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Abstract: Pre-trained language models with structured semantic knowledge have demonstrated
remarkable performance in a variety of downstream natural language processing tasks. The typical
methods of integrating knowledge are designing different pre-training tasks and training from
scratch, which requires high-end hardware, massive storage resources, and long computing times.
Prompt learning is an effective approach to tuning language models for specific tasks, and it can
also be used to infuse knowledge. However, most prompt learning methods accept one token
as the answer, instead of multiple tokens. To tackle this problem, we propose the long-answer
prompt learning method (KLAPrompt), with three different long-answer strategies, to incorporate
semantic knowledge into pre-trained language models, and we compare the performance of these
three strategies through experiments. We also explore the effectiveness of the KLAPrompt method
in the medical field. Additionally, we generate a word sense prediction dataset (WSP) based on
the Xinhua Dictionary and a disease and category prediction dataset (DCP) based on MedicalKG.
Experimental results show that discrete answers with the answer space partitioning strategy achieve
the best results, and introducing structured semantic information can consistently improve language
modeling and downstream tasks.

Keywords: prompt learning; semantic knowledge; pre-trained language model

1. Introduction

In recent years, pre-trained language models (PLMs) such as BERT [1], XLNet [2],
and RoBERTa [3] have achieved promising results in many natural language processing
(NLP) tasks [4–6]. Although no explicit syntactic rules and concepts are introduced, these
models can perform well with extensive pre-training on large-scale unlabeled corpora in
various self-supervised ways. Nevertheless, recent works illustrate that external semantic
knowledge can improve downstream NLP tasks, including named entity recognition [7,8],
relation extraction [9,10], and machine translation [11–13]. However, traditional approaches
to introducing knowledge involve mostly training from scratch, which is time-consuming
and computationally expensive, making it infeasible for most users. Recently, prompt
learning has achieved promising results for certain few-shot classification tasks [14–17],
and it can also be used to integrate knowledge.

The Xinhua Dictionary, the most authoritative and influential modern Chinese dictio-
nary, contains massive and comprehensive content, such as word forms, pronunciation,
precise definitions, and rich examples. In contrast to WordNet [18] and HowNet [19], the
“senses” in the Xinhua Dictionary are more abundant, detailed, and fine-grained. It can offer
strong and efficient support for language models to understand Chinese word semantics.
In the Xinhua Dictionary, the “sense” is the meaning of the word [20], and a Chinese word
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can have more than one sense. An example from the Xinhua Dictionary is shown in Table 1.
The “sense” is composed of a long string of tokens, but the typical methods of prompt
learning accept one token as the answer. Thus, the issue of how to properly use the wealth
of long-answer information is a challenging problem.

Table 1. An example of a word and its senses and phrases in the Xinhua Dictionary.

Word Sense Phrase

order

ID:06029
the way in which people or things are
placed or arranged in relation to each other

in alphabetical order
in chronological order
in descending/ascending order

ID:06030
the state that exists when people obey
laws, rules or authority

keep the class in good order
maintain order in the capital
restore public order

ID:06031
a request for food or drinks in a
restaurant; the food or drinks that you ask for

May I take your order?
an order for steak and fries
a side order

To address this challenge, we propose the long-answer prompt learning method
(KLAPrompt), with three different long-answer strategies, and collect a word sense pre-
diction dataset (WSP) based on the Xinhua Dictionary to introduce fine-grained semantic
knowledge. According to the different forms of answers, they can be divided into three
strategies: discrete answers, continuous answers, and sentence similarity. In the discrete an-
swer strategy, instead of considering the long answer as a whole, we split the answer space
into several answer subspaces according to the token’s position in the long answer. For in-
stance, the answer subspaces of “order” in Table 1 are {“the”,“a”}, {“way”,“state”,“request”},
{“in”,“that”,“ f or”}, {“which”,“exists”,“ f ood”}, . . . , {“ f or”}. Then, we train pre-trained lan-
guage models on the WSP dataset to predict the sense, and each word of the sense will
be predicted independently. In the continuous answer strategy, we use virtual answer
tokens, which can be optimized through gradient descent, to replace the natural language
in discrete answers. Due to the many senses in the Xinhua Dictionary, we assign several
virtual tokens to each sense and optimize the token embeddings for each sense together
with prompt token embeddings. In the sentence similarity strategy, we average the em-
beddings of the masked part in the masked language model’s (MLM) output, calculate the
cosine similarity between this and the sentence embedding of the original long answer, and
then maximize the similarity during the training procedure.

Furthermore, we explore the effectiveness of the KLAPrompt method in the medical
field. Firstly, we collect a disease and category prediction dataset (DCP) based on Medi-
calKG (https://github.com/zhihao-chen/QASystemOnMedicalKG accessed on 28 April
2023), which contains specific disease knowledge such as descriptions, departments, symp-
toms, causes, prevention, checking items, recommended foods, and recommended drugs.
Then, we apply the KLAPrompt method to introduce fine-grained disease knowledge into
the pre-trained language models.

We conduct comprehensive experiments on five open-domain NLP datasets and
five health-related datasets. Experimental results demonstrate that pre-trained language
models achieve superior performance based on the strength of the semantic knowledge in
the Xinhua Dictionary and the disease knowledge in MedicalKG. Empirical studies also
verify that KLAPrompt with the discrete answer strategy is the best method to integrate
structured semantic knowledge into pre-trained language models.

In a nutshell, the main contributions of our work are as follows.

