
Citation: Lee, W.-T.; Chen, C.-H.

Agile Software Development and

Reuse Approach with Scrum and

Software Product Line Engineering.

Electronics 2023, 12, 3291. https://

doi.org/10.3390/electronics12153291

Academic Editor: Mehdi Sookhak

Received: 26 June 2023

Revised: 20 July 2023

Accepted: 26 July 2023

Published: 31 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Agile Software Development and Reuse Approach with Scrum
and Software Product Line Engineering
Wen-Tin Lee * and Chih-Hsien Chen

Department of Software Engineering and Management, National Kaohsiung Normal University,
Kaohsiung 802, Taiwan; m10774711@mail.nknu.edu.tw
* Correspondence: wtlee@mail.nknu.edu.tw

Abstract: Agile methods and software product line engineering (SPLE) are widely recognized as
practical approaches for delivering high-quality software, adapting to evolving stakeholder needs,
and tackling complex problems. This study proposes a hybrid agile software development and
reuse approach called SPLE-Scrum based on the activities of software product line engineering and
Scrum. Within the SPLE process, we incorporate requirement engineering and design practices to
create a reference architecture with reusable components called core assets by introducing a product
management meeting. The core assets are reused to build a series of applications with various product
lines. The product increments are delivered in each Sprint with the review and retrospective meetings
based on Scrum lifecycle and practices. We present a case study involving a blockchain online store to
demonstrate the practical application of SPLE-Scrum, highlighting the benefits of integrating Scrum
and software product line engineering. The research hypotheses of the proposed approach were
validated through a study of structured interviews with 5 experts and 44 software practitioners,
showing that the key factors of product management, project requirements, and product architecture
in the SPLE-Scrum approach have a beneficial impact on project success. The SPLE-Scrum approach
provides valuable insights and practical guidance for organizations seeking to optimize their software
engineering practices while incorporating agile development and software reuse capabilities.

Keywords: agile methods; Scrum; software product line engineering; software reuse; software
development

1. Introduction

Software development methods aim to increase the development team’s productivity,
shorten the time to market, reduce development costs, and improve customer satisfaction.
To achieve the above goals, agile software development, also known as agile development,
has gradually aroused public discussion since the 1990s. It advocates adaptive planning and
evolutionary development, shares the same software process values, and encourages rapid
and flexible responses to changes through early delivery and continuous improvement [1].
Agile development emphasizes moderate planning, human-oriented cooperation, face-
to-face communication, self-organization and management, and rapid development [2].
Software organizations adopt large-scale agile practices [3–6] to replicate the success of
agile methods on team projects at the organizational level.

Although the agile software development method can tolerate changes in requirements
and can effectively and quickly solve problems, increase output, and shorten the entire
development timeline, it also has some shortcomings which may lead to project failures. For
example, requirement identification and initial planning is the first challenge of Scrum [7].
Another challenge of Scrum is the lack of attention to design. Scrum pays less attention
to requirement engineering in the analysis and design phase. In addition, its lack of
traceability of documents and files and configuration management may affect product
quality or lead to project failure. Software product line engineering (SPLE) [8–11] uses

Electronics 2023, 12, 3291. https://doi.org/10.3390/electronics12153291 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12153291
https://doi.org/10.3390/electronics12153291
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0667-1967
https://doi.org/10.3390/electronics12153291
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12153291?type=check_update&version=1

Electronics 2023, 12, 3291 2 of 18

product-line methods to produce products for customers with different needs. Software
product-line engineering aims to develop software products at a minimal cost [8,12] and
improve software quality by increasing the reuse of existing software components [13].

A hybrid agile approach [14] combines agile methods and non-agile technologies,
while a blended agile approach combines two or more agile methods. This study aims to
address the issues present in the agile software development methods mentioned above
through a hybrid method approach to achieve the following two objectives: 1. To compare
and explore the differences between the SPLE and Scrum methods from engineering, qual-
ity assurance, and project management perspectives. 2. To address and improve potential
issues inherent in Scrum, such as enhancing requirement engineering during the analy-
sis and design phases, establishing traceability of artifacts, implementing configuration
management, etc. Therefore, this work combines Scrum with SPLE to propose an agile
development and reuse approach named SPLE-Scrum to improve requirement engineering,
software design and reuse, and software artifacts’ traceability by integrating these methods’
distinct and viable technological advantages.

Based on the SPLE-Scrum approach, the key factors of “product management”,
“project requirements”, and “product architecture” [15] are considered independent vari-
ables to measure the degree of agreement among questionnaire respondents regarding the
potential realization of project success, which is used as the dependent variable. This study
proposes the following research hypotheses as the foundation for subsequent questionnaire
surveys, data analysis, and verification:

• Hypothesis 1 (H1): Product management (PM) key factors of the SPLE-Scrum approach
significantly impact project success (PS).

• Hypothesis 2 (H2): Project requirement (PR) key factors of the SPLE-Scrum approach
significantly impact project success.

• Hypothesis 3 (H3): Product architecture (PA) key factors of the SPLE-Scrum approach
significantly impact project success.

Regarding the SPLE-Scrum approach, we collected expert opinions and suggestions
to validate the research hypotheses proposed in this study and whether the SPLE-Scrum
method can meet or achieve the goals of key factors such as product management, project
requirements, and project architecture. We used the Likert five-point scale for scoring
and measurement. Before conducting expert interviews and completing the first-stage
questionnaire, we provided five domain experts with an overview of this study’s main
motivations and objectives, the relevant problems that Scrum may have, and the design
principles of SPLE-Scrum. We also presented the detailed case study of this study to
provide them with a comprehensive understanding and to gather their comments and
recommendations. We conducted a reliability analysis for the entire questionnaire and the
result of 0.861 fell within the highly reliable range.

Through a survey questionnaire and open discussion with 44 software practitioners
to validate the hypotheses of the SPLE-Scrum approach, we present our findings on how
our approach benefits product management, project requirements, product architecture,
and project success. The research hypotheses of the SPLE-Scrum approach are validated,
showing that the key factors of product management, project requirements, and product
architecture in the SPLE-Scrum approach have a beneficial impact on project success.

The sequel will outline background knowledge and related work in the next section.
In Section 3, SPLE-Scrum will be explained in detail. Section 4 provides a case study using
SPLE-Scrum. Finally, we summarize the potential benefits of the proposed approach and
outline our future research plan in Section 5.

2. Background Knowledge and Related Work

This section introduces basic concepts of the Agile Method, Scrum, and Software
Product Line Engineering (SPLE) with a brief overview of feature models and product
configuration.

Electronics 2023, 12, 3291 3 of 18

2.1. Agile Method and Scrum

Agile means fast, light, and dynamic. Agile methods are more effective and faster
when responding to changes than traditional software development methods [16–18]. They
emphasize individual interactions between processes and tools, self-organizing teams, con-
tinuous release of new software features, and customer collaboration [19]. Agile methods
maintain rigorous engineering processes and adopt best practices while helping stakehold-
ers work with software developers to build, deploy, and maintain complex software [20].
They emphasize adapting to changes rather than predicting [21]. The focal aspects of agile
methods are simplicity and speed [17]. Agile software development methods generally
have the following characteristics: incremental: small software releases with rapid cycles;
cooperative: customers, developers, and relevant stakeholders work and communicate
together closely; straightforward: the method itself is easy to adopt and well documented;
and adaptive: the ability to deal with changes.

According to the Agile Status Survey [22], Scrum was reported as the most widely
practiced agile methodology. At least 72% of respondents currently practice the Scrum
method or a hybrid approach containing Scrum. Scrum was first introduced by Takeuchi
and Nonaka [23] in the context of product development. The term Scrum is borrowed
from the rugby game, which means that only by maintaining an overall forward method,
like passing the rugby ball within the team, can it cope with the challenges of the cur-
rent complex market [24]. The Scrum framework proposed by Jeff Sutherland and Ken
Schwaber [25] is an agile method that can deal with changes by developing and reviewing
software increments iteratively. Unlike the waterfall model, which breaks down project
activities into different phases, Scrum focuses on developing a set of high-value features
incrementally and iteratively through each Sprint to obtain customer feedback faster [26].

