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Abstract: This paper presents an iterative training framework with a binary classifier to improve the
learning capability of a deep learning model for detecting abnormal behaviors in surveillance video.
When a deep learning model trained on data from one surveillance video is deployed to monitor
another video stream, its abnormal behavior detection performance often decreases significantly.
To ensure the desired performance in new environments, the deep learning model needs to be
retrained with additional training data from the new video stream. Iterative training requires manual
annotation of the additional training data during the fine-tuning process, which is a tedious and
error-prone task. To address this issue, this paper proposes a binary classifier to automatically label
false positive data without human intervention. The binary classifier is trained on bounding boxes
extracted from the detection model to identify which boxes are true positives or false positives. The
proposed learning framework incrementally enhances the performance of the deep learning model
for detecting abnormal behaviors in a surveillance video stream through repeated iterative learning
cycles. Experimental results demonstrate that the accuracy of the detection model increases from
0.35 (mAP = 0.74) to 0.91 (mAP = 0.99) in just a few iterations.

Keywords: iterative learning; binary classifier; event detection; surveillance video; deep learning

1. Introduction

Detecting abnormal behaviors from a video stream has drawn significant attention in
the computer vision and machine learning research community. Abnormal behaviors can
be defined as events deviating from ordinary behaviors [1]. Abnormal behavior detection
can be useful in detecting unusual behaviors of animals, such as the estrus habits of cows
or cribbing of horses. In livestock farming, cattle estrus detection is the most crucial factor
in monitoring cattle health and breeding management. The most obvious signal is the
mounting behavior in which a cow mounts another cow for a short duration. Failing to
detect the estrus behaviors will not only reduce the conception rates for the next generation
but also milk production. The process of detecting abnormal events in videos requires the
labor-intensive attention of human operators since abnormal events happen only 0.1% of
the time and 99.9% of watching is wasted [2]. Especially, the barn can contain hundreds of
cows which makes the monitoring process costly and error-prone. Intelligent surveillance
monitoring systems should ideally detect abnormal events automatically in streaming
video in real time. While breeding can be managed under controlled conditions, accurately
tracking the estrus behaviors of cows is essential to determine the optimal timing for breed-
ing. Estrus events occur infrequently, making continuous monitoring with surveillance
cameras indispensable to identify the most suitable period for successful breeding.

Existing work on abnormal behavior detection in surveillance videos can be catego-
rized into traditional and deep learning-based methods. Traditional approaches rely on
hand-crafted features, which require high computational costs to estimate, and the detection
performance may decrease significantly when deployed to monitor scenes with cluttered
backgrounds. Deep learning-based approaches for abnormal behavior detection often
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employ fast object detection models such as You Only Look Once version 5 (YOLOv5) [3]
to learn the features to characterize abnormal behaviors [4–6]. Detection models with
high processing speeds and reasonably high detection accuracies can be implemented on
edge computing devices such as Jetson Nano. However, a challenge arises when dealing
with background information, including noise and irrelevant moving objects. Treating
this background information as additional features can hinder the object detection model
from learning the prevalent features that characterize abnormal behaviors effectively. More-
over, when deploying an object detection model pre-trained on a specific video stream to
monitor a different surveillance video stream, the model is likely to produce a significant
number of false positives and false negatives. This issue arises because the model was
originally pre-trained to learn the features of abnormal behaviors based on the specific
backgrounds used during its training, which may not align with the new surveillance
environment. Therefore, the model’s performance decreases significantly when compared
to its performance on a video stream with similar backgrounds to those in the training
dataset. To address this issue, the detection model needs to undergo retraining using
data specifically collected from the new video streams. This will enable the model to
better adapt to the characteristics of the changing environments, ultimately improving its
detection performance. To ensure comparable performance in the new video stream, the
base detection model must be retrained using additional training data acquired from the
new video stream. However, collecting and labeling such data is a time-consuming process
that requires significant human effort. Once the data is labeled, the detection model can
be fine-tuned by adjusting its internal parameters, enabling it to better detect abnormal
behaviors in the new operating environment.

This paper proposes an iterative training framework that employs a binary classifier
to enhance the learning capability of a deep learning model for detecting abnormal be-
haviors in surveillance videos while reducing the number of false positives. The iterative
learning process involves repeating the training in a few cycles to gradually improve the
performance of the detection model using the base training dataset. The base detection
model is trained using a dataset that includes the manually labeled bounding boxes of
objects exhibiting abnormal behaviors from surveillance video streams in both daytime
and nighttime scenarios. Subsequently, the trained base model is deployed to a new
surveillance video to monitor the same abnormal events. However, a notable decrease
in the detection performance of abnormal behaviors is observed when the video stream
comes from an environment significantly different from the scenes used to train the base
model. To address this issue, the detection results are monitored over a certain time period
to obtain both false positive (FP) and true positive (TP) images. Only the TP results are
added to the existing dataset, which then becomes the training dataset for the next training
cycle. The collected TP images need to be appropriately labeled for another supervised
learning process in the next training cycle. In this study, a base binary classifier is trained
to correct the labels of FP images, which contain incorrect predictions of abnormal objects
from the detection model. After obtaining the new corrected training dataset, the trained
base detection model is fine-tuned to adapt its weights to the current environment. The
bounding boxes corresponding to TP and FP objects are subsequently collected to train a
new binary classifier for the next training cycle. The fine-tuned model is then deployed to
the same environment, and the streaming is monitored for a certain time duration. If the
performance does not meet the target, another training cycle with the fine-tuned detection
model and a new binary classifier using the same processing steps is repeated until the
desired performance is achieved. This iterative approach aims to gradually improve the
model’s performance and adapt it to the specific environment in which it is deployed.

