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Abstract: Underwater target detection is a key technology in the process of exploring and developing
the ocean. Because underwater targets are often very dense, mutually occluded, and affected by light,
the detection objects are often unclear, and so, underwater target detection technology faces unique
challenges. In order to improve the performance of underwater target detection, this paper proposed
a new target detection model YOLOv5-FCDSDSE based on YOLOv5s. In this model, the CFnet
(efficient fusion of C3 and FasterNet structure) structure was used to optimize the network structure
of the YOLOV5, which improved the model’s accuracy while reducing the number of parameters.
Then, Dyhead technology was adopted to achieve better scale perception, space perception, and
task perception. In addition, the small object detection (SD) layer was added to combine feature
information from different scales effectively, retain more detailed information, and improve the
detection ability of small objects. Finally, the attention mechanism squeeze and excitation (SE)
was introduced to enhance the feature extraction ability of the model. This paper used the self-
made underwater small object dataset URPC_UODD for comparison and ablation experiments. The
experimental results showed that the accuracy of the model proposed in this paper was better than the
original YOLOv5s and other baseline models in the underwater dense small object detection task, and
the number of parameters was also reduced compared to YOLOv5s. Therefore, YOLOv5-FCDSDSE
was an innovative solution for underwater target detection tasks.

Keywords: underwater object detection; YOLOvV5; CFnet; SD; SE

1. Introduction

The ocean is the largest ecosystem on the Earth, covering approximately 71% of the
Earth’s surface area. With the continuous improvement of scientific and technological
productivity, human beings are constantly promoting the development and utilization of
marine resources, and underwater target detection technology comes into being in this
process. Nowadays, underwater target detection technology has become an important
research direction in computer vision and artificial intelligence, and it has extensive value
in many practical applications, such as marine ecological protection, underwater archae-
ology, seabed resource exploration, and underwater pipeline detection [1]. Applying this
technology well can not only save a lot of human resources and material resources but also
bring people into the vast and mysterious ocean world.

In recent years, researchers used traditional feature extraction and pattern recognition
algorithms, such as edge detection, Hough transform, and template matching, for target
detection [2—4]. However, there are some limitations and shortcomings in the traditional
image processing methods, which lead to the inability to capture the complex information
in the image fully, cannot adapt to these complex scenes well, and require more computing
resources and time. With the rise of machine learning, researchers began to use machine
learning methods for target detection, such as support vector machines, random forests, and
K-nearest neighbor [5-7]. Although machine learning methods made some achievements
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in target detection tasks, the generalization ability of machine learning models is limited,
and specific adjustments are required in each particular task. This adjustment process often
requires a lot of domain knowledge and experience. With the vigorous development of deep
learning technology, many defects of traditional image processing and machine learning
methods in target detection have been successfully solved. Currently, deep-learning-based
target detection techniques are mainly divided into two categories. The first category
is typified by the R-CNN family of algorithms [8], known as two-stage methods, and
its core idea is based on candidate regions. The second category is a one-stage method,
mainly including RetinaNet [9] and YOLO [10] series algorithms, among which YOLO
developed rapidly in recent years. The two-stage method primarily performs classification
and regression on a series of sparse candidate boxes using techniques like selective search,
which makes the model achieve higher accuracy. The one-stage approach has a high
computational efficiency along with a fast classification speed due to its ability to densely
sample different locations of the image at different scales and proportions. The one-stage
method also uses convolutional neural networks (CNN) to extract features from the image
and eventually classify the objects.

Underwater target detection faces many problems that do not exist on land. First
of all, the characteristics of light scattering and absorption in the underwater optical
environment often lead to the degradation of the quality of the collected images, the loss
of details, and a reduction in contrast. Secondly, because some creatures have mimic
characteristics and some creatures have the habit of living in groups, the creatures in the
collected underwater images often have problems of occlusion and denseness. At the same
time, many underwater organisms are small objects, which makes it more difficult to detect
the collected images. Due to these problems, the existing underwater object detection
algorithms need to be optimized to obtain better detection results. The definition of small
objects in the paper is usually determined according to the specific data set. Zhu et al. [11]
defined objects whose width accounts for less than 20% of the entire image as small objects
in their dataset. In the COCO dataset, pixels smaller than 32 x 32 are called small objects;
Liu et al. [12] counted objects with an area of less than 5% in their underwater target data set
called small objects. In this paper, the detection object area accounts for less than 5% of the
entire image area as a small object. This paper proposes a new underwater target detection
model YOLOv5-CFDSDSE for the problems existing in the underwater environment, which
is improved based on YOLOvV5s. The YOLOv5-CFDSDSE adopts a new CFnet method,
introduces the Dyhead method, adds an SD layer, and uses the SE attention mechanism.
These improved methods optimize the backbone, neck, and head of YOLOvb5s.