Figure 1 shows the Scrum process with required meetings and artifacts. The Scrum
team is a small cross-functional, self-organizing team that uses iterative and incremental
processes for the project or product development. Team members are responsible for creat-
ing and adapting the overall process within this structure. The management representative
of the team is the Scrum Master. The primary responsibility of the Scrum Master is to
eliminate obstacles to the team and ensure that Scrum practices are followed. Product
Backlog is the priority list of all requirements or user stories to be implemented in the
project; the Product Owner has the right to determine the priority of the user story [21].
Grooming is managing product backlog with prioritized requirements and estimating the
amount of work to complete the requirements [27].

Electronics 2023, 12, x FOR PEER REVIEW 3 of 18

2. Background Knowledge and Related Work
This section introduces basic concepts of the Agile Method, Scrum, and Software

Product Line Engineering (SPLE) with a brief overview of feature models and product
configuration.

2.1. Agile Method and Scrum
Agile means fast, light, and dynamic. Agile methods are more effective and faster

when responding to changes than traditional software development methods [16–18].
They emphasize individual interactions between processes and tools, self-organizing
teams, continuous release of new software features, and customer collaboration [19]. Agile
methods maintain rigorous engineering processes and adopt best practices while helping
stakeholders work with software developers to build, deploy, and maintain complex soft-
ware [20]. They emphasize adapting to changes rather than predicting [21]. The focal as-
pects of agile methods are simplicity and speed [17]. Agile software development methods
generally have the following characteristics: incremental: small software releases with
rapid cycles; cooperative: customers, developers, and relevant stakeholders work and
communicate together closely; straightforward: the method itself is easy to adopt and well
documented; and adaptive: the ability to deal with changes.

According to the Agile Status Survey [22], Scrum was reported as the most widely
practiced agile methodology. At least 72% of respondents currently practice the Scrum
method or a hybrid approach containing Scrum. Scrum was first introduced by Takeuchi
and Nonaka [23] in the context of product development. The term Scrum is borrowed
from the rugby game, which means that only by maintaining an overall forward method,
like passing the rugby ball within the team, can it cope with the challenges of the current
complex market [24]. The Scrum framework proposed by Jeff Sutherland and Ken Schwa-
ber [25] is an agile method that can deal with changes by developing and reviewing soft-
ware increments iteratively. Unlike the waterfall model, which breaks down project activ-
ities into different phases, Scrum focuses on developing a set of high-value features incre-
mentally and iteratively through each Sprint to obtain customer feedback faster [26].

Figure 1 shows the Scrum process with required meetings and artifacts. The Scrum
team is a small cross-functional, self-organizing team that uses iterative and incremental
processes for the project or product development. Team members are responsible for cre-
ating and adapting the overall process within this structure. The management representa-
tive of the team is the Scrum Master. The primary responsibility of the Scrum Master is to
eliminate obstacles to the team and ensure that Scrum practices are followed. Product
Backlog is the priority list of all requirements or user stories to be implemented in the
project; the Product Owner has the right to determine the priority of the user story [21].
Grooming is managing product backlog with prioritized requirements and estimating the
amount of work to complete the requirements [27].

Figure 1. Scrum framework [27].

Sprint is a time-boxed development period based on product goal and complexity,
usually 1–4 weeks. The Scrum team builds and tests product increments with new features
that can be released in each Sprint. Sprint begins with a Sprint planning meeting where
the product owners, Scrum Master, and Scrum team members determine what needs to

Electronics 2023, 12, 3291 4 of 18

develop. The Scrum team then uses Sprint goals in internal meetings to obtain a list of
requirements in the Sprint backlog. A successful Sprint depends on whether Sprint goals
and the requirements in the Sprint backlog are achieved and satisfied.

During the Sprint, the Scrum master holds a 15 min “Daily Scrum” or “Daily Standup
Meeting” with the Scrum team to review project progress. Each team member will answer
three questions [25]: 1. What has been done since the last meeting? 2. What will be done
before the next meeting? 3. What are the obstacles in the process?

Each Sprint provides an incremental version of a potentially deliverable product. The
team produces software that is coded, tested, and usable at the end of each Sprint. The
Scrum team will hold a Sprint review meeting to show their results during the Sprint.
Next, the Scrum team evaluates its work and processes in a Sprint retrospective meeting to
prioritize improving the team’s processes before the next Sprint [28].

Agile software development methods also have some challenges. For example, the
challenges of Scrum are how to identify requirements, how to conduct preliminary planning,
and the lack of focus on design [29]. Scrum pays less attention to requirement engineering
in the analysis and design phase [30]. In addition, it has poor traceability in document
archives, incomplete version control, and configuration management, all of which may be
potential factors that lead to project failure and even affect subsequent system maintenance
and requirements changes.

2.2. Software Product Line Engineering

Software reuse involves creating new software from existing software products that
improve product quality by combining reliable and quality software components. A
software product line (SPL) is a set of software-intensive systems that share features or
functions generated from a group of pre-defined and reusable shared core assets [10,31].
Software product line engineering (SPLE) [8–11] uses product line methods to produce
products for customers with different needs. A product line is created by combining
commonalities to efficiently produce products by integrating or reusing shared core assets
to meet customer needs. Large-scale customization is transparent in software product line
engineering, customers can obtain unique products through their specific needs, and their
common needs will be evaluated before production starts [31].

Software product line engineering aims to develop software products by reusing
existing software components [13]. Different techniques and methods [32–37] can be used
to develop various software products in multiple domains. Several studies [38–42] explore
how to integrate agile methods and software product line engineering. There are two
complementary development processes in software product line engineering: the domain
engineering process and application engineering process. The domain engineering process
defines and realizes the commonality and variability characteristics of the product line. Its
purpose is to develop the shared core software assets and a common and reusable product
line platform to promote the systematic and consistent reuse of all finished products and
components. The application engineering process binds the product line’s variability ac-
cording to specific applications’ needs. It builds a single application product or a series
of product applications by reusing shared core software assets, products, or product com-
ponents from domain engineering [43]. The domain engineering process comprises five
sub-processes: product management, domain requirement engineering, domain design,
domain realization, and domain quality assurance [8,38]. Developers identify domain
variability models and implement and test reusable domain artifacts in a product line
platform. The application engineering process comprises four sub-processes: application re-
quirement engineering, application design, application realization, and application testing.
Developers design application variability models and build application artifacts according
to customers’ needs.

Electronics 2023, 12, 3291 5 of 18

3. SPLE-Scrum: An Agile Software Development and Reuse Approach

This study proposes a hybrid agile software development and reuse approach called
SPLE-Scrum based on the activities and work products of SPLE and Scrum. Figure 2
shows the SPLE-Scrum process, which contains the steps Product Management meeting,
Domain and Application Requirement Engineering of the Pre-Sprint, Sprint Planning,
Domain and Application Design in the Sprint, Product Increment, Sprint Review, and
Sprint Retrospective. The product management meeting establishes market strategy goals,
product backlogs, and product roadmap with a Product Backlog Grooming mechanism.
We used requirement engineering and design processes in the domain and application
engineering of SPLE to create a reference architecture with reusable components called core
assets. The core assets establish the commonality and variability of the products. Domain
engineering assets are reused to build a series of applications with various product lines.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 18

requirement engineering, application design, application realization, and application test-
ing. Developers design application variability models and build application artifacts ac-
cording to customers’ needs.