The main contributions of this paper are summarized as follows: (1) the proposal of
an iterative learning scheme for a scalable deep learning model that can detect abnormal
behaviors from surveillance videos in a new environment and (2) the utilization of a binary
classifier in the iterative training process which reduces the need for human efforts to label
the streaming data collected from the changing environment. The remainder of this paper is
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organized as follows: Section 2 describes related works on abnormal behavior detection in
surveillance video streams. Section 3 explains the details of our proposed iterative learning
scheme with a binary classifier for detecting abnormal behaviors. Section 4 presents the
experiment results, evaluation, and performance evaluation. Section 5 discusses ablation
studies for our approach. Finally, Section 6 concludes the paper.

2. Related Work

Abnormal behavior detection is a well-established problem in the field of computer
vision. The main objective is to identify actions occurring in a video and analyze abnormal
events. However, a significant challenge in abnormal behavior detection arises from
the variability of actions based on the specific environment. To address this issue, a
common approach is to efficiently extract features from image sequences. These features
are then utilized for various tasks such as object detection, pose estimation, and dense
trajectories. Traditionally, machine learning algorithms have shown impressive results in
detecting abnormal human behavior by employing shallow feature learning from video
data. Methods like random forest (RF) [7], Bayesian networks [8], Markov models [9],
and support vector machine (SVM) [10] have been used to recognize human behaviors.
However, these methods heavily rely on pre-processing and handcrafted features, which
require a significant amount of time and resources to process. Consequently, they do not
scale well to different datasets and exhibit poor performance in real-world scenarios [11].
Deep learning methods, however, have gained considerable interest from the community
due to their ability to automatically extract meaningful features. Unlike traditional machine
learning methods, deep learning involves a multi-stage learning process that automatically
extracts representative features for a specific task through several hidden layers [12]. These
features, known as deep features, exhibit scalability across various scenarios. Deep learning
has recently been applied in abnormal behavior detection and has proven to be highly
efficient in video surveillance systems [13]. There are several different approaches to
abnormal behavior detection: (i) handcrafted feature-based abnormal behavior detection,
(ii) sparse coding-based abnormal behavior detection, and (iii) abnormal behavior detection
using end-to-end deep learning models.

Handcrafted feature-based abnormal behavior detection involves manually extract-
ing features from a scene to detect abnormal events. Tung et al. [14] utilized low-level
trajectories for detection, but this method lacks robustness in crowded scenes. In [15],
researchers improved this approach by incorporating the Histogram of Oriented Gradient
(HOG) feature. Adam et al. [16] utilized flow features to establish the exponential distri-
bution and model the normal behavior from the training dataset. However, handcrafted
feature methods are computationally expensive and are not robust to noise and cluttered
backgrounds. Sparse coding-based methods assume that normal vector features can be
represented as a linear combination of basis vectors from a learning dictionary. These
methods aim to find a set of basis vectors to construct the sparse representation of the
normal training data, using only normal data for this purpose. In [17], the authors built a
sparse coding dictionary to record only normal events and employed a large reconstruction
error during inference to detect abnormal events. However, the sparse coding process
is slow and time-consuming. To address this issue, Lu et al. [18] accelerated the sparse
learning process by discarding the sparse regularization and proposed the use of multiple
dictionaries to learn a normal distribution.

Most of the existing works on deep learning-based methods assume that normal
behavior patterns can be well reconstructed or predicted. Hansen et al. [19] employed
a convolutional autoencoder for reconstruction tasks and suggested stacking multiple
consecutive frames in channels to improve performance. Liu et al. [20] introduced a
baseline model that detects abnormal behaviors using both appearance features and optical
flow for frame prediction. Luo et al. [21] proposed a sparse coding approach for anomaly
detection based on the stacked RNN framework. Other abnormal behavior detection
methods [4–6,22] rely on fast detection models like YOLO. Fang et al. [4] proposed an
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improved architecture for YOLOv3 to detect abnormal behavior during an examination.
The authors suggested the frame-alternate dual-thread method to increase the speed and
accuracy of the detection model [5] and used YOLOv3 along with a Gaussian background
model to generate multiple kernel learning packages to detect highway accidents. Ji et al. [6]
suggested the T-TINY-YOLO model, which is based on zero-valued weight parameters
to enhance the real-time performance of abnormal human behavior detection on NVIDIA
Jetson TX2. Li and Dai [22] used a weighted convolutional autoencoder (Conv-AE) along
with YOLOv3 to learn the regularity score for a crowded scene. Table 1 summarizes the
advantages and disadvantages of different approaches for abnormal behavior detection.

Table 1. Summary of various approaches for detecting abnormal events in video surveillance.