The contributions of this paper are as follows:

(1) A new structure Cfnet is proposed, which is an efficient fusion of C3 and FasterNet
structures, reduces the number of parameters, increases the detection speed, and, at
the same time, has a high detection accuracy;

(2) The Dyhead replaces the original detection head, improving the model’s ability
to detect multi-scale and multi-category targets, which is especially effective for
underwater dense small object detection;

(3) The SD layer is added, improving the model’s performance for underwater small
object detection;

(4) The attention mechanism SE is introduced to make the model capture the global
context information more completely.

2. Related Work

Recently, there were many research achievements in underwater target detection.
Chen et al. [13] conducted a study in underwater object detection, using a combination
of visual features such as color and light transmission information to explore its potential
in this field. Initial recognition regions were generated using visual features and opti-
cal transmission information, and these regions were further optimized by using image
segmentation techniques to finally obtain the detection results for underwater targets. How-
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ever, the detection results are unstable due to the extreme complexity of the underwater
optical environment. Chen et al. [14] proposed a multiscale Retinex enhancement algorithm
that combined the Retinex algorithm by emulating the fish retina to eliminate underwater
noise. They also used deep learning methods to improve the detection performance of small
objects. However, the Retinex algorithm is prone to the halo phenomenon in the transition
region of strong light and shadow, which weakens image details. Liu et al. [15] proposed
an underwater target-detection algorithm based on Faster RCNN. The algorithm used
Swin Transformer to replace the backbone network of Faster RCNN and introduced a path
aggregation network to achieve the fusion of multi-level feature maps. The ROI pooling
was also improved to ROl align, thus improving the detection performance of the algorithm.
However, the algorithm’s network parameters are large, making its deployment difficult.

Wei et al. [16] proposed an improved YOLOv3 model, which aimed to enhance the
semantic information of depth features and improve the performance of small object
detection. The model introduced an attention mechanism after the deep convolutional
layer and combined deep semantic information with shallow position information. In this
way, the model can capture the semantic details of the target more accurately and improve
the detection of small objects. However, this increased the computational complexity of the
model, increasing training and inference time, thus posing certain challenges for real-time
applications or resource-constrained scenarios. Muksit et al. [17] proposed a specific YOLO-
Fish algorithm for underwater fish target detection. The researchers proposed two models
in this algorithm, namely YOLO-Fish-1 and YOLO-Fish-2. YOLO-Fish-1 reduced the false
detection of tiny fish by improving the upsampling step size. YOLO-Fish-2 enhanced
the ability to detect fish dynamically by introducing a spatial pyramid structure. This
study’s innovation lay primarily in optimizing tiny fish and dynamic scenes. However,
implementing the algorithm required more computing resources and affects operating
efficiency. Zhang et al. [18] proposed an improved underwater target-detection model
based on the YOLOv4. The model used a K-means++ clustering method to optimize the
anchor frame, introduced an additional detection head to handle targets of different sizes,
and, finally, used the FloU loss function to replace the traditional loss function. However,
the new approach led to more extended training and inference time for the algorithm.