(1) We introduce more abundant and fine-grained semantic knowledge from the Xinhua Dic-
tionary and disease knowledge from MedicalKG into pre-trained language models, en-
hancing the models’ ability to understand Chinese word semantics and medical science.

https://github.com/zhihao-chen/QASystemOnMedicalKG
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(2) We propose a novel long-answer prompt learning method (KLAPrompt), which
provides a reasonable solution to two main challenges in answer engineering: (a)
When there are many classes, how can we seek the proper answer space? (b) How can
we decode the multi-token answers?

(3) Extensive experiments on five Chinese NLP datasets and five biomedical datasets
demonstrate that the proposed method significantly empowers the widely adopted pre-
trained language models. The empirical studies also confirm that KLAPrompt with the
discrete answer strategy is the best method to integrate structured semantic knowledge.

(4) We generate a word sense prediction dataset (WSP) based on the Xinhua Dictionary,
which is available at https://github.com/Xie-Zuotong/WSP (accessed on 28 April
2023). We also collect a disease and category prediction dataset (DCP) based on
MedicalKG, which is available at https://github.com/Xie-Zuotong/DCP (accessed
on 28 April 2023).

The rest of the paper is organized as follows. Section 2 briefly reviews the existing
methods of integrating semantic knowledge, previous approaches in prompt learning, and
several biomedical pre-trained language models. In Section 3, we introduce the KLAPrompt
approach and its application in the medical field. Section 4 shows the experimental results
on five Chinese NLP datasets. Section 5 presents experimental studies on five biomedical
datasets. Finally, the conclusions of this research are drawn in Section 6.

2. Related Works
2.1. Semantic Knowledge

Semantic knowledge includes the meanings of words, phrases, and sentences, examin-
ing how meaning is encoded in a language. It has been extensively used in various natural
language processing tasks [21–24]. ERNIE [25] has improved BERT’s masking strategy to
integrate entity information into the knowledge graph. In Chinese, an entity or phrase is
composed of several Chinese words. If only a single word is masked, the model can easily
predict the masked content only through the context information, without paying attention
to the composition of phrases and entities, as well as the syntactic and semantic information
in sentences. Therefore, ERNIE masks all tokens that compose a whole phrase or entity
at the same time. However, a phrase in ERNIE usually consists of two or three tokens.
When the number of consecutive tokens exceeds twenty, the model is difficult to train, and
the performance will decline. KnowBERT [26] integrates WordNet [18] and a subset of
Wikipedia into BERT and uses the knowledge attention and recontextualization mechanism
to explicitly model entity spans in the input text. SenseBERT [27] adds a masked-word
sense prediction task as an additional task to learn the “sense” knowledge in WordNet.
WordNet lexicographers organize all word senses into 45 supersense categories. Hence, it
predicts not only the masked words but also their supersenses during pre-training. Both
KnowBERT and SenseBERT introduce WordNet into BERT, but, compared with the Xinhua
Dictionary or Oxford Dictionary, the supersenses in WordNet are relatively limited, and the
word meaning is coarse-grained. Furthermore, most of these methods require training from
scratch, which is time-consuming and computationally expensive, making it infeasible for
most users.

2.2. Prompt Learning

Prompt learning is based on the language model used to calculate the probability of
text [28]. Unlike adapting pre-trained language models to downstream tasks through objec-
tive engineering, prompt learning utilizes additional textual prompts to make downstream
tasks resemble those solved during the original language model training. Radford et al. [29]
illustrate that language models can learn NLP tasks without direct supervision, and prompt
learning has gradually become the most popular research direction in natural language
processing. Prompt learning includes prompt engineering and answer engineering. For
discrete prompts, Brown et al. [30] manually created prefix prompts to deal with diverse nat-
ural language processing tasks. For continuous prompts, P-tuning [14] proposes prompts

https://github.com/Xie-Zuotong/WSP
https://github.com/Xie-Zuotong/DCP
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learned by inserting trainable variables into the embedded input. A recent work [15] manu-
ally designed the constrained answer spaces for named entity recognition tasks. However,
there are still two challenges in answer engineering: (a) When there are many classes, how
can we seek the proper answer space? (b) How can we decode the multi-token answers?

2.3. Biomedical PLMs

Biomedical PLMs are typically built by adapting a general-domain PLM to the biomed-
ical domain with the same model architecture and training objectives, as exemplified by
BioBERT [31], BlueBERT [32], SciBERT [33], ClinicalBERT [34], and PubMedBERT [35].
BioBERT is the first model to utilize continuous pre-training on biomedical domain corpora.
BlueBERT was pre-trained on PubMed abstracts and MIMIC-III clinical notes, and then
evaluated on the Biomedical Language Understanding Evaluation (BLUE) benchmark.
ClinicalBERT uses clinical notes, including lab values and medications, instead of plaintext
data based on BERT. Moreover, PubMedBERT learns model weights from scratch via a
large-scale training corpus.

While great efforts have been made to build English biomedical PLMs, there are only
a few studies discussing building biomedical PLMs in Chinese, such as MC-BERT [36],
MedBERT (https://github.com/trueto/medbert accessed on 15 April 2023) and SMed-
BERT [37], derived from a general-domain BERT, with the latter two further developed in a
knowledge-enhanced manner. MC-BERT proposes entity masking and phrase masking
strategies in a coarse-grained context to learn the medical word representations from a
medical corpus, while neglecting the internal relations of medical entities. The MedBERT
model was pre-trained on 650 million Chinese clinical natural language texts. SMedBERT
proposes the mention-neighbour hybrid attention to learn heterogeneous entity informa-
tion, which infuses the semantic representations of entity types into the homogeneous
neighboring entity structure.

3. Methodology

In this section, we introduce the KLAPrompt approach and its application in the
medical field. There are two steps in our KLAPrompt method: prompt engineering and
answer engineering. Thus, we elaborate on our method from these two aspects.