Approach Method Advantages Disadvantages

Handcrafted
feature-based

Low-level
trajectories [14]

� Simpler to implement
and interpret

� Works well with a
small dataset

� Computationally expensive
� Not robust to noise and

cluttered backgroundsHOG [15]
Flow features [16]

Sparse coding-based Normal sparse coding
dictionary [17,18]

� Improved interpretability
� Provides an efficient

representation of
high-dimensional data

� Computationally expensive
� Limited scalability with

large-scale datasets

Deep learning based

AutoEncoder [19] � End-to-end learning
� Scalability to large and

high-dimensional datasets
� Well-suited for

transfer learning

� Requires large amounts of
training and test data

� Lack of interpretability
� Prone to overfitting
� Lack of adaptiveness when

deploying in new
environments

GANs [20]
Stacked RNN [21]
YOLO [4–6,22]

Proposed Iterative training with
binary classifier

� Compatible with various
object detection models

� Adapts to new
environments to reduce
false positives

� Reduces time and effort to
annotate new training data

� Requires a few iterations for
the model to adapt to a
new environment

3. Iterative Training of the Detection Model with a Binary Classifier
3.1. Iterative Training Process

The detection model for abnormal behavior heavily relies on the collected train-
ing dataset. When deployed in unfamiliar environments with diverse backgrounds and
different illumination conditions, the overall performance rapidly decreases. Therefore,
data-driven detection systems should be built based on the new environment. This paper
introduces a new vision-based detection system that utilizes fast object detectors such
as YOLOv5 [3] to detect abnormal behaviors. The system can be deployed in different
environments to collect new training data. Afterward, iterative training is conducted on
this new data to fine-tune the detector. A binary classifier is also employed to reduce the
human effort required for labeling the collected streaming data.

The proposed iterative training scheme involves training a base deep learning model
iteratively using additional training data samples collected from a new video stream.
When a detection model, pre-trained on a specific dataset, is deployed to monitor a new
surveillance video stream, it may produce a significant number of false positives due to
differences in the environments. To improve the performance of the pre-trained detection
model on a new video stream, the model needs to be retrained using the data obtained
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from similar environments. The iterative training process collects and classifies positive
images into true positives and false positives to correct the labels. The additional collected
data is then used to fine-tune the existing detection model, making it adapt to different
environments. This strategy allows for the detection model to quickly adjust its weights to
the specific conditions and detect abnormal events in new video streams.

Two separate datasets, DB-I and DB-O, are used to train the detection model (DM)
and the binary classifier (BC), respectively. DB-I is a dataset of images containing both
normal and abnormal events which is used to train the detection model in a supervised
manner. Normal images contain all normal objects, while an abnormal image contains at
least one abnormal event in the scene. The object dataset (DB-O) consists of image patches
corresponding to the bounding box of normal and abnormal objects extracted from the
DB-I. Figure 1 shows a schematic diagram of the proposed iterative training process. We
initially train our base detection model (DM0) and binary classifier (BC0) on the datasets
DB-I and DB-O, respectively. The DM0 is then deployed to a surveillance video stream
for detecting abnormal events. The detected positive images are collected from the video
stream and used for additional training to improve the performance of the current detection
model. During each iteration of the iterative training process, the image dataset (DB-I)
and object dataset (DB-O) are updated by incorporating additional training data from the
video stream after the labels are corrected by the binary classifier. The detection model and
binary classifier are iteratively trained on the updated datasets to become more adaptive
to the new environment. The iterative learning process is repeated for N iterations until
the performance of the detection model reaches the desired level for the new surveillance
video stream.
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Figure 2 shows the sequence of iterative learning with a binary classifier for an iteration.
In the initial step of the iterative training, a detection model is trained with an initial
training dataset (DB-I) to create our base detection model (DM0). Additionally, a base
binary classifier (BC0) is trained using the initial training dataset (DB-O), which contains
both normal and abnormal objects extracted from the DB-I. In the k-th iteration, given an
image dataset (DB-Ik), the detection model from the previous iteration (DM(k−1)) is trained
with the DB-Ik to obtain the DMk. The trained detection model (DMk), is then deployed to
monitor the surveillance video stream for a certain duration.
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During streaming, the detection model detects and stores all the abnormal events,
denoted as Sk. Those positive images detected by the model contain true positives and
false positives. Before using the positive images for additional training in the next iterative
learning cycle, it is essential to separate the false positives and correct their labels. This
ensures that the detection model can better learn the abnormal events in the next training
cycle. To avoid the need for manual separation and the label correction of false positive
images, the proposed iterative learning scheme utilizes a binary classifier. This binary
classifier is trained to automatically detect false positives. All the images collected from the
new video stream, after the labels are corrected, are added to the dataset (DB-Ik) to produce
an updated image dataset (DB-I(k+1)). In the k-th iteration, the binary classifier (BC(k−1))
is trained with an object dataset (DB-Ok) to produce the BCk. The binary classifier (BCk)
examines each object in the positive image to identify the false positive objects in the scene.
The binary classifier corrects the labels of false positives in the additional streaming data
and incorporates them into the training dataset (DB-Ik) to generate an updated training
dataset (DB-Ik+1). This updated dataset is then used to train the detection model (DMk).
The datasets are updated iteratively as:

DB− Ik+1 = DB− Ik ∪
{

C(k)
i |Labeled additional training image at iteration k

}
(1)

DB−Ok+1 = DB−Ok ∪
{

O(k)
i |Labeled additional object at iteration k

}
(2)