Shi et al. [19] proposed an improved YOLOVS5 algorithm. The optical and thermal im-
ages were enhanced by data enhancement technology, which improved the generalization
ability of the detection algorithm. A linear feature detection technique was introduced,
which enhanced feature propagation and improved feature utilization. However, in a
complex underwater environment, the detection accuracy will be reduced due to the
interference of factors such as water flow, clutter, and target speed. Li et al. [20] made
improvements based on the YOLOv5. The CA attention mechanism and C3 module were
fused into the C3CA module, which replaced the C3 module in the benchmark model to
improve target feature information’s extraction and detection accuracy. Using the EIOU loss
function instead of the GIOU loss function optimized the algorithm’s the localization accu-
racy and convergence speed. However, in the underwater environment, the posture of the
fish may change, and the fish in the group may be overshadowed by each other, and so, the
accuracy of the algorithm in this respect will be affected. Li et al. [21] used the ShuffleNetv2
lightweight network to replace the CSPDarkNet53 backbone network of YOLOVS5, reducing
the model’s size and calculation and improving the detection speed. The PANet network
was replaced with the improved BiFPN-Short network, and the improved network was
used for feature fusion, which enhanced the information dissemination between different
levels, thereby improving the accuracy of the detection algorithm. However, ShuffleNetv2
took more time to complete forward propagation in the inference phase, and so, its inference
delay was relatively high. Wang et al. [22] proposed a YOLOX-based underwater target
detection algorithm B-YOLOX-S. The wavelet transform was used to transform the style of
the image, which improved the clarity of the image and the detection target, and enhanced
the model’s generalization ability. The method combined FPN with BIFPN-S to fuse the
features of the backbone layer and accelerate model detection. The EIOU loss function
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was used to improve the localization accuracy of detection. However, since the EIOU loss
function needed to calculate the intersection ratio between the prediction frame and the
real frame as well as the area of the overlap region between the two frames, each prediction
frame needed to perform these calculations, and so, the computational complexity can be
quite high in a large-scale target detection task, leading to an increase in training time.

3. Methodology
3.1. YOLOu5

The BottleNeck structure in YOLOVS5 [23] is an important component used to build the
model, which is a residual block aiming to improve the model’s representation ability and
performance. The BottleNeck can improve the representation ability of the model while
maintaining a small computational burden and parameter quantity. It can capture richer
and more complex features, which can help improve the performance of tasks such as object
detection and image classification. The CBS consists of convolution, batch normalization,
and the SiLU activation function. The local features of the image are extracted by the
convolution layer, and then normalized by batch normalization. Finally, nonlinear features
are introduced through the SiLU activation function, so the model can learn more complex
feature representations. The combination of this structure helps improve the model’s
performance and generalization ability, and provides more accurate prediction results in
object detection tasks. The C3 structure is an innovative design proposed by the YOLOv5
team, which aims to improve the effect of feature extraction and model performance.
This cross-stage design allows feature maps of different scales to interact with each other,
thus improving the model’s receptive field and information transfer ability. SPPF is a
technique that utilizes spatial pyramid pooling and flexible aggregation to extract feature
representations with multi-scale information to improve the detection ability of object-
detection models for objects of different sizes. The structure diagram of YOLOv5 model is
shown in Figure 1.
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Figure 1. YOLOVS structure diagram.
3.2. CFnet

The C3 structure plays an essential role in YOLOv5. However, since the C3 structure
contains multiple convolutional layers, many convolution calculations are required, re-
sulting in a large amount of calculation for the model. The inference speed of the model
is affected, especially in resource-constrained environments. FasterNet [24] is an efficient
neural network designed for target detection and localization tasks, which can solve the
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computational insufficiency of the C3 structure and reduce the computational load of
the model. Its advantages are particularly obvious in resource-constrained environments.
Partial Convolution (PConv) is a competing alternative to reduce computational redun-
dancy and the number of memory accesses, exploit the redundancy in feature maps, and
systematically apply Conv on only a part of the input channels without affecting the re-
maining channels. FasterNet consists of four hierarchical stages. More FasterNet blocks
are placed, and more computational tasks are assigned in the last two stages since they
consume less memory access. Each FasterNet block has a PConv layer followed by a Conv
1 x 1 layer. Normalization and activation layers are indispensable for high-performance
neural networks. However, overuse of these layers can limit the diversity of features,
affecting performance and eventually leading to slower calculation speed. FasterNet uses
these layers only after partial convolutions, achieving lower latency and preserving feature
diversity. In terms of normalization layers, the network uses the Batch Normalization
(BN) method to achieve faster inference speed. For the activation layer, FasterNet uses
GELU for the smaller FasterNet variant and ReLU for the larger FasterNet variant. The
last three layers of the network structure, namely global average pooling, 1 x 1 Conv and
fully connected layers, are used for feature transformation and classification. The structural
diagram of FasterNet is shown in Figure 2. The contents of the dot box represent a module,
and gray dotted lines represent the structures” explanations.
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Figure 2. Schematic diagram of FasterNet structure.