3.1. Prompt Engineering

Prompt engineering, also known as template engineering, aims to design a prompting
function that results in the most effective performance in a downstream task. There are
two main categories of prompts: discrete prompts and continuous prompts. In this section,
we construct these prompts for the word sense prediction dataset (WSP) to introduce the
semantic knowledge from the Xinhua Dictionary.

3.1.1. Discrete Prompts

Discrete prompts are composed of the alignment of words in natural language. The
most common method to create discrete prompts is to manually create crafted templates to
handle different tasks. A template is a textual string with two slots: an input slot [X] for
input x and an answer slot [Y]. For example, in the case of sentiment analysis, where x = “I
love this movie”, the template may take a form such as “[X] Overall, it was a [Y] movie”.
Then, the discrete prompt would become “I love this movie. Overall, it was a [Y] movie”.

The word sense prediction dataset (WSP) contains one word, phrase, sense, and
sentence for each example. For discrete prompts, we first copy the word [C] mentioned in
the sentence [X], and then add a few natural language words followed by the sense [Y] that
the model will predict. The number of [X] slots and the number of [Y] slots can be flexibly
changed according to the needs of the task at hand. The detailed composition of [Y] will be
described in Section 3.2. The manual templates are as follows:

https://github.com/trueto/medbert
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T1(x) = The meaning of [C] is [Y]. [X]

T2(x) = The meaning of “[C]” is [Y]. [X]

T3(x) = Among them, the meaning of [C] is [Y]. [X]

T4(x) = In this sentence, the meaning of [C] is [Y]. [X]

An example of a discrete prompt is given in Figure 1, where [C] is “order”, the form
of [Y] is “The state that exists when people obey laws, rules or authority”, and [X] is “The
police try to restore public order”.

MLM head MLM head MLM head 

!"#

Answer Space 2

$%&

'(%()
#)*+)'(

Answer Space 1

(,)

(,)
%

Answer Space 18

True  answer:  the state that exists when people obey laws, rules or authority

Learnable Continuous token Token in the Answer Space

InputDiscrete Prompt

InputContinuous Prompt

[CLS] The meaning of order is .The police try to restore public order . [SEP][MASK] [MASK] …[MASK] 

[CLS] order  .The police try to restore public order . [SEP][MASK] [MASK] …[MASK] [𝑃!] … z[𝑃"] [𝑃#] 

Figure 1. Illustration of KLAPrompt with discrete answer strategy. There are two main categories
of prompts: discrete prompts and continuous prompts. In continuous prompts, we use auxiliary
virtual tokens [P1], [P2], . . . , [Pl ] to replace natural language words. In the discrete answer strategy,
we split the whole answer space into several answer subspaces according to the token’s position in
the long answer.

3.1.2. Continuous Prompts

In many cases, these template words are not necessarily composed of natural language
tokens; they could be virtual words that are embedded in a continuous space later and
optimized through gradient descent.

For continuous prompts in WSP, we use some auxiliary virtual tokens [P1], [P2], . . . , [Pl ]
to replace natural language words, where [Pi] can be [unused1]∼[unused99] in the vo-
cabulary of the pre-trained language model, and l is a predefined hyper-parameter. This
method performs prompting directly in the embedding space of the model. An example of
a continuous prompt is given in Figure 1, for which the complete prompt becomes

T5(x) = [C] [P1], [P2], . . . , [Pl ] [Y]. [X]

where T(·) is the template for the WSP dataset, [C] is the word mentioned in the input
sentence x, [Pi] is the virtual token, [X] is the input slot for sentence x, and [Y] is the
answer slot for sense y. Each embedding of prompts is randomly initialized and optimized
during training.
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3.2. Answer Engineering

Unlike prompt engineering, which discovers suitable prompts, answer engineering
tries to seek a proper answer space and a map to the original output that brings about an
effectual predictive model. There are two main challenges in answer engineering: (a) when
there are too many classes, the selection of an appropriate answer space becomes a difficult
combinatorial optimization problem; (b) when using multi-token answers, the issue of
how to best decode multiple tokens using PLMs remains unresolved [28]. In this section,
we propose three independent and different long-answer prompt learning strategies for
the word sense prediction dataset (WSP) to integrate the “sense” knowledge from the
Xinhua Dictionary.

3.2.1. Discrete Answers

In prompt learning, for each class y ∈ Y , the mapping function φ(·) will map it to the
answer φ(y) ∈ V , where V is the answer space. It is easy to find the appropriate answer
space and the mapping function when the classes are limited, and all the answers consist
of a single token. Unfortunately, there is a massive number of classes in the WSP dataset
(it includes 7390 words and 16,495 senses; each word has one to thirteen senses), and the
answer is quite long sometimes. Take the word “order” as an example. The template and
the label word set can be formalized as follows:

T(x) = [C][P1], [P2], . . . , [Pl ][MASK]. x

V[MASK] = {“the way in which people or . . . ”,

“the state that exists when . . . ”,

“a request f or f ood or drinks . . . ”}

(1)

However, a pre-trained language model such as BERT [1] cannot predict the whole
long answer at once. Thus, in our work, we split the answer space V[MASK] into several
answer subspaces {V[MASK]1

, V[MASK]2
, . . . , V[MASK]j

, . . . , V[MASK]n } according to the token’s
position in the answer, where n is the length of the answer, and φj(y) is to map the class y
to the set of label words V[MASK]j

for the j-th masked position [MASK]j. Here, we still take
the word “order” as an example. As shown in Figure 1, the template and the label word set
can be formalized as follows:

T(x) = [C][P1], . . . , [Pl ][MASK]1, . . . , [MASK]n. x

V[MASK]1
= {“the”, “a”}

V[MASK]2
= {“way”, “state”, “request”}

V[MASK]3
= {“in”, “that”, “ f or′′}

V[MASK]4
= {“which”, “exists”, “ f ood”}

. . .