The iterative training process for both the detection model and the binary classifier is
repeated until the desired detection accuracy is achieved. If the binary classifier detects
any false positives, it automatically changes the label of the abnormal object in that image
to normal. Otherwise, the binary classifier keeps the label of all true positive events. For
a set of positive images detected by the model in the k-th iteration, the binary classifier
(BCk) makes a decision for each object in the positive image, labeling them as either a true
positive (TP) or a false positive (FP). The labels of the FP objects are corrected as negative.
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The following formulas show the training steps for the detection model and the binary
classifier in the next iteration (k + 1):

DMk+1 ← Train DMk with DB-Ik+1 (3)

BCk+1 ← Train BCk with DB-Ok+1 (4)

The binary classifier plays a crucial role in correcting the detection model’s mistakes
by classifying detected abnormal objects as either true positives or false positives. Figure 3
shows an image of a detected event containing an anomalous object labeled with a red
bounding box and two non-anomalous objects labeled with green bounding boxes. Instead
of manually labeling false positives to collect additional training data, the binary classifier
automatically removes them from a set of additional training data without human interven-
tion. The binary classifier (BCk) then examines only the anomalous object and decides if the
object is classified as true (anomalous) or false (non-anomalous). If the object is classified
as true (anomalous), then the object is accepted as TP. If classified as false (non-anomalous),
the object is considered an FP, and the detection label is corrected accordingly. All the
positive images, along with their corrected object labels, are used to create a training dataset
(DB-I(k+1)) for the next training cycle. To update the dataset (DB-Ok) for training the binary
classifier in the next iteration (k + 1), each true positive object is labeled as 1 and each false
negative object as 0 from the detection event (Sk). All newly labeled objects (Ok) are added
to the dataset (DB-Ok) to produce DB-O(k+1). Since the annotation process requires only
two labels, the potential for errors and the need for human effort are reduced.
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3.2. The Model Architectures
3.2.1. Detection Model

YOLOv5 [3] is a popular object detection model known for its fast and accurate
capabilities in detecting objects. It utilizes convolutional neural networks (CNNs) to
automatically extract features from images at different scales and positions, making it
well-suited for object detection and recognition tasks. YOLOv5 has demonstrated high
effectiveness and robustness in object detection, being able to process images in real-time
and achieving a strong performance on various object detection benchmarks like the COCO
Dataset. For our study, we used a nano model of YOLOv5 (YOLOv5n) as our base model
to detect anomalous events. The flexibility of YOLOv5 allowed us to train it on custom
datasets, enabling the detection of specific types of anomalies in particular contexts. Since
the COCO Dataset might not include events of interest in specific applications, it became
necessary to retrain the original YOLOv5 model with a set of training images containing
abnormal events detected from a surveillance video stream. The resulting model served
as a base detection model for detecting abnormal events. During the initial training, the
model’s weights were initialized to detect abnormal events of interest, and it was trained
on two categories of normal and abnormal objects. The base YOLOv5 model was then
deployed to a surveillance camera to collect streaming images and output the probabilities,
objectness scores, and bounding boxes for each object on the screen. Anomalous events,
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including both TPs and FPs, were corrected by the binary classifier to update the base
dataset for the next iteration in the iterative training process.

3.2.2. Binary Classifier

In this paper, we utilized a pre-trained ResNet-18 model [23] as the binary classifier,
which was trained on the ImageNet Dataset to classify 1000 object categories. The ResNet
backbone enhances the model’s performance by leveraging its capability to learn features
from images effectively. The ResNet backbone can extract rich features from images and
pass them to the final layers of the network, enabling accurate predictions. To adapt the
ResNet model to our binary classification problem, the last output layer was replaced
with a one-unit layer. This new output layer of the binary classifier was initialized with
random weights, and during the initial epochs, only this layer was trained while keeping
the weights in the backbone layers fixed. As the training progressed, the entire network
was unfrozen, and training was carried out gradually. The binary classifier produced an
abnormal probability score for the input object. To scale this output value to a range between
0 and 1, the sigmoid function was applied. Additionally, a threshold (defaulting to 0.5) was
defined to determine whether the input object was a false positive. If the output value was
greater than or equal to this threshold, the input object was considered abnormal. During
the iterative training process, the binary classifier is crucial in distinguishing FPs from
TPs, ensuring the accuracy of the detection model by correcting the labels and improving
its performance.

4. Experimental Results
4.1. Data Collection

The effectiveness of the proposed iterative learning framework was validated through
experiments focused on detecting the estrus behaviors of cows as an abnormal event
from a surveillance video stream. To continuously monitor the cows for estrus behaviors,
surveillance cameras were installed in eight cow barns, capturing video streams 24/7
during both daytime and nighttime. Each pen, approximately 8 × 8 m2 in size, housed six
cows with an average weight of 500 kg each. The installed surveillance cameras recorded
video streams at a resolution of 1920 × 1080 at 60 frames per second (fps). Positioned at the
corner of the cattle barn, the camera was placed 3 m above the ground level. Depending
on the ambient light around the cow enclosure, RGB video data were recorded if the
light exceeded a predefined value; otherwise, an infrared video was saved. In total,
approximately 4392 h of video streaming data per camera were recorded over a period of
183 days, resulting in a total of 35,136 h of video data, captured during both daytime and
nighttime. The streaming video was transferred to a Jetson Nano board through the Real-
Time Streaming Protocol (RTSP) to provide training images for the base detection model.