In this paper, the CFnet structure was proposed using the idea of FasterNet, and the
results of C3 output were used as input. Firstly, the C3 output was shortcut connected. This
connection mechanism can directly transfer information from earlier layers to subsequent
layers, which is helpful for information transfer and gradient flow. Next, the result of the
shortcut connection was input into the PConv operation. Then, MLP operation was carried
out on the results after PConv operation. In this paper, the MLP consisted of a CBS and
a Conv2D operation. These operations further processed the features, enhancing their
expressiveness and perception. Finally, the CFnet structure concatenated the result after
the MLP operation with the content of the previous shortcut to obtain the final output. This
connection operation can comprehensively utilize early and late feature information to
improve the expressive ability and detection performance of the model.

The CFnet structure extracted and enhanced features from the output of C3 by ap-
plying shortcut connections, PConv operations, MLP and other operations to obtain more
accurate and comprehensive object detection results. This design considered the combined
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‘___________________________

use of feature transfer and enhancement, MLP application, and connection operations to
provide an innovative solution for object detection tasks. CFnet is shown in Figure 3.

P -
(o - s —
L MLP !

Figure 3. Cfnet structure diagram.

3.3. Dyhead

The detection head of YOLOVS5 is a multilayer convolutional and fully connected
network responsible for extracting features from images and performing object detection
and localization. However, YOLOVS5 cannot detect and localize small objects effectively
because of the larger field of perception and lower resolution, and so, it has some difficulties
in detecting small objects.

Dyhead [25] is a novel dynamic head framework that aims to improve the performance
of localization and classification in object detection tasks. Dyhead adopts an attentional
mechanism perspective, combining the target detection head with an attentional mecha-
nism. By cooperatively combining multiple self-attention mechanisms, scale awareness,
space awareness, and task awareness are achieved between feature layers, spatial locations,
and within task channels. This combined attention mechanism significantly improves the
representation of the target detection head with no additional computational overhead.
Experiments on the COCO dataset show that Dyhead achieved impressive performance
in the object-detection task, and its detection’s Average Precision (AP) reached 60.6. The
structural diagram of Dyhead is shown in Figure 4.

hard sjgmoid

4
/) >
Need -
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Figure 4. Dyhead structure diagram.

In Figure 4, 7t;, is scale-aware attention, and it is formulated as:

”L(]:)']::U<f<51CZS,CF>) - F, (1)

In the formula, the feature pyramid can be expressed as a 4-dimensional tensor
F € REXHXWXC [ indicates the number of layers in the pyramid. H, W, and C denote the
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height, width, and number of median-level feature channels, respectively. Furthermore,
we define S = H x W, reshape the tensor into a three-dimensional tensor F € RLxSxC
f(-) is a linear function approximated by a 1 x 1 convolutional layer. This means that the
algorithm uses a 1 x 1 convolution operation to approximate a linear function. A1 x 1
convolution considers only itself at each pixel location, and linearly transforms the input

through the weights in the convolution kernel. ¢(x) = max (O, min (1, YT“)) is a hard-

sigmoid function. The hard-sigmoid function is a nonlinear function that maps input values
to a range between 0 and 1. This function is simpler and more efficient to implement, thus
reducing the amount of computation and improving performance.

7Tg is spatial-aware attention, and it is formulated as:

1
ng(F) - F = i Zlel Ele wy - F (L pe + Apgs ¢) - Amy, )

mg is a two-step approach, which first makes the attention learning sparse by us-
ing deformable convolution [26] and then aggregates features across levels at the same
spatial locations. The content in parentheses is responsible for the convolution. k repre-
sents the number of sparsely sampled locations. py represents a sampling position, and
Pk + Apy represents the position moved by the self-learned spatial offset Apy to focus on
a discriminative region. Amy represents the self-learning importance scalar at position
pk- These two parameters are learned from the input features of the middle layer of F.
The model can selectively focus on discriminative regions in the input features and assign
different importance weights to each location through the learned spatial offset and im-
portance scalar. The ;" in the formula separates multiple variables to indicate that they are
distinct entities.

7tc is task-aware attention, and it is formulated as:

mc(F) - F = max (! (F) - Fo + B1(F),(F) - Fe + BA(F)), 3

F. represents the feature slice on the cth channel. [a!,42, B!, B2 T= 6(-) is a hyper-
function for learning to control the activation threshold. The implementation of 6(-) is as
follows [27]: first, perform global average pooling on the L x S dimension to reduce the
dimensionality, and then, use two fully connected layers and a normalization layer and,
finally, apply a translated sigmoid function to normalize the output to the range [—1, 1].
By learning the obtained hyperparameters, the model can adaptively adjust the activation
threshold to control the activation degree of the features.