3. SPLE-Scrum: An Agile Software Development and Reuse Approach
This study proposes a hybrid agile software development and reuse approach called

SPLE-Scrum based on the activities and work products of SPLE and Scrum. Figure 2
shows the SPLE-Scrum process, which contains the steps Product Management meeting,
Domain and Application Requirement Engineering of the Pre-Sprint, Sprint Planning, Do-
main and Application Design in the Sprint, Product Increment, Sprint Review, and Sprint
Retrospective. The product management meeting establishes market strategy goals, prod-
uct backlogs, and product roadmap with a Product Backlog Grooming mechanism. We
used requirement engineering and design processes in the domain and application engi-
neering of SPLE to create a reference architecture with reusable components called core
assets. The core assets establish the commonality and variability of the products. Domain
engineering assets are reused to build a series of applications with various product lines.

Figure 2. SPLE-Scrum: an agile software development and reuse approach.

The proposed approach is demonstrated through a case study of a blockchain online
store developed based on the steps in Figure 2. The meetings and artifacts in each step are
detailed below.

3.1. Product Management Meeting
The product management meeting is scheduled before the Pre-Sprint. In the Scrum

framework, the initial clarity of the product scope may be limited, and cost control can
pose challenges [44]. An economic perspective from the company or enterprise level
should be adopted, wherein the product production scope is defined, and market strategy
objectives are emphasized to produce diversified and differentiated products while main-
taining cost-effectiveness. The inputs of the product management meeting consist of the
goals and milestones defined by the management team, customer, and relevant stakehold-
ers. The outputs typically include a product roadmap, which provides a reusable list of
products or development tools that can be implemented within established platforms. The
Scrum team can utilize the methods of the customer journey map, experience map [45],
and user story mapping [46] to elicit user needs, clarify product scope, and develop the
product roadmap.

Figure 2. SPLE-Scrum: an agile software development and reuse approach.

The proposed approach is demonstrated through a case study of a blockchain online
store developed based on the steps in Figure 2. The meetings and artifacts in each step are
detailed below.

3.1. Product Management Meeting

The product management meeting is scheduled before the Pre-Sprint. In the Scrum
framework, the initial clarity of the product scope may be limited, and cost control can pose
challenges [44]. An economic perspective from the company or enterprise level should be
adopted, wherein the product production scope is defined, and market strategy objectives
are emphasized to produce diversified and differentiated products while maintaining
cost-effectiveness. The inputs of the product management meeting consist of the goals and
milestones defined by the management team, customer, and relevant stakeholders. The
outputs typically include a product roadmap, which provides a reusable list of products or
development tools that can be implemented within established platforms. The Scrum team
can utilize the methods of the customer journey map, experience map [45], and user story
mapping [46] to elicit user needs, clarify product scope, and develop the product roadmap.

The Product Owner and the Development Team discuss the product backlog items [25],
provide more details, estimate effort or complexity, and identify dependencies or potential
risks. The purpose is to refine the items to a well-understood level that can be readily
developed for the following phases. After completing a Sprint retrospective meeting of a
Sprint, the Product Owner and the Development Team collaborate to refine the Product

Electronics 2023, 12, 3291 6 of 18

Backlog. This involves reviewing, clarifying, and prioritizing product backlog items to
ensure they are ready for inclusion in future Sprints.

Variability of Domain Requirements

The variability part of the MFR is first analyzed by dividing the variability part of
the domain requirements into two levels [12]. The first level determines which part of the
domain requirements is variability, which MFRs are common, and which are optional. For
example, if we decide that most systems should provide the function [customer transaction
payment] in MFRs, then it should be a common MFR. As for this common MFR, it is
possible to find other different variation points, and then we can identify them more clearly
from the second level.

The second level looks for the variability part and implements it as a detailed variation
point. We find the variation points from two aspects: One is the constituent elements of
MFR itself, divided into dynamic elements from the perspective of time and static elements
from the perspective of structure. The other is from the variability types to implement it as
a more detailed variation point. The variation points identified in the domain requirements
can be grouped into four types: data, control, computation, and external computation. The
cardinality indicates how many variants will be selected for the variation point.

Table 1 shows the difference and combination of variation points of MFR. Tax calcula-
tion variation point is common in general systems, but the implementations of each system
are different because of the tax system used. Regarding transaction payment variation
points, some systems will support types (2), (4), and (5), and others will support types (1),
(3), or (1), (5), which will lead to differences and combinations between different types.

Table 1. Variation points of MFR.

Variation Point Tax Calculation Transaction Payment

Type Operation Control

Cardinality [1] [1..n]

Variant (1) National Tax
(2) Local taxes

1© Bitcoin
2© IOTA
3© Cardano
4© OmiseGO
5© Ethereum

3.2. Domain and Application Requirements Engineering of the Pre-Sprint

In the Pre-Sprint, we adopt the same domain requirement engineering approach as
SPLE and also deal with the application engineering requirements of specific products [8–11].
In SPLE, the domain and application engineering process sequence has no particular
direction or restriction [43]. The incremental method develops common domain products
and then develops variability products based on specific customer needs in application
engineering. The domain and application requirements engineering sub-processes can
improve the traceability management of Scrum in requirement analysis, requirement
changes, and related documents.

The Product Owner, Scrum Master, and Development Team will work together to
produce the domain and application variability models covering the entire system and
application scenarios. At the beginning of the domain requirement analysis, the domain
requirements variability models are used to illustrate which requirement attributes or
elements are public or selected. The model can further explain the type of variation point,
variant, and cardinality, which will help developers to identify requirement variation
points.

In the domain requirement analysis, we adopted user stories [47–49] to briefly explain
the roles, descriptions, and goals of using the system or service. Then, we constructed
the main functional requirements accordingly. The main functional requirement (MFR) is

Electronics 2023, 12, 3291 7 of 18

central to identifying and specifying domain requirements. It is the basic unit of functions
in our domain requirements. Based on the variability model of domain requirements, the
development of domain and application requirements of the blockchain online store is
divided into the following steps, which will serve as the core assets in the Pre-Sprint.

3.2.1. Identify Domain Requirements

The Scrum team gathers the user’s needs using the requirement elicitation methods
such as the customer journey map and experience map [45]. The team then describes the
user’s needs in the form of a user story after agreeing on the scope of the domain require-
ments in the product management meeting. The user story with acceptance criteria [47] is
recommended by Behutiye et al. [50] to document quality requirements [46]. Table 2 shows
the excerpt of the user story descriptions of the blockchain online store. The enroll epic has
three user stories that have their acceptance criteria. The definition of done is applied to all
user stories after completing each user story.

Table 2. User story descriptions of blockchain online store (excerpt).

User Type User Epic Enroll

User Story ID 2
As a customer, I want users to register as members when using this
system, and if they are not, to register and then add registration data to
the database so that I know who my members are.

Acceptance Criteria
1. The user can use the sign-up page, enter a username and password,
and click on sign-up to complete registration.
2. System generate success and failure message after processing

User Story
ID 3

As a customer, I want users to make profile changes after logging in so
that membership data can be kept up to date.

Acceptance Criteria
1. The user can use the profile page and enter his profile data and click
on save to complete editing.
2. System generate success and failure message after processing

User Story
ID 4

As a customer, I hope that if the user forgets the password by entering
the account number, and mailbox, the system will send the password to
the registered mailbox so that members will not repeat the application
for a new account.