Image frames were extracted from the video streams, and each cow object was then
labeled as either “estrus” or “non-estrus” based on their behavior in the extracted image
frame using the CVAT annotation tool [24]. This process was carried out to build a training
dataset. The dataset was further divided into two separate sets to create two base detection
models—one for daytime and the other for nighttime scenarios. Throughout the 183 days
of the study, a total of 8431 images containing 113,209 instances of cows were collected
from eight different video streams. From this large dataset of cow images, 6744 images
were used for the iterative training of the base detection model, while 1687 images were
reserved for evaluation purposes, following an 80:20 ratio. The distribution of the training
and testing images for the two distinct types (daytime and nighttime) is presented in
Table 2. The binary classifier was trained using cow objects extracted from the base training
dataset, which comprised the 8431 cow images, as well as the FP images detected during
the streaming. Table 3 provides the numbers of estrus cow objects for training and testing
the binary classifier.
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Table 2. Number of image samples in the datasets for the training and testing the detection model
(DB-I).

Training Testing

Estrus Non-Estrus Estrus Non-Estrus

Daytime 4503 844 1129 208
Nighttime 623 774 168 182

Total 5126 1618 1297 390

Table 3. Number of objects in the datasets for training and testing for the binary classifier (DB-O).

Training Testing

Estrus Non-Estrus Estrus Non-Estrus

Daytime 4500 2064 1126 517
Nighttime 632 1038 158 260

Total 5132 3102 1284 777

4.2. Building a Base Model for Estrus Cow Detection
4.2.1. Detection Model Implementation

The architecture of our base model, YOLOv5n, designed for detecting estrus cows, was
implemented using the PyTorch framework [25]. We used pre-trained model weights for
YOLOv5n downloaded from the official GitHub repository [3]. These weights were trained
on the COCO Dataset and served as a starting point for our object detection task using
the transfer learning technique. Our experiments were conducted on a system running
Ubuntu 18.04.5 LTS x64, with CUDA 11.6 and OpenCV 4.5.5. The hardware configuration
included an Intel(R) Xeon(R) E5-2620 v4 @ 2.10 GHz processor with 128 GB of RAM. To
accelerate the training process for YOLOv5n, we used four NVIDIA TITAN Xp GPUs, each
with 12 GB of memory. For the task of streaming video and detecting estrus images, a
Jetson Nano Developer Kit was employed, which features a Quad-core ARM A57 CPU @
1.43 GHz, 4 GB of RAM, and a 128-Core Maxwell GPU. In our training setup, the learning
rate was set to 0.01 with an SGD optimizer. A decay value of 0.001 was used to prevent
overfitting. The binary classifier was trained for 50 epochs, while YOLOv5n was trained for
100 epochs. The object confidence threshold was set to 0.5, and the IoU (Intersection over
Union) threshold for non-maximum suppression (NMS) was set to 0.45. These parameters
were chosen to optimize the detection performance of our model.

Due to the distinct monitoring environments during the daytime and nighttime, two
identical base detection models were employed—one for daytime monitoring and the other
for nighttime monitoring. This approach allowed us to adapt the models specifically to the
characteristics of each scenario. The daytime model was used to analyze the RGB streaming
video containing color information, which can be useful for identifying abnormal objects
and tracking changes in the environment. On the other hand, the nighttime model was
used on the infrared video stream, enabling the detection of object contours and shapes. For
consistent labeling during inference, the detection model decides on a positive estrus event
based on the trailing moving average of the detection results for multiple image frames. A
non-estrus image contains no estrus cows in the frame. In a sequence of image frames and
their corresponding detection labels (positive or negative), the detection model determines
the label of each frame based on the majority voting of the detection labels of the past
few video frames. To achieve accurate detection of an estrus event, which usually lasts
from 2 to 3 s, a moving average calculation is utilized over a sequence of 10 consecutive
video frames. This method enhances the precision of the detection process by considering
temporal information.
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4.2.2. Training the Base Detection Models

The base detection model, DM0, was trained using the transfer learning technique and
the pre-trained weights of the COCO Dataset. The training process took approximately 5 h
to complete and resulted in a mean average precision (mAP@0.5) of 0.98 and 0.968 for the
daytime model and nighttime model, respectively. These results indicate that the detection
models performed effectively on the base estrus dataset. Table 4 shows the training results
for both models. Each surveillance camera was monitoring a specific cow enclosure with
unique environmental conditions. Separate daytime and nighttime models were trained
for each video stream. Both detection models participated in the iterative training process
using the initial weights from their base models. The focus was on evaluating the accuracy
of the models in detecting estrus images and observing the performance improvements
in each iteration cycle. The image-level accuracy of the base models on the test set was
calculated using the base training dataset. Table 5 shows the accuracy measurement for
both the daytime and nighttime models at different object confidence thresholds. The
daytime model has higher accuracy than the nighttime model due to the large number of
RGB training images used during the fine-tuning process.

Table 4. Training results of base detection model (DM0).

Precision Recall mAP@0.5 mAP@0.5:0.95

Daytime 0.968 0.967 0.984 0.794
Nighttime 0.945 0.93 0.968 0.758

Table 5. Accuracy of base detection model (DM0) at different confidence thresholds.