3.4. SD

In the Neck part of YOLOVS5, the characteristic information of small objects is easily
diluted during the propagation process in the network. Therefore, this paper designed
and implemented a new small object detection layer SD, which focused on capturing and
retaining the feature information of these small objects, enabling the model in this paper to
detect small objects more accurately.

SD was located after the second upsampling, and the feature maps after the second
upsampling usually had higher resolution and richer semantic information. Placing the
small object detection layer after the second upsampling can better use these high-resolution
features, and obtain more global and local contextual information by fusing low-level and
high-level features. At the same time, because small objects occupied a relatively small pixel
level in the image, they were easily distracted by the surrounding background. Placing the
small object detection layer after the second upsampling allowed the model to focus more
on detecting and processing small objects without losing the detailed information of small
objects on the lower-resolution feature maps. In summary, compared with the YOLOVS5,
the improved model had an additional feature layer with a resolution of 160 x 160 and a
channel number of 64, which can effectively detect small objects. The comparison diagram
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is shown in Figure 5. The red box represents the newly added small object detection layer,
and the yellow lines represent the sampling operations.

160 x 160 x 64

80 x 80 x 128

80 x 80 x 128

40 x 40 x 256 40 x 40 x 256
20 x 20 x 512 S 20 x 20 x 512 L5V
YOLOv5 YOLOv5-CFDSDSE

Figure 5. Comparison of model feature layers.

3.5. SE Attention

Attentional mechanism was used to dynamically allocate and focus attentional re-
sources in neural networks to improve the model’s ability to attend to and process inputs.

This paper introduced the channel attention mechanism SE [28] with the input dimen-
sion C x H x W of the feature map, where C means the channel number of the input data,
and H and W represent the height and width of the feature map, respectively. First, F;;, is a
Transformation operation that converts the input feature map X into a feature map U. Then,
the compression operation Fy; (Squeeze) is performed to compress the input feature map
in spatial dimensions from C x H x W to C x 1 x 1 by the global average pooling (GAP)
operation. The compression features represent the global information of each channel.
Then, the excitation operation F,, (Excitation) is performed, where two fully connected
layers (or convolutional layers) are introduced to learn the relationship between channels
on the base of the compressed features. After Fy, the scaling operation Fy.,, (Scale) is
performed, and the importance weight of the channel is obtained, which is applied to the
original feature map. The feature maps can be scaled at the channel level by multiplying the
weights of each channel with the corresponding feature maps. In this way, the model can
adaptively enhance the representation ability of important features. Finally, the feature map
after the scaling operation is used as the final output, which can be used for subsequent
tasks such as classification, target detection, etc. The structure diagram of SE is shown in
Figure 6.

F.. (W) R

X U Fy, () [T ———— T
— 1x1xC 1x1xC

H' F,. H Fyeare )

—_—

w

' C C
Figure 6. SE structure diagram.

The newly added SE module was located at the deepest part of the model, so the
features that it operates on were the result of multi-layer convolution and feature connec-
tions. These features contain rich semantic information and high-level representations of
objects. With the SE module, the model can learn which features are important and which
are not, and adjust their importance accordingly. It helps the model recognize objects in
complex scenes. Due to the complex underwater environment and numerous interfering
information, the SE module also suppressed features that were not important, such as those
that did not contribute to target detection or even interfere with detection. This helps to
reduce the misclassification rate of the mode. By adaptively recalibrating the importance of
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features, the SE module can improve the generalization ability of the model, so that the
model can perform well in different scenarios and targets.

3.6. YOLOv5-CFDSDSE

This paper optimized the structure of the object detection model. Since C3 in YOLOv5
has a deeper network structure and more parameters than the traditional Darknet network,
it requires more computing resources and longer training time during the training process.
It may bring certain challenges to some scenarios with limited computing resources. In
order to make the detection model have higher detection accuracy, lighter model volume
and faster detection speed, a new structure CFnet was proposed. CFnet structure can avoid
frequent memory access to operators in the deep convolution process, thereby reducing
redundant calculations and memory access, extracting spatial features more efficiently,
and improving detection accuracy. The new detection header Dyhead was used to re-
place the original detection header, which improved the performance of multi-scale and
multi-category target detection, simplified the model structure, and improved the general-
ization ability. By adding a special detection layer for underwater small object detection,
the features of small objects can be extracted and enhanced, thus improving detection
performance, preserving high-resolution feature information, and realizing multi-scale
feature fusion. The attention mechanism SE was integrated into the feature enhancement
network, and the feature map’s channel weight was adaptively adjusted to capture the
global context information to improve the model’s performance in computer vision tasks
and better recognize targets. The overall structure of YOLOv5-CFDSDSE is shown in
Figure 7. The red dotted box is the specific content of the SD structure.

|

160 x 160 x 64

B

80 x 80 x 128 .