Acceptance Criteria
1. The user can use the password-finding page to enter the account
number and mailbox and click submit to complete the request.
2. System generate success and failure message after processing

Definition of Done

1. Passing testing per acceptance criteria items
2. Passing regression testing
3. Approved by UI team
4. Able to show features in company demo

Next, we identify the domain requirements for the blockchain online store through
a series of functional requirement context matrices for building and optimizing MFRs.
Table 3 shows the MFR context matrix of a blockchain online store. All identified main
functional requirements are listed in the left column of the matrix, and the similar legacy
systems A, B, C, D, and E are arranged in the right column. In Table 3, “O” means that
the MFR can be found in the existing systems A, B, C, D, or E. “X” indicates that the MFR
does not exist in the system. The “Property/Ratio” column is the ratio of the number of
systems with the MFR to the total number of systems. “C” represents a commonality ratio,
and “P” represents an optionality ratio. For example, the five systems use MFRs login,
logout, registration, modifying personal information, and customer transaction notification.
Therefore, their commonality ratio is 100%. In contrast, only two out of five existing systems
require MFR8 register items, so its commonality ratio is 40%. Similarly, the commonality
ratio of MFR12 “Give Opinion” is 20%.

Electronics 2023, 12, 3291 8 of 18

Table 3. The MFR context matrix.

MFR Property/Ratio A B C D E

MFR1 login C/100% O O O O O

MFR2 registration C/100% O O O O O

MFR3 modify personal information C/100% O O O O O

MFR4 obtain passwords C/100% O O O O O

MFR5 log out C/100% O O O O O

MFR6 add items to shopping carts C/100% O O O O O

MFR7 purchases products C/100% O O O O O

MFR8 register items P/40% X O X O X

MFR9 search the product C/100% O O O O O

MFR10 customer transaction notification C/100% O O O O O

MFR10-1 Line O O O O O

MFR10-2 E-mail X O O O X

MFR10-3 SMS O X X X O

MFR11 view purchase logs C/100% O O O O O

MFR12 give opinion P/20% O X X X X

MFR13 customer transaction payment
(Payment Service). C/100% O O O O O

[V1] IOTA X O O O O

[V2] OmiseGO X X X X X

[V3] Ethereum O X X X X

3.2.2. Establish Domain Feature Model and Variability Model

This study employs a domain feature model to establish the interrelationships between
functional features in the blockchain online store. This model offers a comprehensive view
of mandatory, optional, and alternative relationships among the features, enabling teams
to collaborate more effectively. Using the MFR-context matrix of Table 3, a configurable
blockchain online store system is specified and built, as depicted in Figure 3.

The blockchain online store must possess mandatory features such as registration,
user authentication, product search, security policies, and customer transaction notification.
Moreover, the system must implement a high or standard security policy (alternative
relationship) and offer different blockchain transaction payment methods (alternative
relationships), including IOTA, OmiseGO, and Ethereum. Figure 3 illustrates that the
system adopts blockchain technology and implements a high-security policy.

From Table 3, we infer that the low commonality ratio of MFR8 register items and
MFR12 give opinion are optional functional requirements. The child features of the Search
the Products in Figure 3 are presented in an optional relationship. For a customer transac-
tion notification functionality, multiple relationships must be selected; either Line, E-mail,
SMS, or a different combination.

Next, this study identifies the parts that belong to the variation points in the model
and uses the domain variability model to describe the parts of the variation more clearly.
The domain variability model elucidates the dependencies among the variables through
the dependency link. Figure 4 depicts a triangle as a variation point named “payment
service” and relationships with three variations, namely IOTA, OmiseGO, and Ethereum,
represented by rectangles. The dashed line between the variation point and the variation
represents an optional correlation. In contrast, solid lines denote mandatory dependencies,
implying that the corresponding variables must be selected. The model is also indicated by

Electronics 2023, 12, 3291 9 of 18

an arc marked with the reference amount of [1..1], and only one of the three variables must
be selected.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 18

Figure 3. Domain feature model and variability model of blockchain online store.

From Table 3, we infer that the low commonality ratio of MFR8 register items and
MFR12 give opinion are optional functional requirements. The child features of the Search
the Products in Figure 3 are presented in an optional relationship. For a customer trans-
action notification functionality, multiple relationships must be selected; either Line, E-
mail, SMS, or a different combination.

Next, this study identifies the parts that belong to the variation points in the model
and uses the domain variability model to describe the parts of the variation more clearly.
The domain variability model elucidates the dependencies among the variables through
the dependency link. Figure 4 depicts a triangle as a variation point named “payment
service” and relationships with three variations, namely IOTA, OmiseGO, and Ethereum,
represented by rectangles. The dashed line between the variation point and the variation
represents an optional correlation. In contrast, solid lines denote mandatory dependen-
cies, implying that the corresponding variables must be selected. The model is also indi-
cated by an arc marked with the reference amount of [1..1], and only one of the three var-
iables must be selected.

Figure 4. Application feature model and variability model of blockchain online store.

Figure 3. Domain feature model and variability model of blockchain online store.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 18

Figure 3. Domain feature model and variability model of blockchain online store.

From Table 3, we infer that the low commonality ratio of MFR8 register items and
MFR12 give opinion are optional functional requirements. The child features of the Search
the Products in Figure 3 are presented in an optional relationship. For a customer trans-
action notification functionality, multiple relationships must be selected; either Line, E-
mail, SMS, or a different combination.

Next, this study identifies the parts that belong to the variation points in the model
and uses the domain variability model to describe the parts of the variation more clearly.
The domain variability model elucidates the dependencies among the variables through
the dependency link. Figure 4 depicts a triangle as a variation point named “payment
service” and relationships with three variations, namely IOTA, OmiseGO, and Ethereum,
represented by rectangles. The dashed line between the variation point and the variation
represents an optional correlation. In contrast, solid lines denote mandatory dependen-
cies, implying that the corresponding variables must be selected. The model is also indi-
cated by an arc marked with the reference amount of [1..1], and only one of the three var-
iables must be selected.

Figure 4. Application feature model and variability model of blockchain online store.
Figure 4. Application feature model and variability model of blockchain online store.

3.2.3. Establish Application Feature Model and Variability Model

During application requirement engineering, it is necessary to adjust the domain
feature model and variability model to establish an application feature model and variability
model. The customer wants to build a specific application that removes MFR12 give opinion
and uses Line only in MFR 10 Notification. In addition, the customer thinks that the user
should be able to freely select their preferred transaction payment method when making a
customer transaction payment.

According to the specific application requirements, Figure 4 shows the Application
Feature Model and Variability Model of Blockchain Online Store, which removes the sub-

Electronics 2023, 12, 3291 10 of 18

functional feature Give Opinion in the MFR9 search the product, and the sub-functional
feature E-Mail and SMS in the MFR 10 Notification in Figure 3.

Figure 4 also adds a new variation point, Payment Method Selection, to accommodate
the new requirements of Payment Method Selection in Application Requirements Artifacts.
The variation point Payment Service (VP1) requires Payment Method Selection (VP2) to
select a payment method. Given that this new variation point depends on the original
customer transaction payment method, we must establish a relationship with it in the
application engineering variability model and assign the variable V4 as user-selectable.

3.3. Sprint Planning

Sprint Planning is a collaborative meeting that occurs at the beginning of each Sprint
and involves the Product Owner, Scrum Master, and the Development Team. Sprint
Planning aims to determine what work will be tackled in the upcoming Sprint and how it
will be accomplished. The Scrum team discusses and decides on the Sprint Goal, which
represents the overall objective or purpose to be achieved by the end of the Sprint. The
Scrum team develops the Sprint product backlog based on the Sprint goals in the upcoming
Sprint.

In SPLE-Scrum, each Sprint planning meeting starts to review the product along
with the product roadmap’s current progress, goals, and completion status. The Product
Owner presents the highest-priority items from the Product Backlog. The Development
Team analyzes these items, asks questions, and estimates the effort required to complete
them. The activities typically include splitting or decomposing large user stories into
smaller, actionable tasks, refining acceptance criteria, updating estimates, and reordering
the backlog based on evolving priorities or new insights. The Development Team will
develop a Sprint product backlog, including the MFRs that have been prioritized and
estimated. By the end of the Sprint Planning meeting, the Scrum team has created a Sprint
Backlog, which includes the selected user stories, their corresponding tasks, estimates,
and assignments to specific team members, and serves as a guide for the team’s work
throughout the Sprint to achieve the defined Sprint Goal.