(2)

In a conventional supervised learning system for natural language processing, we take
an input x ∈ X and predict an output y ∈ Y based on the language model p(y|x). As the
template may contain multiple [MASK] tokens, we must consider all masked positions to
make predictions, i.e.,

p(y|x) =
n

∏
j=1

p([MASK]j = φj(y)|T(x)) (3)

where n is the number of masked positions in T(x), and φj(y) is to map the class y to the
set of label words V[MASK]j

for the j-th masked position [MASK]j. Equation (3) can be used
to tune PLMs and classify classes.
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With the pre-trained language model predicting the masked tokens, the loss function
of KLAPrompt is given by

L = − 1
|X | ∑

x∈X
log p(y|x)

= − 1
|X | ∑

x∈X
log

n

∏
j=1

p([MASK]j = φj(y)|T(x))
(4)

3.2.2. Continuous Answers

In contrast to discrete answers, continuous answers use virtual answer tokens optimized
directly in the embedding space. WARP [38] utilizes a virtual token for each class label and
optimizes the token embedding for each class together with prompt token embeddings.

However, for the word sense prediction dataset (WSP), we do not have 16,495 unused
virtual tokens in the vocabulary for 16,495 classes. Thus, we design the answer space accord-
ing to the sense ID in the Xinhua Dictionary. The continuous answers consist of five virtual
tokens, and each token belongs to the answer space Q = {[Q0], [Q1], . . . , [Q9]}, where [Qi]
can be [unused1]∼[unused99] in the vocabulary of the pre-trained language model, which
would be embedded in a continuous space later and optimized through gradient descent.
In Figure 2, the sense ID is “06030”, and the true answer is “[Q0][Q6][Q0][Q3][Q0]”. In this
way, each class has a different set of virtual tokens. We can also use more virtual tokens
and adopt different strategies.

In our continuous answer method, the “sense” answer is w = {w1, w2, w3, w4, w5},
where wj = φj(y) ∈ Q ∈ V , and φj(y) is to map the class y to the set of label words
V[MASK]j

for the j-th masked position [MASK]j. As we attempt to obtain the predictions of
the masked tokens, the objective is similar to Equation (4):

L = − 1
|X | ∑

x∈X
log p(y|x)

= − 1
|X | ∑

x∈X
log

5

∏
j=1

p([MASK]j = φj(y)|T(x))
(5)

[CLS] order  .The police try to restore public order . [SEP][MASK] [MASK] …[MASK] [𝑃!] … z[𝑃"] [𝑃#] 

MLM head MLM head MLM head 

Learnable Continuous token Token in the Answer Space

[𝑄$] 

Answer Space

[𝑄%] 
…

Sense ID: 06030       True answer: [𝑄%] [𝑄&] [𝑄%] [𝑄'] [𝑄%] 

InputContinuous Answer

Figure 2. Illustration of KLAPrompt with continuous answer strategy. In the continuous answer
strategy, we use virtual answer tokens, which can be optimized through gradient descent, to replace
the natural language in discrete answers.
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3.2.3. Sentence Similarity

Different from the above two methods, we propose another approach to dealing with
the problem whereby the masked language model (MLM) is unable to predict the whole
long answer at once.

We average the embeddings of the masked part and the original true answer to obtain
their sentence embedding. Thus, in this method, the answer space is a sentence embedding
space. Then, we maximize the cosine similarity between these two sentence embeddings to
make the predicted tokens as similar to the original answer tokens as possible.

When calculating the similarity, the predicted answer and the true answer share the
same MLM head to ensure that the two sentence embeddings are generated by the same
model. An example of this method is shown in Figure 3.

True  answer:  the state that exists when people obey laws, rules or authority

[CLS] order  .The police try to restore public order . [SEP][MASK] [MASK] …[MASK] [𝑃!] … z[𝑃"] [𝑃#] 

MLM head 

Continuous Prompt Input

Learnable Continuous token Token in the vocabulary

Average

Sentence Embedding

Average

Sentence Embedding

MLM head 

𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

Figure 3. Illustration of KLAPrompt with sentence similarity strategy. In the sentence similarity strategy,
we average the embeddings of the masked part and the original true answer to obtain their sentence
embedding. Then, we maximize the cosine similarity between these two sentence embeddings.

3.3. KLAPrompt’s Application in the Medical Field

We also explore the effectiveness of the KLAPrompt method in the medical field.
Firstly, we collect a disease and category prediction dataset (DCP) based on MedicalKG
(https://github.com/zhihao-chen/QASystemOnMedicalKG accessed on 3 April 2023),
which contains specific disease knowledge such as descriptions, departments, symptoms,
causes, prevention, checking items, recommended foods, and recommended drugs. Then,
we design the continuous prompt for the DCP dataset. An example of a continuous prompt
and disease knowledge in MedicalKG is shown in Figure 4.

https://github.com/zhihao-chen/QASystemOnMedicalKG
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Angina pectoris

Disease:  Angina pectoris1. Description

2. Department

3. Symptom

4. Cause

5. Prevention

6. Checking Item

7. Recommended Food

8. Recommended Drug

Input:  Angina pectoris is chest pain or pressure, usually caused by insufficient blood flow to the heart 
muscle. It is most commonly a symptom of coronary artery disease. (Description of Angina pectoris)

Category:  Description

True Answer:  Angina pectoris  [P!], ···, [P"] description [P"#!], ···, [P$"]  Angina pectoris is chest pain 
or pressure, usually caused by insufficient blood flow to the heart muscle. It is most commonly a 
symptom of coronary artery disease.