40 x 40 x 256 |

20 x 20 x 512 -

Backbone Neck Dyhead

Figure 7. Overall network structure diagram.
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4. Experiment
4.1. Experimental Environment

To deeply explore and validate the YOLOv5-CFDSDSE object detection model pro-
posed in this paper, comparison and ablation experiments were conducted. All experiments
were performed on the same 3080 Ti graphics card equipped with 12 G video memory
and 9-core Intel(R) Xeon(R) CPU E5-2686 v4 CPU. Cuda version was 11.1.1. According
to the size of the data set images, the resolution of the model input image was uniformly
set to 640 x 640 pixels, and the batchsize was set to 32 for stable batch normalization and
further prevention of over-fitting. The cosine annealing learning rate adjustment strategy
was used, and the initial learning rate and learning rate attenuation factor were set to 0.01.
All comparison experiments were trained for 400 cycles, achieving complete convergence
of the experimental results.

4.2. Experimental Data Set

URPC 2019 and UODD underwater object detection datasets have classical underwater
object detection scenarios, which are typical and generalizable for research. Underwater
Robot Perception Challenge 2019 (URPC 2019) is a challenge for underwater robot per-
ception, mainly aimed at promoting the development of visual perception and target
recognition capabilities of underwater robots in complex environments. The Underwater
Object Detection Dataset (UODD) data set [29] is a standard real-world underwater object
detection dataset proposed by Dalian University of Technology. This paper aimed to re-
search underwater dense small objects, which requires a high proportion of underwater
dense objects; thus, a part of object dense image data was selected from these two datasets
to form a self-made dataset (URPC_UODD), which had 3673 images and 25,122 objects.
In this paper, it was randomly divided into a training set of 3000 images, a validation
set of 337 images, and a test set of 336 images according to the ratio of 8:1:1. There were
16,996 objects in the training set, 4030 objects in the validation set, and 4096 objects in the
test set. Most of the objects in the URPC_UODD were small, and 81% of the object boxes
were less than 5% of the image area.

4.3. Comparison Experiment

In this paper, the YOLOv5-CFDSDSE was compared with some advanced underwa-
ter object detection models, including RetinaNet, Faster-RCNN, YOLOX, YOLOv7, and
YOLOVvS5s. For YOLOX, the tiny version was chosen in this paper to make it similar in
size to the YOLOv5-CFDSDSE. When using RetinaNet, this paper used EfficientNet as the
infrastructure. For Faster-RCNN, this paper chose ResNet18 as the lightweight architecture.
For YOLOVS5, this paper chose YOLOv5s model with CSPDarknet 53 as the infrastruc-
ture. When using YOLOV7, this paper chose the lightweight YOLOv7-tiny model. This
paper also added the experimental results of CenterNet and SSD to make our compari-
son more comprehensive. The performance metrics of these models were evaluated on
the URPC_UODD dataset, and all training settings were consistent. Table 1 shows the
comparison results of each model in terms of calculation consumption and model size.

Table 1. Comparison experiments of different detection models.

Model Backbone mAP@0.5 Precision Recall Number of

Parameters
RetinaNet EfficientNet 60.1% 58.0% 62.8% 37.5M
CenterNet ResNet18 74.1% 73.2% 75.3% 3021 M
Faster-RCNN ResNet18 74.7% 53.4% 83.0% 47.60 M
SSD MobileNetV3 76.3% 75.8% 79.2% 492 M
YOLOX-tiny Darknet53 78.4% 80.3% 75.8% 5.70 M
YOLOvV5s CSPDarknet53 80.8% 85.5% 75.8% 7.03M
YOLOV7-tiny CSPDarknet53 82.1% 82.6% 76.7% 6.02M