Sprint Backlog of Blockchain Online Store

The Sprint backlog of the blockchain online store is presented in Table 4. The MFR
column lists the MFR names of the product backlog items that will be developed in this
project. The Prioritization column means prioritization levels (high, medium, low) for
implementing the MFR. The Estimation column represents the effort required to implement
the product backlog. The Sprint column indicates the specific Sprint in which the items
will be implemented.

The Development Team collectively evaluates the MFR and user stories considering
factors such as effort, complexity, technical dependencies, and associated risks. In SPLE-
Scrum, techniques like story points or time-based estimates are used to estimate the effort
required to complete the MFR and user stories [50]. One common scale utilized in Agile
development is the modified Fibonacci sequence, which starts with 1 (e.g., 1, 2, 3, 5, 8, 13,
21, etc.) and allows for a slightly different distribution of effort levels. If the effort estimated
for the MFR or user story is larger than 34 story points/person days, it is considered large
and needs to be broken down. Numeric values assigned in estimation are not as significant
as their relative differences. These assigned values aid in prioritization, planning, breaking
down work into manageable tasks, and assessing the workload within each Sprint. The
estimation assists project planning and shared understanding rather than aiming for precise
time-based estimations.

The Scrum team collectively decides on including MFR and user stories in the Sprint
based on capacity and backlog item priorities. Once the MFR and user stories are deter-
mined, the Development Team breaks them into smaller, actionable tasks during the Sprint
planning meeting. For instance, tasks for the MFR “registration” may involve designing the

Electronics 2023, 12, 3291 11 of 18

account registration form, implementing server-side validation, and creating the database
schema for user accounts.

Table 4. Sprint backlog of blockchain online store.

MFR Prioritization Estimation Sprint

MFR1 login H 5 1

MFR2 registration H 3 1

MFR3 modify personal information H 2 1

MFR4 obtain passwords H 3 1

MFR5 log out H 2 1

MFR6 add items to shopping carts H 13 1

MFR7 purchase products H 13 2

MFR8 register the products H 5 1

MFR9 search the product H 5 1

MFR10 customer transaction
notification M 8 2

MFR10-1 Line M 8 2

MFR11 view purchase logs M 5 2

MFR12 give opinion L 5 2

MFR13 payment service M 21 3

[V1] IOTA M 13 3

[V2] OmiseGO M 13 3

[V3] Ethereum M 13 3

3.4. Domain and Application Engineering Design in the Sprint

The Development Team focuses on developing and delivering increments of poten-
tially shippable product functionality in Sprint. They work on the backlog items selected
for the Sprint, aiming to complete the planned work within the time frame. The Scrum
team participates in the Daily Scrum, a time-boxed meeting held daily to synchronize and
align the team’s work. Each team member shares progress, discusses any obstacles or
challenges, and collaborates to ensure everyone is on track to achieve the Sprint Goal.

In SPLE-Scrum, the functional feature model and the orthogonal variability model [43,51]
are used to establish a domain and application engineering variability model based on
the domain requirements determined in the Pre-Sprint. The functional feature model
can describe the design of the reference architecture and define the overall problem. The
orthogonal variability model can be used to record the variability of product lines and
describe the variability of the domain and application requirements engineering.

After the specific application requirements are determined, we adjust and design
by selecting and combining the variability parts and building an application engineering
variability model derived from the reference architecture defined by the domain design.
The reference architecture provides a high-level architecture that includes the description
and interface of commonality, variability, and reusable components. It is the most critical
core asset to reuse components successfully and is represented with a component model.

The domain and application design artifacts provide a high-level architecture that
includes the description and interface of commonality, variability, and reusable compo-
nents. We construct domain and application use-case models to represent the domain
and application engineering requirements. The core asset of reusing elements from the
application development perspective is represented with a component model.

Electronics 2023, 12, 3291 12 of 18

3.4.1. Domain and Application Use Case Models

The use-case model consists of actors, use cases, and their relationships within the
domain and application engineering. The actors represent users outside the domain and
application engineering boundary and can also be a system or device. The domain and
application engineering use cases describe functional requirement units. Based on the
domain feature and variability model from the Pre-Sprint, we construct a domain use-
case model by adding <<include>> and <<extend>> relationships and labeling them as
<<common>> or <<optional>>.

A domain use case may include optional functional requirements specific to that
domain use case and not be shared with other domain use cases. Therefore, to explicitly
indicate the optional parts within the domain use cases, we create separate domain use cases
for the optional functional requirement units in the domain use case and add <<extend>>
relationships to the corresponding domain use case.

Figure 5 shows the domain use-case model representing the functional features of
the blockchain online store. The domain use cases Register the Product and Give Opinion
extend to the domain use case Search the Product and establish their relations through the
<<extend>> relationship. Furthermore, we add an <<include>> dependency relationship
between the domain use cases Search The Product and Payment Service.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 18

After the specific application requirements are determined, we adjust and design by
selecting and combining the variability parts and building an application engineering var-
iability model derived from the reference architecture defined by the domain design. The
reference architecture provides a high-level architecture that includes the description and
interface of commonality, variability, and reusable components. It is the most critical core
asset to reuse components successfully and is represented with a component model.

The domain and application design artifacts provide a high-level architecture that
includes the description and interface of commonality, variability, and reusable compo-
nents. We construct domain and application use-case models to represent the domain and
application engineering requirements. The core asset of reusing elements from the appli-
cation development perspective is represented with a component model.

3.4.1. Domain and Application Use Case Models
The use-case model consists of actors, use cases, and their relationships within the

domain and application engineering. The actors represent users outside the domain and
application engineering boundary and can also be a system or device. The domain and
application engineering use cases describe functional requirement units. Based on the do-
main feature and variability model from the Pre-Sprint, we construct a domain use-case
model by adding <<include>> and <<extend>> relationships and labeling them as <<com-
mon>> or <<optional>>.

A domain use case may include optional functional requirements specific to that do-
main use case and not be shared with other domain use cases. Therefore, to explicitly
indicate the optional parts within the domain use cases, we create separate domain use
cases for the optional functional requirement units in the domain use case and add <<ex-
tend>> relationships to the corresponding domain use case.

Figure 5 shows the domain use-case model representing the functional features of
the blockchain online store. The domain use cases Register the Product and Give Opinion
extend to the domain use case Search the Product and establish their relations through the
<<extend>> relationship. Furthermore, we add an <<include>> dependency relationship
between the domain use cases Search The Product and Payment Service.

Figure 5. Domain use-case model of blockchain online store. Figure 5. Domain use-case model of blockchain online store.

We adjust the design based on the specific application requirements by selecting and
combining variability components derived from the reference architecture defined in the
domain use-case model. The selection and combination of variability components can be
accomplished by leveraging the feature and variability model generated in the Pre-Sprint,
modifying the initial domain use-case model, and ultimately producing the application
use-case model, which represents the final reference architecture of the entire application
system. Figure 6 shows the application use-case model of the blockchain online store,
which removes the domain use case Give Opinion and adds the use case Payment Method
Selection.

Electronics 2023, 12, 3291 13 of 18

Electronics 2023, 12, x FOR PEER REVIEW 13 of 18

We adjust the design based on the specific application requirements by selecting and
combining variability components derived from the reference architecture defined in the
domain use-case model. The selection and combination of variability components can be
accomplished by leveraging the feature and variability model generated in the Pre-Sprint,
modifying the initial domain use-case model, and ultimately producing the application
use-case model, which represents the final reference architecture of the entire application
system. Figure 6 shows the application use-case model of the blockchain online store,
which removes the domain use case Give Opinion and adds the use case Payment Method
Selection.