Continuous Prompt:  [MASK]!, ···, [MASK]% [P!], ···, [P"]  [MASK]%#!, ···, [MASK]%#& [P"#!], ···, [P$"] 
Angina pectoris is chest pain or pressure, usually caused by insufficient blood flow to the heart muscle. 
It is most commonly a symptom of coronary artery disease.

Figure 4. An example of a continuous prompt and disease knowledge in MedicalKG. For each disease,
there are eight categories of disease knowledge. We utilize the masked language model (MLM) to
predict the disease and category simultaneously.

The continuous prompt for the DCP dataset can be formalized as follows:

T(x) = [Y1] [P1], . . . , [Pl ] [Y2] [Pl+1], . . . , [P2l ] [X]

= [MASK]1, . . . , [MASK]m [P1], . . . , [Pl ]

[MASK]m+1, . . . , [MASK]m+n [Pl+1], . . . , [P2l ] x

(6)

where T(·) is the template for the DCP dataset, [Pi] is the virtual token, and [X] is the
input slot for input x. [Y1] is the answer slot for [MASK]1, . . . , [MASK]m, where m is the
length of the disease. [Y2] is the answer slot for [MASK]m+1, . . . , [MASK]m+n, where n
is the length of the category. Each embedding of prompts is randomly initialized and
optimized during training.

Finally, we apply the answer space partitioning strategy to the masked language
model (MLM) to predict the disease and category simultaneously.

In prompt learning, for each class y ∈ Y , the mapping function φ(·) will map it to
the answer φ(y) ∈ V , where V is the answer space. Take the disease “Angina pectoris”
and category “description” as an example. The template and the label word set can be
formalized as follows:

T(x) = [Y1] [P1], . . . , [Pl ] [Y2] [Pl+1], . . . , [P2l ] [X]

V[Y1]
= {“Diabetes”,

“Angina pectoris”,

“Iron de f iciency anemia”

“ . . .′′}
V[Y2]

= {“cause”,

“description”,

“checking item”

“ . . . ”}

(7)

For the DCP dataset, we split the answer space V[Y1]
into several answer subspaces

{V[MASK]1
, V[MASK]2

, . . . , V[MASK]m } and the answer space V[Y2]
into {V[MASK]m+1

, V[MASK]m+2
,

. . . , V[MASK]m+n } according to the token’s position in the answer. The mapping function φj(y)
is to map answer y to the set of label words V[MASK]j

for the j-th masked position [MASK]j.
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Here, we still take the disease “Angina pectoris” and category “description” as an ex-
ample. As shown in Figure 5, the template and label word set can be formalized as follows:

T(x) = [MASK]1, . . . , [MASK]m [P1], . . . , [Pl ]

[MASK]m+1, . . . , [MASK]m+n[Pl+1], . . . , [P2l ] x

V[MASK]1
= {“Diabetes”, “Angina”, “Iron”, “ . . . ”}

V[MASK]2
= {“pectoris”, “de f iciency”, “ . . . ”}

V[MASK]3
= {“anemia”, “ . . . ”}

. . .

V[MASK]m+1
= {“cause”, “description”, “checking”, “ . . . ”}

V[MASK]m+2
= {“item”, “ . . . ”}

. . .

(8)

[P!"][P"#$]… [MASK] [P$] [P"]… [MASK] [MASK] …[MASK] [MASK] 

MLM Head MLM Head MLM Head MLM Head MLM Head 

item

Label Words

…

description

cause

checking

Label Words

…

Angina
Diabetes

Iron

Label Words

…
deficiency
pectoris

Label Words

…
anemia

Label Words

…

[CLS] 

InputContinuous Prompt

Disease Category

Learnable Continuous token Token in the Answer Space

[SEP] Angina pectoris is chest pain……

Figure 5. Illustration of KLAPrompt in the Medical Field. We use auxiliary virtual tokens
[P1], [P2], . . . , [P2l ] to replace natural language words and design the continuous prompt and for
DCP dataset.

As the template may contain multiple [MASK] tokens, we must consider all masked
positions to make predictions, i.e.,

p(y|x) =
m+n

∏
j=1

p([MASK]j = φj(y)|T(x)) (9)

where m + n is the number of masked positions in T(x), and φj(y) is to map the answer y
to the set of label words V[MASK]j

for the j-th masked position [MASK]j. The loss function
is given by

L = − 1
|X | ∑

x∈X
log p(y|x)

= − 1
|X | ∑

x∈X
log

m+n

∏
j=1

p([MASK]j = φj(y)|T(x))
(10)
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4. Experiments

In this section, we present the details of implementation and conduct experiments on
five open-domain NLP datasets and five health-related datasets to evaluate the efficiency
and effectiveness of our approach.

4.1. Datasets
4.1.1. Open Domain

STS-B. This Chinese version of the dataset (https://github.com/pluto-junzeng/
CNSD accessed on 15 April 2023) is translated from the original English dataset STS-B [39]
and partially manually revised. Semantic textual similarity (STS) measures the meaning
similarity of sentences.

Book Review. The Book Review dataset [40] is collected from Douban, a Chinese
online review website that provides information about books, movies, and music. It is a
one-sentence text classification dataset.

XNLI. In our experiment, only the Chinese part of the Cross-Language Natural Lan-
guage Inference (XNLI) [41] dataset is retained. In XNLI, the model should read the
two sentences and determine whether the relationship between them is “Entailment”,
“Contradiction”, or “Neutral”.