YOLOV5-CFDSDSE ~ CSPDarknet53 85.1% 86.7% 80.2% 6.52M
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Compared with the Comparison models, it was found that the YOLOv5-CFDSDSE
model proposed in this paper had slightly more parameters than YOLOX-tiny and YOLOv7-
tiny. However, its accuracy increased by 6.7% and 3.0%, respectively. Compared with
YOLOv5s, YOLOvV5-CFDSDSE increased mAP@0.5 by 4.3% and reduced the number of
parameters by about 7.8%. YOLOv5-CFDSDSE also had advantages over RetinaNet, Cen-
terNet, SSD, and Faster-RCNN. Therefore, YOLOv5-CFDSDSE was a better choice in
underwater object detection.

4.4. Ablation Experiment

This paper conducted ablation experiments to analyze the effect of each of the follow-
ing improvements: CFnet module, more advanced Dyhead, SD structure, and SE attention
mechanism at the deepest part of the model. Table 2 shows the results of the ablation
experiments. In the table, “x” indicates that the module is not used, and 1/’ indicates that
the module is used.

Table 2. Ablation experiments of different detection models.

Case CFnet Dyhead SD SE mAP@0.5 mAP@0.5:0.95 Tra.l ning Infference SODR Number of
Time Time Parameters

1 X X X X 80.8% 47.2% 142h 1.5 ms 78.2% 7.03M

2 Vv X X X 83.2% 47.6% 1.15h 1.5ms 77 8% 5.80 M

3 X v X X 82.8% 47.4% 1.85h 4.0 ms 85.1% 7.59M

4 X X v X 83.6% 47.7% 2.79h 1.9 ms 89.6% 717M

5 X X X Vv 81.0% 47.1% 1.54h 1.6 ms 81.5% 7.06 M

6 v v X X 83.9% 48.2% 2.70h 4.0ms 82.9% 6.37 M

7 Vv Vv Vv X 84.5% 48.1% 395h 5.8 ms 90.5% 6.49 M

8 v v v v 851% 48.6% 409h 5.9 ms 91.1% 6.52M

The results of mAP@0.5 and mAP@0.5:0.95 of the YOLOv5s baseline model were
80.8%, and 47.2%, respectively, and the number of parameters was 7.03 M. After using the
improved CFnet structure, due to the optimization of the CFnet structure, the number of
parameters of the model was reduced from 7.03 M to 5.80 M. At the same time, mAP@0.5
was also improved by 2.4%. After adding the Dyhead structure on the basis of CFnet,
due to the efficient perception ability of the Dyhead structure, the mAP@0.5 value was
further improved, reaching 83.9%. After adding the small object detection layer, the
perception ability of the model for small objects was enhanced, making mAP@0.5 increase
to 84.5%. Finally, the SE attention mechanism improved the model’s generalization ability
at the deepest layer of YOLOv5-CFDSDSE, and reached 85.1% for mAP@0.5 and 48.6% for
mAP@0.5:0.95. The improvement of mAP@0.5 will also lead to the loss of other performance.
While mAP@0.5 increased by 4.3%, the inference time was also increased to 5.9 ms. These
data were derived when batch-size was 32. However, in the actual detection process, the
inference time of 5.9 ms had little effect on the results, and the model can still obtain smooth
detection results.

Detecting small underwater objects is one of the important purposes of YOLOv5-
CFDSDSE. To compare the performance of each improved method in detecting small
objects, this paper counted the percentage of the number of small objects detected by each
improved method to the total number of small objects. The Small Object Detection Ratio
(SODR) are shown in Table 2. It can be seen from Table 2 that the proposal of the SD layer
was particularly significant for small objects, increasing the SODR from 78.2% to 89.6%.
Combined with several other methods, the SODR in this data set was finally increased to
91.1%, which was 12.9% higher than that of YOLOV5s.

4.5. Visualization

To verify the effect of the YOLOv5-CFDSDSE model in underwater image detection,
typical underwater image scenes were selected from the dataset. The YOLOv5-CFDSDSE
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model had a strong detection ability for dense small objects in complex underwater envi-
ronments. The detection results of underwater fuzzy small objects are shown in Figure 8.
The detection results of underwater dense small objects are shown in Figure 9. Comparing
the detection results of the YOLOv5-CFDSDSE model with those of the YOLOv5s model,
YOLOv5-CFDSDSE can identify targets that YOLOv5s cannot recognize. The comparison
results are shown in Figures 10 and 11, where (b) is the YOLOV5s detection result, and (c)
is the same image’s detection result of YOLOv5-CFDSDSE.