Figure 6. Application use-case model of blockchain online store.

3.4.2. Domain and Application Component Model
A set of components for the blockchain online store has been developed through

Sprint’s domain and application design activities, which can be integrated through inter-
faces. Figure 7 partially extracts the blockchain online store’s domain and application de-
sign artifacts, including an association with other finished products produced during the
design phase.

Figure 6. Application use-case model of blockchain online store.

3.4.2. Domain and Application Component Model

A set of components for the blockchain online store has been developed through
Sprint’s domain and application design activities, which can be integrated through in-
terfaces. Figure 7 partially extracts the blockchain online store’s domain and application
design artifacts, including an association with other finished products produced during the
design phase.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 18

Figure 7. Domain and application component model of blockchain online store.

The domain variability model for customer transaction payment methods reveals
three variation points related to these methods, which will be supported by the Scrum
team in Sprint, such as IOTA, OmiseGo, Ethereum, etc.

An extracted component diagram represents the plug-in application of blockchain
technology. When the project determines that users can freely choose payment methods
during the Pre-Sprint, we delete the alternative relationship of the variants V1, V2, and V3
in the domain variability model and adjust it to a selective relationship to bind these var-
iables to specific applications. Then, we create a payment selection plug-in component
that allows for free payment method selection to the application design artifacts and link
them together through the interface provided by the components of domain design arti-
facts to form a reference architecture in domain design, which promotes the reuse of com-
ponents.

3.5. Product Increment, Sprint Review, and Sprint Retrospective
At the end of the Sprint, the increment is a completed entity that can be reviewed.

The Scrum team provides incremental product functions for each Sprint. The realization
of each increment is a further step towards the vision or strategic goal. In addition, regard-
less of whether the product owner decides to release its version, the increment must be
available at any time.

The development team presents the results achieved during the Sprint review meet-
ing, while stakeholders provide feedback at the end of a Sprint. The defects may be found
and discussed during the function demo of the Sprint review. To incorporate the ad-
vantages of engineering methodologies such as extreme programming [52,53], SPLE-
Scrum recommends that refactoring techniques be proposed during the Sprint review pro-
cess to enhance code readability, simplify its structure, and facilitate maintenance and
scalability of the implemented functions. After the Sprint review, the Sprint retrospective
meeting is held to review and adjust the process to improve the team’s work. The primary
purpose is to let the Scrum team review the process of this Sprint, examine the roles,

Figure 7. Domain and application component model of blockchain online store.

Electronics 2023, 12, 3291 14 of 18

The domain variability model for customer transaction payment methods reveals
three variation points related to these methods, which will be supported by the Scrum team
in Sprint, such as IOTA, OmiseGo, Ethereum, etc.

An extracted component diagram represents the plug-in application of blockchain
technology. When the project determines that users can freely choose payment methods
during the Pre-Sprint, we delete the alternative relationship of the variants V1, V2, and
V3 in the domain variability model and adjust it to a selective relationship to bind these
variables to specific applications. Then, we create a payment selection plug-in component
that allows for free payment method selection to the application design artifacts and link
them together through the interface provided by the components of domain design artifacts
to form a reference architecture in domain design, which promotes the reuse of components.

3.5. Product Increment, Sprint Review, and Sprint Retrospective

At the end of the Sprint, the increment is a completed entity that can be reviewed. The
Scrum team provides incremental product functions for each Sprint. The realization of each
increment is a further step towards the vision or strategic goal. In addition, regardless of
whether the product owner decides to release its version, the increment must be available
at any time.

The development team presents the results achieved during the Sprint review meeting,
while stakeholders provide feedback at the end of a Sprint. The defects may be found
and discussed during the function demo of the Sprint review. To incorporate the advan-
tages of engineering methodologies such as extreme programming [52,53], SPLE-Scrum
recommends that refactoring techniques be proposed during the Sprint review process to
enhance code readability, simplify its structure, and facilitate maintenance and scalability
of the implemented functions. After the Sprint review, the Sprint retrospective meeting is
held to review and adjust the process to improve the team’s work. The primary purpose is
to let the Scrum team review the process of this Sprint, examine the roles, relationships,
tools, and operations in this Sprint cycle, and think about whether the next Sprint can make
more progress.

4. Discussion

We conducted personal interviews with questionnaires, and the targets were mainly
software practitioners in different industries. A total of 44 questionnaires from software
practitioners were collected. Table 5 displays the F-test and p-value to show that all
research hypotheses are supported. This demonstrates that Product Management (PM)
of SPLE-Scrum has a significant and beneficial effect on Project Success (PS) (f = 9.457,
p = 0.004). Project Requirements (PR) of SPLE-Scrum significantly positively affect PS
(f = 16.286, p = 0). Product Architecture (PA) of SPLE-Scrum significantly positively affects
PS (f = 9.045, p = 0.005). By conducting the F-test, it reached a statistically significant
level, indicating that the SPLE-Scrum approach has a significant positive impact on project
success.

Table 5. Relations between SPLE-Scrum key factors and project success.

Research
Hypothesis R R-Squared Adjusted

R-Squared

Estimated
Standard

Error
F-Test p-Value

H1: PM→ PS 0.437 0.191 0.171 0.984 9.457 0.004 **

H2: PR→ PS 0.538 0.289 0.272 0.923 16.286 0.000 ***

H3: PA→ PS 0.429 0.184 0.164 0.988 9.045 0.005 **
Note: (1) *** means p < 0.001; (2) ** means p < 0.01.

Table 6 shows the comparison table of SPLE-Scrum and the extant literature [29,41]. In
the comparison table, “Yes” indicates that the respective approach exhibits the benefit, and

Electronics 2023, 12, 3291 15 of 18

“N/A” denotes that the specific literature does not provide sufficient information related to
the corresponding benefit. SPLE-Scrum has contributed to the enhancement of Traditional
Scrum and SPLE in the following ways:

(1) SPLE-Scrum uses Scrum as a basis to include SPLE activities to develop software
product families, while AgiFPL [41] includes Scrum activities in SPLE. Since SPLE-
Scrum is based on Scrum, which software companies widely adopt, it provides a
familiar and more straightforward path for software companies to adopt SPEL-Scrum.

(2) SPLE-Scrum introduces the product management meeting to discuss software reuse
by initially establishing the product roadmap, variability, and backlog items and
updating these roadmap, variability, and backlog items as necessary periodically.

(3) SPLE-Scrum analyzes the domain and application’s feature and variability model with
user stories and context matrix in the Pre-Sprint. It emphasizes the implementation of
core assets using the use-case model and component model during the Sprint for the
product line.

Table 6. Comparison with related work.

Approach SPLE-Scrum AgiFPL [41] Targeted Scrum [29]

Agile Adoption Yes Yes Yes

SPLE Adoption Yes Yes N/A

Process Basis Scrum SPLE Scrum

Reusability Yes Yes N/A

Modeling Examples

Feature Model, User
Story, Use Case

Model, Component
Model

Goal Model, Feature
Model Line of Effort

Methodology Focus

Hybrid approach
integrating SPLE and

Scrum focuses on
agility, reusability,

requirements analysis,
product architecture,

and product
management.

Agile Product Line
Engineering method
focuses on managing

software product
lines with agility.

Agile methodology
with a focus on

mission command
principles

Overall, SPLE-Scrum demonstrates its benefits by enhancing Traditional Scrum, in-
cluding SPLE activities within the Scrum framework, providing a basis for easier adoption,
introducing the Product Management meeting, and emphasizing the integration of domain
and application features in software product family development. These contributions
make SPLE-Scrum a valuable and practical approach for organizations seeking to optimize
their software engineering practices and incorporate agile development and software reuse
capabilities.