Chnsenticorp. Chnsenticorp [40] is a sentiment analysis dataset that contains 12,000 hotel
reviews. In total, 6000 reviews are positive, and the other 6000 reviews are negative.

IFLYTEK. The IFLYTEK [42] dataset has more than 17,000 long texts containing appli-
cation descriptions, including various application topics related to daily life, with a total of
119 categories.

The datasets above contain 8.05 K, 40.0 K, 40.0 K, 12.0 K, and 17.3 K samples, respec-
tively. We follow the evaluation metrics and settings used in [40,42].

4.1.2. Biomedical Domain

We utilize five biomedical datasets over three different tasks to evaluate our method.
The CMeIE, CHIP-CDN, CHIP-CTC, KUAKE-QQR, and KUAKE-QTR datasets are pro-
posed in [43].

CMeIE. The task of Chinese Medical Information Extraction (CMeIE) is to identify
medical entities from complex medical text data and determine the relationships between
such medical entities. This dataset includes 518 pediatric diseases and 109 common dis-
eases, providing rich resources for medical-related natural language processing research.
CMeIE contains nearly 75,000 triplet data, 28,000 sentences about disease descriptions, and
53 different schemas.

CHIP-CDN. The goal of the Clinical Diagnosis Normalization (CHIP-CDN) task is to
find a unified and comparable standard for different terms. Based on standardized termi-
nology, researchers can effectively conduct statistical analysis and obtain more accurate
results. CHIP-CDN is a semantic matching task. It provides 2500 standardized surgical
data to improve task performance.

CHIP-CTC. Recruiting clinical trial subjects requires careful comparison and strict
screening. Due to the complex and time-consuming recruitment process, many clinical
trials cannot proceed as planned, and a large number of participants withdraw in the
middle of the experiment, which seriously affects the effectiveness of the experiment. The
Clinical Trial Criterion (CHIP-CTC) task is based on clinical trial screening standards to
classify subjects in clinical trials.

KUAKE-QQR. The Query-Query Relevance (KUAKE-QQR) task mainly evaluates
the degree of matching between two query topics. It aims to determine whether Query-A
and Query-B have undergone translation and the degree of translation. Calculating the
correlation between two query terms is an important task that can optimize the search
quality of long-tail queries.

KUAKE-QTR. The Query-Title Relevance (KUAKE-QTR) task mainly evaluates the
degree of matching between the query topic and the title topic, which is related to the

https://github.com/pluto-junzeng/CNSD
https://github.com/pluto-junzeng/CNSD
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accuracy of the search results. This task requires determining whether the Query topic and
Title topic are consistent.

The datasets above contain 22.4 K, 18.2 K, 40.6 K, 18.2 K, and 32.6 K samples, respec-
tively. We follow the evaluation metrics used in [43].

4.2. Implementation Details

KLAPrompt is based on pre-trained language models. In the open domain, we choose
BERT [1], RoBERTa [3], and MacBERT [44] as our basic models. In the biomedical domain,
we choose BERT [1], MacBERT [44], MC-BERT [36], MedBERT (https://github.com/trueto/
medbert accessed on 15 April 2023), and SMedBERT [37] as our baselines. For all these
models, the number of layers is 12, the hidden size is 768, the number of heads is 12, and it
contains 110 M parameters. These models are optimized with the Adam optimizer [45],
with the initial learning rate of 1× 10−5. The training batch size is 64. Each model is trained
for 10 epochs and evaluated on the validation set for every epoch. All experiments are
carried out using a single NVIDIA GeForce RTX 3090 24 GB card.

4.3. Results on Open Domain

The experimental results on the development set of five Chinese natural language
processing datasets are presented in Table 2. We show each original model and the model
trained with the KLAPrompt method (e.g., “BERT” and “BERT + KLAPrompt”). We find
that all pre-trained language models trained with the KLAPrompt method have achieved
significant improvements compared to the original PLMs. For the STS-B, Book Review, and
XNLI datasets, “RoBERTa + KLAPrompt” increases the final results by 2.14%, 2.04%, and
2.32%. Moreover, for the IFLYTEK dataset, the method still raises the accuracy by more
than 1%. This superior performance proves that infusing external semantic knowledge via
the KLAPrompt approach can empower the widely adopted pre-trained language models.

Table 2. Experimental results of baseline methods and our method on five datasets (Acc.%).
“+ KLAPrompt” indicates that we train the PLMs with the KLAPrompt method via semantic knowl-
edge infusion training before fine-tuning.

Models STS-B Book Review XNLI Chnsenticorp IFLYTEK

BERT 50.75 86.62 76.8 93.3 60.52
BERT + KLAPrompt 52.92 ↑ 88.63 ↑ 78.61 ↑ 94.82 ↑ 61.58 ↑

RoBERTa 48.23 89.08 78.37 94.85 60.44
RoBERTa + KLAPrompt 50.37 ↑ 91.12 ↑ 80.69 ↑ 95.1 ↑ 61.46 ↑

MacBERT 52.92 88.78 79.05 94.98 60.82
MacBERT + KLAPrompt 54.67 ↑ 90.1 ↑ 81.49 ↑ 95.79 ↑ 62.01 ↑

In our proposed KLAPrompt, five components may affect the performance: the
discrete prompt, continuous prompt, discrete answer, continuous answer, and sentence
similarity. To explore such effects, we conduct an ablation experiment using the XNLI
dataset. The experimental results are presented in Table 3.

We first compare BERT with BERT + WSP † to showcase the advantages of external
semantic knowledge in the WSP dataset. BERT + WSP † is trained on the WSP dataset
with its original masked language model (MLM), and it does not use the KLAPrompt
method. The experimental results demonstrate that introducing semantic information from
the Xinhua Dictionary can consistently improve language modeling and downstream tasks.