(a) Ground Truth (b) YOLOvV5-CFDSDSE detection results

Figure 8. Underwater fuzzy object detection result diagram.

(a) Ground Truth (b) YOLOv5-CFDSDSE detection results

Figure 9. Underwater dense small object detection result diagram.

It can be seen from Figures 8 and 9 that YOLOv5-CFDSDSE had a good effect on object
detection in blurred underwater scenes, could effectively extract features, and had excellent
detection capabilities for dense small objects. As shown from (b) and (c) in Figure 10,
YOLOvV5s did not detect sea cucumbers, while the improved model YOLOv5-CFDSDSE
successfully detected them, which are marked with a red box in (c). As shown from (b)
and (c) in Figure 11, the improved model could detect sea urchins in a very low-definition
state, while YOLOvV5s could not detect them. After comparing the targets detected by the
two models simultaneously, it was found that YOLOv5-CFDSDSE had higher accuracy for
object detection in complex underwater environments. YOLOv5-CFDSDSE worked well
for small object detection, but not all small objects could be detected. Objects below 1% of
the image area were difficult to detect.
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sea cucumber

(a) Ground Truth

sea cucumber 0.27

(b) YOLOVS5 detection results (c) YOLOv5-CFDSDSE detection results

Figure 10. Comparison diagram 1 of detection results.

seqg cucumber

(a) Ground Truth

sea cucumber 0.29

(b) YOLOVS5 detection results (c) YOLOv5-CFDSDSE detection results

Figure 11. Comparison diagram 2 of detection results.
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Precision

Figure 12 shows the P-R diagram of the two models. The P-R diagram is a helpful
tool in deep learning, which helped us understand the model’s performance and made a
trade-off between precision and recall.

Precision-Recall Curve

0.8

0.6

0.4

0.2

0.0

Precision-Recall Curve

\

\

|
\ 0.4

1.0 —

—— sea cucumber 0.820 = =
sea urchin 0.933

—— scallop 0.666

— starfish 0.813

— all classes 0.808 MAP@0.5

—— sea cucumber 0.816
sea urchin 0.940

— scallop 0.828

—— starfish 0.822
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0.6

Precision

1 0.2

0.0

0.0

0.2

0.4

Recall

0.6

(a) YOLOV5

0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall

(b) YOLOv5-CFDSDSE

Figure 12. Comparison of P-R diagram.

The shape of the PR curve can reflect the performance of the classification model. In
general, the closer the PR curve was to the upper right corner, the better the performance of
the classification model, as it had both higher precision and recall at this point. Comparing
the P-R plots of the two models, we can find that the improved YOLOv5-CFDSDSE model
performed better in Precision and Recall for object detection with the same dataset, and its
accuracy was higher than YOLOvb5s.

5. Conclusions

Underwater objects often appear small, dense, overlapping, and blurred, resulting in
highly complex underwater object detection. This paper proposed a new model YOLOv5-
FCDSTSE for underwater dense small object detection. It was based on the YOLOv5s
model and improved C3 to CFnet structure, which reduced the number of model structure
parameters while also improving the performance of detection. The multi-scale and multi-
category object detection head Dyhead was used to replace the original Head, which
enhanced the perception ability of the model. The SD layer was added to effectively
combine feature information from different scales through multi-level feature fusion, which
can retain more detailed information and improve the perception of small objects. Finally,
an SE attention mechanism was added to the deep layer of the model to recalibrate each
channel in the feature map. It placed more attention on the features that were useful for
the current task. By learning the channel weight vector, the SE attention mechanism gave
a larger weight to the channel with important information and a smaller weight to the
channel with irrelevant information. The experimental results showed that the YOLOv5-
CFDSDSE model achieved good performance on the self-made URPC_UODD underwater
small object dataset.

The YOLOv5-CFDSDSE model proposed in this paper was significantly better than
the baseline model in terms of accuracy and parameter quantity. Its detection frame rate
could also reach 22FPS. However, to achieve better application results, the focus of the next
step is to study further how to improve the detection frame rate technology. At the same
time, because the detection effect of this model on occluded targets in some particularly
complex underwater environments still needs to be improved, further research on how to
solve the problem of occluded object detection is another direction of work in the future.
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