same as in
Equation (2).

zi = (F01
i , F02

i , . . . , F0
T
t

i )

Where 0 < i ≤ n (n : Dataset size)
(2)

Figure 3. Voice SubModel.

Thermal Image-Embedding SubModel: the thermal data are images taken using a
thermal camera for one minute. An average of 300 thermal images were taken per minute,
and in this study, k thermal images, the same as the number of frames in the video data,
were randomly chosen. In the case of thermal images, they have the same data form as a
frame of the video data, so the SubModel of the thermal data was the same as the method
for the video data, generating an input tensor zi of the thermal data.

3.2. F-TFN2: SubNets

We proposed F-TFN1, a tensor fusion method that works through feature extraction
using SubModel. For F-TFN1, we extract features for each input, but for the newly proposed
F-TFN2 model, the goal is to define an input tensor for fusion by using SubNet to reduce
and process the data while keeping the meaning of the input data. There is a big difference
in the shape and size of each piece of input image, voice, or thermal data. Therefore, in this
method, the problem of input data inequality should also be considered. We propose a
model, F-TFN2, that uses these SubNet and carry out a comparative experiment using the
F-TFN1 model. Figure 4 shows the tensor fusion process of the F-TFN2 to which SubNet
is applied.

Figure 4. F-TFN2: SubNets for modality embedding.

Video-Embedding SubNet: Figure 5 shows a SubNet for video data processing. In this
case, k frames are decomposed from the input video. Furthermore, each frame’s channel
is expanded through DenseNet. Next, simple operations using a global average pooling
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(GAP) layer reduce the frames to a one-dimensional vector zj
i . The generation process of zi

is the same as in Equation (3).

zi = (z1
i , z2

i , . . . , zk
i ), |zi| = k ∗ |zj

i |
Where 0 < i ≤ n (n : Dataset size)

0 < j ≤ k

(3)

Figure 5. Video subnetwork.

Voice-Embedding SubNet: SubNet for voice data works with the same goal. SubNet
for input data processing is similarly only applied to a simple form of the fully connected
layer (FCL) to produce a processed input tensor that can shrink the input data to keep the
original information. We applied an output layer of the FCL so that the size |zi| of the voice
tensor can be generated with an equal size to the output tensor in the SubModel method.

Thermal Embedding SubNet: SubNet for processing the thermal image data also
applied the same as the method of video data, generating an input tensor zi of the thermal
image data.

4. Results
4.1. Fatigue Level Dataset

The bio-signal collection system [35] is specifically developed to collect human signals
associated with fatigue. For this study, the collection subjects were selected, and data
relating to their fatigue status were collected. Figure 6 represents the data collection process.

Figure 6. Data collection process.

In the “S03 RECORDING” stage in Figure 6, information for data collection is dis-
played in the window of the data collection device, such as in Figure 7. At this time,
guidelines for data collection, such as the direction of the face and a script for voice record-
ing, are provided to the subject through the screen. We simultaneously measured three
types of data: video, thermal image, and audio for one person for one minute. That is, one
fatigue level data includes three types of collected data. The subjects were asked to read a
given script for about one minute, and video and thermal images were recorded after the
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start. After recording, the subjects selected their subjective fatigue level from 1 (excellent)
to 5 (extreme fatigue).

Figure 7. Display sample of the biological signal acquisition system.

Next, the researchers analyzed the actual fatigue using the daily multi-phasic fa-
tigue inventory (DFMI), psychomotor cognitive test (PCT), and blood and saliva samples.
Through this process, data were collected and used for experiments, and one dataset in-
cludes one minute of video, voice, thermal and fatigue levels (1 to 5). In the data collection
process, a total of 7000 datasets were collected for 292 subjects. In this work, 690 datasets
were used for each label from 1 to 5 according to the label with the smallest number of
datasets to balance the data. Therefore, n = 3450 data points were used in the experiment.

4.2. Model Tuning

Our experiments are intended to classify fatigue levels from 1 to 5 and all models
were trained using cross-entropy loss. Adam was applied as an optimizer, and learning
was conducted for 100 epochs with a batch size of 16. The specific SubModel/SubNet
configuration environment is as follows.