Then, we compare “BERT + WSP †” with “BERT + Discrete Prompt †” and “BERT +
Continuous Prompt †”. In order to control the variables for comparison, in this group of
experiments, both “BERT + Discrete Prompt †” and “BERT + Continuous Prompt †” use
BERT’s original masked language model (MLM) without using long-answer strategies. We
find that both discrete and continuous prompts can improve the performance of the model.

https://github.com/trueto/medbert
https://github.com/trueto/medbert
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Table 3. Ablation study on XNLI dataset (Acc.%). “+ WSP” indicates that we train BERT on the WSP
dataset without the KLAPrompt approach. † indicates that we train these models on the WSP dataset
before fine-tuning.

Models XNLI

BERT 76.8
BERT + WSP † 77.34 (+0.54)
BERT + Discrete Prompt † 77.52 (+0.72)
BERT + Continuous Prompt † 77.72 (+0.92)
BERT + Continuous Prompt + Discrete Answer † 78.61 (+1.81)
BERT + Continuous Prompt + Continuous Answer † 78.28 (+1.48)
BERT + Continuous Prompt + Sentence Similarity † 78.41 (+1.61)

We further compare “BERT + Continuous Prompt + Discrete Answer †”, “BERT +
Continuous Prompt + Continuous Answer †”, and “BERT + Continuous Prompt + Sen-
tence Similarity †”. Both the discrete answer and continuous answer use answer space
partitioning strategies. Among these three long-answer strategies, the discrete answer with
the answer space partitioning strategy results in the best performance.

In Table 4, we offer a detailed comparison between different discrete prompts and
continuous prompts. We find that continuous prompts outperform discrete prompts in
every dataset. However, it is not possible to consider all possible discrete prompts because
the manually crafted prompts are complicated and infinite. Thus, in most cases, we can
directly utilize the continuous prompts in prompt learning.

The hyper-parameter l is the number of virtual tokens in continuous prompts. To
explore its impact on the performance of our prompt learning methods, we test them with
different values of hyper-parameter l = {1, 2, 3, 4, 5}. As shown in Table 4 and Figure 6,
different tasks reach their best performance with different values of hyper-parameter l.
Thus, the hyper-parameter l needs to be tuned according to downstream NLP task.

We also investigate the consistency of the improvements with different percentages of
downstream training data. The experiment results in Figure 7 illustrate that the improve-
ment is more obvious when the amount of data is smaller. In other words, prompt learning
with semantic knowledge can benefit data-scarce downstream tasks because, when the
training data are limited, the task depends on the pre-trained language model and the
additional semantic knowledge.

76.5

77

77.5

78

78.5

79

48.5

49

49.5

50

50.5

51

51.5

52

52.5

53

1 2 3 4 5
𝑙

Acc

STS-B
XNLI

Figure 6. Performance of prompt learning with continuous prompts method with respect to different
values of hyper-parameter l.
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Table 4. Comparison with discrete prompts and continuous prompts (Acc.%). In this table, we use
discrete answers.

Prompt Type Template T(x) STS-B Book Review XNLI Chnsenticorp IFLYTEK

Discrete

The meaning of [C] is [Y]. [X] 52.38 86.57 77.8 94.49 60.43
The meaning of “[C]” is [Y]. [X] 51.63 86.05 76.64 94.65 60.4
Among them, the meaning of [C] is [Y]. [X] 49.12 86.92 77.04 94.74 60.44
In this sentence, the meaning of [C] is [Y]. [X] 51.36 86.71 77.68 94.41 60.25

Continuous

[C] [P1], . . . , [Pl ] [Y]. [X], l = 1 52.45 88.58 78.33 94.82 60.14
[C] [P1], . . . , [Pl ] [Y]. [X], l = 2 50.75 88.63 77.8 94.65 60.25
[C] [P1], . . . , [Pl ] [Y]. [X], l = 3 49.93 88.37 77.92 94.57 59.87
[C] [P1], . . . , [Pl ] [Y]. [X], l = 4 51.09 88.52 77.32 94.33 60.56
[C] [P1], . . . , [Pl ] [Y]. [X], l = 5 51.29 88.39 78.61 94.57 60.55

0

10

20

30

40

50

60

1% 5% 10% 20% 40% 60% 80% 100%
Percentage of training data in STS-B

Acc

BERT

Prompt Learning with
Sentence Similarity

Figure 7. Performance of BERT and prompt learning with sentence similarity method with different
amounts of training data.

5. Discussion

In view of the comparison results on five open-domain datasets, namely STS-B
(https://github.com/pluto-junzeng/CNSD accessed on 15 April 2023), Book Review [40],
XNLI [41], Chnsenticorp [40], and IFLYTEK [42], it is clear that our KLAPrompt method
can achieve superior performance in open-domain downstream tasks based on the strength
of the fine-grained semantic knowledge. In order to further investigate the effectiveness
of the KLAPrompt method in the medical field, we conduct extensive experiments on
five biomedical domain datasets: CMeIE, CHIP-CDN, CHIP-CTC, KUAKE-QQR, and
KUAKE-QTR [43].