Confidence Thresholds

0.25 0.5 0.75 0.8

Daytime 0.991 0.990 0.938 0.901
Nighttime 0.977 0.974 0.929 0.891

Two separate binary classifiers were trained for daytime and nighttime. The classifiers
were fine-tuned using the ResNet-18 backbone, incorporating pre-trained weights sourced
from the ImageNet Dataset. The training process took approximately 2 h to complete. Each
classifier was assessed on the testing set by applying a threshold value of 0.5 to determine
the classification results. If the network’s output value was greater than or equal to the
threshold, the input object was classified as an estrus; otherwise, it was classified as a
non-estrus. The classification accuracy was 98.6% for the daytime model and 96.3% for
the nighttime model. The nighttime model exhibited signs of overfitting, which could be
attributed to the relatively smaller size of its training data compared to the daytime model.

4.3. Iterative Training of the Detection Model

Throughout the six weeks of video streaming, the iterative training process was
employed to monitor two testing surveillance cameras. However, there was a significant
drop in accuracy during the first cycle of iterative training. When deployed in unfamiliar
environments, such as the two new testing video streams, the accuracy decreased rapidly,
and the base models produced a large number of false positives in the first week. These
false positives were then used as inputs for the base binary classifiers. The daytime binary
classifier corrected the labels for the RGB image data, while the nighttime binary classifier
corrected the labels for the IR image data. An increase in accuracy was observed during
the next five weeks of video streaming. Figure 4 shows a visual example of the detection
results when applying the iterative training algorithm to reduce false positive detections.
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Figure 4. False positive correction during the iterative training process. (a) The detection model
correctly identifies a true positive estrus cow (red) along with normal cow objects (green); (b,c) The
model incorrectly identifies a cow standing closely as an estrus object, resulting in a false positive
(b); the FP is later corrected by the binary classifier (BC) during the iterative training process (c).

Figure 5 illustrates the accuracy performance for two testing video streams over five
cycles (five weeks) of iterative training. In test video stream 1, the base models saw a
significant decrease in accuracy, dropping from 99.0% and 97.4% to 35.7% and 0.0% for the
daytime and nighttime models, respectively. However, after the first cycle of training, the
accuracy of the daytime model (DM1) made a significant improvement, jumping from 35.7%
to 82.4%. The nighttime model (DM1) also saw an increase in accuracy, going from 0.0% to
65.3%. As the iterative training process continued, the accuracy of both models increased
rapidly. The nighttime model (DM2) was the first to reach 100% accuracy, followed by the
daytime model (DM5), which eventually also achieved 100% accuracy. In test video stream
2, the base models experienced a similar decline in accuracy as in the first stream. The
accuracy of the daytime model (DM0) decreased from 99.0% to 68.6%, while the accuracy
of the nighttime model (DM0) dropped from 97.4% to 30.5%. However, the daytime model
quickly adapted to the new environment during the iterative training process and reached
100% accuracy at DM2. It maintained this accuracy for the next three weeks. In contrast,
the accuracy of the nighttime model increased gradually between DM1 and DM4 and
eventually reached 100% accuracy at DM5.
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Figure 5. Estrus cow detection accuracies during the iterative training cycles for different video
streams. (a) Test stream 1: Both models’ accuracy rapidly increases as iterative training cycles are
repeated. (b) Test stream 2: The daytime model promptly reached its highest accuracy, while the
nighttime model achieved its highest accuracy more gradually.
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A test was conducted to validate the accuracy of our binary classifiers throughout
the training process. These classifiers were divided into two categories: daytime and
nighttime. The classifiers were used to correct the estrus labels in the detected images in
two testing streams. Figure 6 illustrates the accuracy of both the daytime and nighttime
classifier models in correcting the estrus labels. The accuracy remained stable at around
98% and 96% for the daytime and nighttime classifier models, respectively. Table 6 shows
the performance metrics of the two binary classifiers in different iteration steps. The
precision, recall, F1-score, and accuracy metrics exceeded 90% for both classifiers. Notably,
the daytime model outperformed the nighttime model. These values suggest that our
binary classifiers were unaffected by the environment and could be trained independently
of the detection models.
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Table 6. Performance metrics of the binary classifiers at each iterative training cycle.

Models Metrics
Iteration (k)

0 1 2 3 4 5

Daytime

Precision 0.975 0.966 0.974 0.967 0.971 0.968
Recall 0.985 0.976 0.977 0.979 0.989 0.980

F1-score 0.980 0.971 0.976 0.973 0.979 0.974
Accuracy 0.986 0.979 0.983 0.981 0.986 0.982

Nighttime

Precision 0.973 0.966 0.964 0.964 0.958 0.971
Recall 0.977 0.976 0.987 0.987 0.977 0.976

F1-score 0.975 0.971 0.975 0.975 0.967 0.973
Accuracy 0.962 0.955 0.962 0.963 0.950 0.962

The accuracy of our detection model in identifying estrus cows was assessed using
the mean average precision (mAP@0.5). This metric provides a comprehensive evaluation
of the model’s performance in detecting the desired events. Table 7 shows the mAP@0.5
at different stages of the iterative training process for both testing video streams. The
mAP@0.5 initially decreased in the first cycles for both testing streams. However, during
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the training process, the mAP gradually increased and peaked at 99.5%. The trend of
increasing mAP was consistent with the increasing accuracy in estrus detection. The human
effort required to correct the labels of estrus cow images are also estimated. Instead of using
the binary classifier, manual labeling corrects all the estrus labels from the streaming data
by using human annotation. Three human operators were employed to manually verify
each abnormal event detected by the object detector and label them as TP or FP. During the
manual correction, we timed the annotation process required to verify all instance objects in
abnormal images and obtained an average time from all experts as a final estimation time
in seconds. Table 8 shows the comparison between the time needed for manual annotation
and the time needed for annotation using the binary classifier at different stages of the
training process. As the number of estrus events varies from week to week, the number
of collected streaming images also varies. The annotation time for both the daytime and
nighttime data was calculated. The binary classifier proved to be much more efficient than
human operators in completing the annotation process.