5. Conclusions

This study provides a hybrid agile development approach to include the management
and engineering practices of SPLE and Scrum. In the Pre-Sprint, the product requirements
are addressed by domain and application requirements engineering. The domain and
application design generates a reference architecture with reusable components during the
Sprint. Developers can make specific choices without designing an application architecture
from scratch but make specific choices by linking the variability derived from the reference
architecture. The core assets are reused to build a series of applications with various
product lines. By leveraging the strengths of both approaches, SPLE-Scrum can improve
software reusability in software development while reducing overall development effort
and cost, thereby contributing to project success.

Electronics 2023, 12, 3291 16 of 18

The limitation of this study is the focus on a specific case study involving a blockchain
online store. While the case study demonstrates the practical application and benefits of
the SPLE-Scrum approach in that particular context, it may limit the generalizability of the
findings to other industries and software development projects. The unique characteristics
and requirements of the blockchain online store may not fully represent the challenges and
dynamics in different domains.

Therefore, further work could explore the application of SPLE-Scrum in different
industries, such as healthcare, finance, or automotive, to investigate its effectiveness in
addressing specific challenges within those domains. Additionally, exploring the scal-
ability of the SPLE-Scrum approach for large-scale and complex software development
projects would be beneficial for understanding its potential impact in broader organiza-
tional settings. Furthermore, investigating the incorporation of emerging technologies and
development practices, such as DevOps or continuous integration/continuous delivery
(CI/CD), within the SPLE-Scrum approach could enhance its adaptability and efficiency in
the fast-paced and rapidly evolving software development landscape. Additionally, investi-
gating the impact of team size and composition on the successful adoption of SPLE-Scrum
would offer valuable insights into the approach’s suitability for different team structures
and dynamics.

In summary, while this study presents a promising hybrid agile development approach
in SPLE-Scrum, there is scope for future research to enhance its applicability, generalizability,
and efficiency in various software development contexts. Expanding the scope of case
studies, exploring the integration of emerging technologies, and evaluating the impact of
team dynamics are some potential directions to further develop and validate the potential
of SPLE-Scrum in advancing software engineering practices.

Author Contributions: Conceptualization, W.-T.L. and C.-H.C.; Methodology, W.-T.L. and C.-H.C.;
Validation, C.-H.C. and W.-T.L.; Writing—original draft, W.-T.L. and C.-H.C.; Writing—review &
editing, W.-T.L.; Supervision, W.-T.L.; Project administration, W.-T.L.; Funding acquisition, W.-T.L.
Validation, C.-H.C. and W.-T.L. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the Ministry of Science and Technology in Taiwan under
grants MOST 111-2221-E-017-003.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sutherland, J. Scrum: The Art of Doing Twice the Work in Half the Time; Crown Business: New York, NY, USA, 2014.
2. Williams, L. Agile Software Development Methodologies and Practices. Adv. Comput. 2010, 80, 1–44.
3. Almeida, F.; Espinheira, E. Adoption of Large-Scale Scrum Practices through the Use of Management 3.0. Informatics 2022, 9, 20.

[CrossRef]
4. Edison, H.; Wang, X.; Conboy, K. Comparing Methods for Large-Scale Agile Software Development: A Systematic Literature

Review. IEEE Trans. Softw. Eng. 2022, 48, 2709–2731. [CrossRef]
5. Spagnoletti, P.; Kazemargi, N.; Prencipe, A. Agile Practices and Organizational Agility in Software Ecosystems. IEEE Trans. Eng.

Manag. 2022, 69, 3604–3617. [CrossRef]
6. Wessel, R.M.v.; Kroon, P.; Vries, H.J.d. Scaling Agile Company-Wide: The Organizational Challenge of Combining Agile-Scaling

Frameworks and Enterprise Architecture in Service Companies. IEEE Trans. Eng. Manag. 2022, 69, 3489–3502. [CrossRef]
7. Sherif, E.; Helmy, W.; Galal-Edeen, G.H. Proposed Framework to Manage Non-Functional Requirements in Agile. IEEE Access

2023, 11, 53995–54005. [CrossRef]
8. Pohl, K.; Böckle, G.; van Der Linden, F.J. Software Product Line Engineering: Foundations, Principles and Techniques; Springer Science

& Business Media: Berlin/Heidelberg, Germany, 2005.
9. Böckle, G.; Pohl, K.; van der Linden, F. A framework for software product line engineering. In Software Product Line Engineering;

Springer: Berlin/Heidelberg, Germany, 2005; pp. 19–38.
10. Weiss, D.M.; Lai, C.T.R. Software Product-Line Engineering: A Family-Based Software Development Process; Addison-Wesley Reading:

Boston, MA, USA, 1999; Volume 12.

https://doi.org/10.3390/informatics9010020
https://doi.org/10.1109/TSE.2021.3069039
https://doi.org/10.1109/TEM.2021.3110105
https://doi.org/10.1109/TEM.2021.3128278
https://doi.org/10.1109/ACCESS.2023.3281195

Electronics 2023, 12, 3291 17 of 18

11. Northrop, L.; Clements, P.; Bachmann, F.; Bergey, J.; Chastek, G.; Cohen, S.; Donohoe, P.; Jones, L.; Krut, R.; Little, R. A Framework
for Software Product Line Practice, Version 5.0; Software Engineering Institute|Carnegie Mellon University: Pittsburgh, PA, USA,
2012.

12. Moon, M.; Yeom, K.; Chae, H.S. An approach to developing domain requirements as a core asset based on commonality and
variability analysis in a product line. IEEE Trans. Softw. Eng. 2005, 31, 551–569. [CrossRef]

13. Pine, B.J.; Pine, J.; Pine, B.J.I. Mass Customization: The New Frontier in Business Competition; Harvard Business Press: Brighton, MA,
USA, 1993.

14. Jabar, M.A.; Abdullah, S.; Jusoh, Y.Y.; Mohanarajah, S.; Ali, N.M. Adaptive and Dynamic Characteristics in Hybrid Agile
Management Model for Software Development Project Success. In Proceedings of the 2019 6th International Conference on
Research and Innovation in Information Systems (ICRIIS), Johor Bahru, Malaysia, 2–3 December 2019; pp. 1–5. [CrossRef]

15. Wan, J.; Zhu, Y.; Zeng, M. Case study on critical success factors of running Scrum. J. Softw. Eng. Appl. 2013, 6, 59–64. [CrossRef]
16. Highsmith, J.; Cockburn, A. Agile software development: The business of innovation. Computer 2001, 34, 120–127. [CrossRef]
17. Anderson, D.J. Agile Management for Software Engineering: Applying the Theory of Constraints for Business Results; Prentice Hall:

Upper Saddle River, NJ, USA, 2003.
18. Hoda, R.; Salleh, N.; Grundy, J.; Tee, H.M. Systematic literature reviews in agile software development: A tertiary study. Inf.