Video/Thermal-Embedding SubModel/SubNet: the video data were taken by a typical
camera from the front with the data collection target sitting for one minute, with a resolution
of 1280× 720. The same method was applied because the thermal data also had a similar
shape to the video data. In this study, the number of frames used per datum was set
to k = 60, and each frame was reduced to three-channel images of W = 224, H = 224
according to the EfficientNet input layer. In the SubModel method, the output layer of the
FCL was adjusted so that the size of the processed tensor zj

i for each frame was 16. For the
video SubNet, we applied the DenseNet-121 model to extend the channel of the frame to
sizes of W ′ = 7, H′ = 7, and C′ = 16, and the size of the final output vector was determined
via GAP.

Voice-Embedding SubModel/SubNet: for the voice data, the size of the original data
was very large at T = 220,000. In this case, a very high reduction ratio was required com-
pared to the other two modals to solve the resource limit problem in the fusion operation.
In this study, for the SubModel, we created a feature by setting the extraction range of the
F0-mean value to t = 10, 000. In SubNet, we made the output size of the FCL (22) so that
the fabricated tensor size of voice data was |zi| = 22.

4.3. Experimental Results

In the fatigue level classification experiment, the performance in the unimodal and
multimodal (TFN) environments according to the combination of the three modalities,
videos, voices, and thermal images, are shown in Table 1. The evaluation of the models
used a test dataset comprising 20% of the total data. The experimental results showed that
the classification performance in the multimodal system increased significantly compared
to that in each single-modal classification system. Human fatigue is a value of a qualitative
state, and there is a very high probability that subjective judgment will intervene in the
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data collection of the subject. From this perspective, it can be seen that the multimodal
system can reflect human senses or emotions more realistically through the experimental
results. In addition, the possibility of multimodal systems can be identified in that new
qualitative states can be classified through quantitative state images, thermal images, and
voice data.

Table 1. Performance evaluation based on the multimodal methodology.

Environment Modalities F-TFN 1 (SubModel) F-TFN 2 (SubNet)
Accuracy Recall Precision Accuracy Recall Precision

Uni-modality
Videos 0.359 0.185 0.332 0.401 0.167 0.498
Voices 0.311 0.334 0.327 0.345 0.463 0.324
Thermal images 0.320 0.241 0.263 0.317 0.280 0.370

Bi-modality
Videos + Voices 0.419 0.409 0.637 0.424 0.455 0.553
Videos + Thermal images 0.452 0.382 0.570 0.381 0.315 0.453
Voices + Thermal images 0.403 0.431 0.425 0.457 0.553 0.497

Tensor Fusion Videos + Voices + Thermal images 0.598 0.703 0.651 0.646 0.742 0.717

5. Conclusions

In this paper, we studied the effectiveness of multimodal learning schemes on quan-
titative data to evaluate the qualitative state of fatigue. Specifically, these schemes were
used to measure the current fatigue level of humans by analyzing video, voice, and thermal
data together. Three types of data were defined for each modality, and three modalities
were applied to the F-TFN model to generate a new input tensor. We trained the model
to classify the fatigue levels using this newly generated tensor. The experiments show
that fatigue level classification in multimodal systems outperforms uni-modality analysis
systems. We experimentally demonstrated the effectiveness of multimodal data fusion. The
performance of the current model shows an accuracy of about 65%, and it is necessary to
improve the performance for realistic application. With these results, we identified the pre-
dictability of human conditions. We are trying to apply this fatigue measurement method to
a situation where fatigue management is required. Our goal is to provide a human fatigue
measurement platform with an accuracy of over 85%. In order to increase the utilization of
the system, the first step is to increase the reliability of the fatigue measurement system,
that is, the performance of the analysis model. In order to improve the performance of
the fatigue analysis engine, follow-up research that applies advanced feature extraction
techniques or minimizes the loss of original data in the process of data reduction must
be conducted.
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