Table 7. Mean average precision (mAP@0.5) of estrus cow detection at each iterative training cycle.

Test Stream Detection Models
Iteration (k)

0 1 2 3 4 5

Stream 1
Daytime 0.737 0.964 0.988 0.989 0.991 0.995

Nighttime 0.00 0.955 0.995 0.995 0.995 0.995

Stream 2
Daytime 0.951 0.985 0.995 0.995 0.995 0.995

Nighttime 0.761 0.955 0.959 0.963 0.963 0.995

Table 8. Comparison of annotation time of the binary classifier and manual annotation (s).

Test Stream Iteration (k) Number of Additional Training
Images

Manual Labeling Binary
ClassifierExpert 1 Expert 2 Expert 3 Average

Stream 1

0 184 2036 2025 2040 2034 12
1 48 481 451 460 464 5
2 56 601 573 581 585 5
3 43 344 341 337 341 4
4 32 298 300 295 895 3
5 15 152 148 157 152 2

Stream 2

0 110 906 912 910 909 10
1 190 1395 1382 1401 1393 13
2 20 188 185 192 188 3
3 161 1264 1257 1280 1267 11
4 79 269 256 271 265 8
5 75 265 251 268 261 7

A paired t-test was conducted to determine whether there was a significant difference
in the performance of the detection model when trained using the iterative training with a
binary classifier and non-iterative training. The paired t-test aims to assess whether there is
a significant discrepancy in the means of the evaluation metrics between the two training
methods. The null hypothesis (H0) posits that there would be no significant difference in
the mean accuracy of the model when trained with both training schemes. The alternative
hypothesis (Ha) suggests that there would be a substantial difference in the mean accuracy
of the model when trained using the two learning schemes. For the daytime model applied
to video stream 1, the average accuracies of iterative training over five iterations and the
baseline were 80.05% and 35.7%, respectively, resulting in a t-value of 4.806. At a 95%
confidence level, the calculated t-value falls outside the critical region of −2.571, 2.571. As
a result, the null hypothesis is rejected, indicating a significant difference between the two
training schemes. The same conclusion holds with a 99% confidence level.
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5. Ablation Study
5.1. Iterative Training with Manual Labeling

This study aimed to evaluate the effectiveness of our iterative training approach,
which incorporates a binary classifier, in comparison to a manual labeling process where
humans directly corrected estrus images from the streaming data. Our proposed iterative
training algorithm is designed to work with various object detectors, such as YOLOv5,
SSD, or Faster-RCNN. For this study, we focused on YOLOv5, as it is well-suited for edge
computing devices. To account for different lighting conditions, separate models were
employed for daytime and nighttime video streams. Both models underwent an iterative
training process consisting of five cycles (k = 0, . . ., 5). Table 9 presents a comparison of
the accuracy obtained by both training processes for the two video streams. Notably, the
manual daytime model and nighttime model were initialized with the same weights as the
corresponding models that utilized a binary classifier, as they were trained on the same
base training dataset.

Table 9. Accuracy comparison between iterative training with a binary classifier and with manual
labeling in two different testing video streams.

(a) Test Stream 1

Models Types
Iteration (k)

0 1 2 3 4 5

Daytime Binary Classifier 0.357 0.824 0.842 0.871 0.909 1.0
Manual Labeling 0.357 0.836 0.852 0.884 0.938 1.0

Nighttime Binary Classifier 0.0 0.653 1.0 1.0 1.0 1.0
Manual Labeling 0.0 0.753 1.0 1.0 1.0 1.0

(b) Test Stream 2

Models Types
Iteration (k)

0 1 2 3 4 5

Daytime Binary Classifier 0.686 0.977 1.0 1.0 1.0 1.0
Manual Labeling 0.686 0.981 1.0 1.0 1.0 1.0

Nighttime Binary Classifier 0.305 0.655 0.706 0.751 0.755 1.0
Manual Labeling 0.305 0.667 0.753 0.914 1.0 1.0

Overall, the accuracy of the manual detection models for both daytime and nighttime
was slightly higher than the corresponding models using a binary classifier. Notably, the
manual nighttime model achieved the highest accuracy in the early stages, such as the
model DM4 in test stream 2, which reached 100% accuracy, while the nighttime model
using a binary classifier DM4 achieved 75.5% accuracy. However, as discussed in Section 4,
the manual detection model requires a significant amount of time for annotation, which
becomes increasingly burdensome as the farm expands to encompass hundreds of cow
enclosures. In other words, while the iterative training process with manual labeling may
achieve high accuracy faster than the process using a binary classifier, it is not an efficient
way to reduce the human effort required for labeling the streaming data, especially in a
large-scale livestock farming operation.