Results on Biomedical Domain

The experimental results on the development set of five Chinese biomedical datasets
are presented in Table 5. We find that all pre-trained language models trained with the
KLAPrompt method have achieved significant improvements compared to the original
PLMs. For the MacBERT, MC-BERT, and SMedBERT models trained with the KLAPrompt
method, they increase the final results on the CMeIE dataset by 2.75%, 2.73%, and 2.12%.
Moreover, for most datasets, the method still can increase the results by more than 1%.
This superior performance proves the effectiveness of the KLAPrompt method in the
medical field.

https://github.com/pluto-junzeng/CNSD
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In KLAPrompt, other two components may affect the performance: disease prediction
and category prediction. To explore such effects, we conduct an ablation experiment using
the CMeIE dataset. We first compare “SMedBERT” with “SMedBERT + DCP †” to showcase
the advantages of external disease knowledge in the DCP dataset. “SMedBERT + DCP †” is
trained on the DCP dataset with its original masked language model (MLM), and it does
not use the KLAPrompt method. The experimental results demonstrate that introducing
disease information from MedicalKG can consistently improve language modeling and
downstream tasks.

Then, we explore the effects of the two components. “- Disease Prediction” indicates
that the disease prediction component is removed during training. As shown in Table 6,
both components can improve the performance on this dataset. In addition, we observe the
worst result when we remove the disease prediction, which shows that disease prediction
is more effective than category prediction.

Table 5. Experimental results of baseline methods and our method on five datasets. “+ KLAPrompt”
indicates that we train the PLMs with the KLAPrompt method via disease knowledge infusion
training before fine-tuning.

Tasks Relation Extraction Text Classification Sentence Similarity Estimation

Datasets CMeIE CHIP-CDN CHIP-CTC KUAKE-QQR KUAKE-QTR

Metrics (%) F1 F1 F1 Accuracy Accuracy

BERT 71.04 75.12 83.3 81.49 66.29
BERT + KLAPrompt 72.12 ↑ 76.28 ↑ 84.12 ↑ 82.99 ↑ 67.49 ↑

MacBERT 69.89 76.01 83.19 82.68 66.53
MacBERT + KLAPrompt 72.64 ↑ 77.23 ↑ 83.9 ↑ 82.99 ↑ 67.77 ↑

MC-BERT 69.08 76.51 82.2 82.36 66.3
MC-BERT + KLAPrompt 71.81 ↑ 77.44 ↑ 83.58 ↑ 83.05 ↑ 67.54 ↑

MedBERT 71.63 76.85 82.74 80.49 66.13
MedBERT + KLAPrompt 72.35 ↑ 78.53 ↑ 84.12 ↑ 82.05 ↑ 67.2 ↑

SMedBERT 70.53 75.49 82.56 82.36 65.53
SMedBERT + KLAPrompt 72.65 ↑ 76.73 ↑ 84.25 ↑ 83.55 ↑ 66.98 ↑

Table 6. Ablation study on the CMeIE dataset (F1%). † indicates that we train these models on the
DCP dataset before fine-tuning.

Variants F1

SMedBERT 70.53
SMedBERT + DCP † 70.97

- Disease Prediction † 71.88
- Category Prediction † 72.33

SMedBERT + KPL † 72.65

6. Conclusions

In this work, we propose a long-answer prompt learning method (KLAPrompt) with
three different long-answer strategies to introduce fine-grained semantic knowledge from
the Xinhua Dictionary. According to the different forms of answers, they can be divided
into three strategies: discrete answers, continuous answers, and sentence similarity. In
the discrete answer strategy, we split the answer space into several answer subspaces
according to the token’s position in the long answer and predict each word of the sense
independently. In the continuous answer strategy, we use virtual tokens to replace the
natural language in discrete answers. These virtual tokens can be embedded in a continuous
space and optimized through gradient descent. In the sentence similarity strategy, we
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average the embeddings of the masked part in the MLM output, calculate the cosine
similarity between this and the sentence embedding of the original long answer, and
then maximize the similarity during the training procedure. Furthermore, we explore the
effectiveness of the KLAPrompt method in the medical field. We apply the KLAPrompt
method to introduce fine-grained disease knowledge from MedicalKG into pre-trained
language models. Furthermore, we collect a word sense prediction dataset (WSP) based
on the Xinhua Dictionary and a disease and category prediction dataset (DCP) based
on MedicakKG.

Experimental results on five open-domain datasets demonstrate that all pre-trained
language models trained with the KLAPrompt method have achieved significant improve-
ments compared to the original PLMs. The superior performance proves that the infusion of
external semantic knowledge from the Xinhua Dictionary can empower the widely adopted
pre-trained language models. We also find that both discrete and continuous prompts
can improve the performance of the model, and continuous prompts outperform discrete
prompts in all datasets. Thus, in most cases, we can directly utilize continuous prompts in
prompt learning. Among the three long-answer strategies, the discrete answer strategy is
the best method to integrate structured semantic knowledge. Moreover, we investigate the
consistency of the improvements with different percentages of downstream training data.
The experimental results illustrate that the improvement is more obvious when the amount
of data is smaller. In other words, prompt learning with semantic knowledge can benefit
data-scarce downstream tasks.

Additionally, we conduct comprehensive experiments on five health-related datasets
to explore the effectiveness of our KLAPrompt method in the medical field. Extensive
experiments verify that pre-trained language models with the KLAPrompt method can also
achieve superior performance based on the strength of the disease knowledge in MedicalKG.
Then, we explore the effects of two components: disease prediction and category prediction.
We observe the worst result when we remove the disease prediction, which shows that
disease prediction is more effective than category prediction.

In our future work, we will add some virtual tokens on the left of the predicted word
[C], rather than only on one side. We will also infuse common-sense information, domain-
specific information, and knowledge graphs into the pre-trained language models. In the
event that incorrect semantic content is provided, the outcome of the pre-trained learning
might also be misleading, and this may significantly influence the outcome of the language
processing. Thus, we will delve deeper into this problem in our future work.
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