Softw. Technol. 2017, 85, 60–70. [CrossRef]
19. Martin, J. Application Development without Programmers; Prentice Hall PTR: Hoboken, NJ, USA, 1982.
20. Hoda, R.; Salleh, N.; Grundy, J. The Rise and Evolution of Agile Software Development. IEEE Softw. 2018, 35, 58–63. [CrossRef]
21. Cockburn, A. Agile Software Development; Addison-Wesley Longman: Boston, MA, USA, 2002; pp. 1–221.
22. VersionOne, C. 12th Annual State of Agile Report; CollabNet VersionOne. Com: Alpharetta, GA, USA, 2018.
23. Takeuchi, H.; Nonaka, I. The new new product development game. Harv. Bus. Rev. 1986, 64, 137–146.
24. Schwaber, K.; Beedle, M. Agile Software Development with SCRUM; Prentice Hall: Upper Saddle River, NJ, USA, 2002; Volume 1.
25. Schwaber, K.; Sutherland, J. The Scrum GuideTM. The Definitive Guide to Scrum: The Rules of the Game. 2020. Available online:

https://www.scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf (accessed on 1 February 2023).
26. Blankenship, J.; Bussa, M.; Millett, S. Managing Agile Projects with Scrum. In Pro Agile .NET Development with Scrum; Apress:

Berkeley, CA, USA, 2011. [CrossRef]
27. Rubin, K.S. Essential Scrum: A Practical Guide to the Most Popular Agile Process; Addison-Wesley: Boston, MA, USA, 2012.
28. Larsen, D.; Derby, E. Agile Retrospectives; Pragmatic Bookshelf: Raleigh, NC, USA, 2006.
29. Harvie, D.P.; Agah, A. Targeted scrum: Applying mission command to agile software development. IEEE Trans. Softw. Eng. 2016,

42, 476–489. [CrossRef]
30. Wisocky, R.K. Effective Project Management: Traditional, Adaptive, Extreme; Wiley: Indianapolis, IN, USA, 2007.
31. Clements, P.; Northrop, L. Software Product Lines: Practices and Patterns; Addison-Wesley Professional: Boston, MA, USA, 2001.
32. Khan, S.A.; Alenezi, M.; Agrawal, A.; Kumar, R.; Khan, R.A. Evaluating Performance of Software Durability through an Integrated

Fuzzy-Based Symmetrical Method of ANP and TOPSIS. Symmetry 2020, 12, 493. [CrossRef]
33. Dospinescu, O.; Perca, M. Technological Integration for Increasing The Contextual Level of Information; Editura Universitatii Alexandru

Ioan Cuza Iasi: Iasi, Romania, 2011.
34. Ling, Y.; An, T.; Yap, L.W.; Zhu, B.; Gong, S.; Cheng, W. Disruptive, Soft, Wearable Sensors. Adv. Mater. 2020, 32, 1904664.

[CrossRef]
35. Aguado, A.; Lopez, V.; Lopez, D.; Peev, M.; Poppe, A.; Pastor, A.; Folgueira, J.; Martin, V. The Engineering of Software-Defined

Quantum Key Distribution Networks. IEEE Commun. Mag. 2019, 57, 20–26. [CrossRef]
36. Buraga, S.C.; Amariei, D.; Dospinescu, O. An OWL-Based Specification of Database Management Systems. Comput. Mater. Contin.

2022, 70, 5537–5550. [CrossRef]
37. Lee, W.-T.; Ma, S.-P. Process modeling and analysis of service-oriented architecture–based wireless sensor network applications

using multiple-domain matrix. Int. J. Distrib. Sens. Netw. 2016, 12, 1550147716676556. [CrossRef]
38. Santos, A., Jr.; de Lucena, V.F., Jr. ScrumPL-Software Product Line Engineering with Scrum. In Proceedings of the Fifth Interna-

tional Conference on Evaluation of Novel Approaches to Software Engineering, Athens, Greece, 22–24 July 2010; pp. 239–244.
39. Tian, K.; Cooper, K. Agile and software product line methods: Are they so different. In Proceedings of the 1st International

Workshop on Agile Product Line Engineering, Baltimore, MD, USA, 21 August 2006.
40. Díaz, J.; Pérez, J.; Alarcón, P.P.; Garbajosa, J. Agile product line engineering—A systematic literature review. Softw. Pract. Exp.

2011, 41, 921–941. [CrossRef]
41. Haidar, H.; Kolp, M.; Wautelet, Y. Agile Product Line Engineering: The AgiFPL Method. In Proceedings of the 12th International

Conference on Software and Data Technologies, Madrid, Spain, 24–26 July 2017; pp. 275–285.
42. Noor, M.A.; Rabiser, R.; Grünbacher, P. Agile product line planning: A collaborative approach and a case study. J. Syst. Softw.

2008, 81, 868–882. [CrossRef]
43. Metzger, A.; Pohl, K. Software product line engineering and variability management: Achievements and challenges. In Future of

Software Engineering Proceedings (FOSE 2014); Association for Computing Machinery: New York, NY, USA, 2014; pp. 70–84.
44. Takpuie, D.; Tanner, M. Investigating the characteristics needed by scrum team members to successfully transfer tacit knowledge

during agile software projects. Electron. J. Inf. Syst. Eval. 2016, 19, 36–54.

https://doi.org/10.1109/TSE.2005.76
https://doi.org/10.1109/ICRIIS48246.2019.9073337
https://doi.org/10.4236/jsea.2013.62010
https://doi.org/10.1109/2.947100
https://doi.org/10.1016/j.infsof.2017.01.007
https://doi.org/10.1109/MS.2018.290111318
https://www.scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://doi.org/10.1007/978-1-4302-3534-7_2
https://doi.org/10.1109/TSE.2015.2489654
https://doi.org/10.3390/sym12040493
https://doi.org/10.1002/adma.201904664
https://doi.org/10.1109/MCOM.2019.1800763
https://doi.org/10.32604/cmc.2022.021714
https://doi.org/10.1177/1550147716676556
https://doi.org/10.1002/spe.1087
https://doi.org/10.1016/j.jss.2007.10.028

Electronics 2023, 12, 3291 18 of 18

45. Kalbach, J.; Kalbach, J. Mapping Experiences: A Guide to Creating Value through Journeys, Blueprints, and Diagrams; O’Reilly:
Sebastopol, CA, USA, 2016.

46. Patton, J.; Economy, P. User Story Mapping: Discover the Whole Story, Build the Right Product, 1st ed.; O’Reilly Media, Inc.: Sebastopol,
CA, USA, 2014.

47. Cohn, M. User Stories Applied: For Agile Software Development; Addison Wesley Longman Publishing Co., Inc.: Upper Saddle River,
NJ, USA, 2004.

48. Beck, K. Extreme Programming. In Proceedings of the Proceedings Technology of Object-Oriented Languages and Systems.
TOOLS 29 (Cat. No. PR00275), Nancy, France, 7–10 June 1999; p. 411.

49. Ambler, S. Agile Modeling: Effective Practices for eXtreme Programming and the Unified Process; John Wiley & Sons: New York, NY,
USA, 2002.

50. Fernández-Diego, M.; Méndez, E.R.; González-Ladrón-De-Guevara, F.; Abrahão, S.; Insfran, E. An Update on Effort Estimation in
Agile Software Development: A Systematic Literature Review. IEEE Access 2020, 8, 166768–166800. [CrossRef]

51. Khudhair Abbas, A.; Hassan Safi, H.; Qasim AlBawi, S. Using Feature and Orthogonal Variability Models to Design E-Commerce
Model With (Software Product Line Engineering) technique. J. Kerbala Univ. 2017, 13, 169–178.

52. Beck, K. Embracing change with extreme programming. Computer 1999, 32, 70–77. [CrossRef]
53. Anwer, F.; Aftab, S.; Shah, S.M.; Waheed, U. Comparative Analysis of Two Popular Agile Process Models: Extreme Programming

and Scrum. Int. J. Comput. Sci. Telecommun. 2017, 8, 1–7.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2020.3021664
https://doi.org/10.1109/2.796139

	Introduction
	Background Knowledge and Related Work
	Agile Method and Scrum
	Software Product Line Engineering

	SPLE-Scrum: An Agile Software Development and Reuse Approach
	Product Management Meeting
	Domain and Application Requirements Engineering of the Pre-Sprint
	Identify Domain Requirements
	Establish Domain Feature Model and Variability Model
	Establish Application Feature Model and Variability Model

	Sprint Planning
	Domain and Application Engineering Design in the Sprint
	Domain and Application Use Case Models
	Domain and Application Component Model

	Product Increment, Sprint Review, and Sprint Retrospective

	Discussion
	Conclusions
	References