5.2. Positive Training versus Negative Training

An experiment was conducted to compare the effects of positive training and negative
training during a one-week video streaming period. The objective was to assess the impact
of these training approaches on the performance of the model in detecting the desired
events. Starting from the base model, we collected the streaming data, labeled them using
the binary classifier, and started the fine-tuning process. The collected data were separated
into two sets: (1) positive samples, which are images with at least one estrus cow appearing
on the scene, and (2) negative samples, which contained only normal cows with no estrus
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behaviors. With positive learning, the detection model was only trained on positive cow
images while ignoring the negative ones. As for negative learning, we exclusively utilized
negative cow images to train the detection model. After one week of streaming, the negative
model was unable to detect any estrus cows. Despite inheriting weights from the base
model, which was originally trained with positive images, the negative models were not
able to detect estrus cows in the streaming video. This is because they adapted their weights
to learn only negative cases and ignored all positive cases. In contrast, both the positive
model and the combined model were able to detect estrus cows in the video. Figure 7
shows a comparison of the accuracy between the positive model and the combined model
at different timestamps.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 17 
 

 

 
Figure 7. Accuracy comparison between the positive model and the combined models at different 
timestamps. 

The positive model detected a higher number of false positives compared to the com-
bined models, despite detecting the same number of true positive images. This disparity 
occurred because the positive model solely learned from the estrus samples and did not 
have the opportunity to learn from the negative samples. Consequently, its accuracy 
dropped to 2.55% and 0.68% for daytime and nighttime, respectively. In contrast, the com-
bined model was able to learn from both positive and negative samples, resulting in an 
accuracy of 13.26% and 66.67% for the daytime and nighttime models, respectively. This 
demonstrates that the detection model trained on both positive and negative samples out-
performs one trained solely on positive samples. 

6. Conclusions 
This study proposes an iterative training approach that leverages a binary classifier 

to improve the accuracy of object detection in identifying abnormal objects, specifically 
estrus cows. By utilizing the lightweight YOLOv5 object detection model on edge devices 
like the Jetson Nano, we successfully monitored surveillance videos during both daytime 
and nighttime conditions. The streaming data collected were labeled by a binary classifier, 
and both the detection models and the binary classifiers underwent an iterative training 
process to adapt and fine-tune their weights according to changing environmental condi-
tions. Our approach enabled the real-time monitoring and detection of abnormal events, 
such as estrus cows, in challenging surveillance scenarios. The use of a binary classifier 
significantly reduced the need for human intervention in the labeling process, thereby al-
leviating the workload associated with manually correcting incorrect labels (false posi-
tives) during training. Our demonstration showed that employing a binary classifier sub-
stantially decreases the time and effort required for correcting image labels, making it a 
more efficient alternative to manual labeling. Moreover, our approach achieved compara-
ble accuracy and gradually reached the highest performance within a reasonable 
timeframe. The binary classifiers can also be trained independently of the detection mod-
els, making them reusable and upgradeable modules for large-scale surveillance videos. 
Our approach for estrus cow detection was validated using two test video streams, achiev-
ing impressive results with an estrus accuracy of up to 100% and a mAP@0.5 of 0.995. 
Additionally, the annotation time was reduced by up to 98% compared to manual label-
ing. For future work, our plan includes enhancing the YOLOv5 models by incorporating 
other real-time object detectors and testing them on various edge devices. This expansion 
aims to assess the effectiveness of our proposed iterative training in different setup envi-
ronments.  
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Figure 7. Accuracy comparison between the positive model and the combined models at differ-
ent timestamps.

The positive model detected a higher number of false positives compared to the
combined models, despite detecting the same number of true positive images. This disparity
occurred because the positive model solely learned from the estrus samples and did not
have the opportunity to learn from the negative samples. Consequently, its accuracy
dropped to 2.55% and 0.68% for daytime and nighttime, respectively. In contrast, the
combined model was able to learn from both positive and negative samples, resulting
in an accuracy of 13.26% and 66.67% for the daytime and nighttime models, respectively.
This demonstrates that the detection model trained on both positive and negative samples
outperforms one trained solely on positive samples.

6. Conclusions

This study proposes an iterative training approach that leverages a binary classifier to
improve the accuracy of object detection in identifying abnormal objects, specifically estrus
cows. By utilizing the lightweight YOLOv5 object detection model on edge devices like
the Jetson Nano, we successfully monitored surveillance videos during both daytime and
nighttime conditions. The streaming data collected were labeled by a binary classifier, and
both the detection models and the binary classifiers underwent an iterative training process
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to adapt and fine-tune their weights according to changing environmental conditions.
Our approach enabled the real-time monitoring and detection of abnormal events, such as
estrus cows, in challenging surveillance scenarios. The use of a binary classifier significantly
reduced the need for human intervention in the labeling process, thereby alleviating the
workload associated with manually correcting incorrect labels (false positives) during
training. Our demonstration showed that employing a binary classifier substantially
decreases the time and effort required for correcting image labels, making it a more efficient
alternative to manual labeling. Moreover, our approach achieved comparable accuracy
and gradually reached the highest performance within a reasonable timeframe. The binary
classifiers can also be trained independently of the detection models, making them reusable
and upgradeable modules for large-scale surveillance videos. Our approach for estrus cow
detection was validated using two test video streams, achieving impressive results with
an estrus accuracy of up to 100% and a mAP@0.5 of 0.995. Additionally, the annotation
time was reduced by up to 98% compared to manual labeling. For future work, our plan
includes enhancing the YOLOv5 models by incorporating other real-time object detectors
and testing them on various edge devices. This expansion aims to assess the effectiveness
of our proposed iterative training in different setup environments.
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