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Abstract: Industrial anomaly detection, which relies on the analysis of industrial internet of things
(IIoT) sensor data, is a critical element for guaranteeing the quality and safety of industrial manufac-
turing. Current solutions normally apply edge–cloud IIoT architecture. The edge side collects sensor
data in the field, while the cloud side receives sensor data and analyzes anomalies to accomplish it.
The more complete the data sent to the cloud side, the higher the anomaly-detection accuracy that
can be achieved. However, it will be extremely expensive to collect all sensor data and transmit them
to the cloud side due to the massive amounts and distributed deployments of IIoT sensors requiring
expensive network traffics and computational capacities. Thus, it becomes a trade-off problem: “How
to reduce data transmission under the premise of ensuring the accuracy of anomaly detection?”. To this end, the
paper proposes a binary-convolution data-reduction network for edge–cloud IIoT anomaly detection.
It collects raw sensor data and extracts their features at the edge side, and receives data features
to discover anomalies at the cloud side. To implement this, a time-scalar binary feature encoder is
proposed and deployed on the edge side, encoding raw data into time-series binary vectors. Then,
a binary-convolution data-reduction network is presented at the edge side to extract data features
that significantly reduce the data size without losing critical information. At last, a real-time anomaly
detector based on hierarchical temporal memory (HTM) is established on the cloud side to identify
anomalies. The proposed model is validated on the NAB dataset, and achieves 70.0, 64.6 and 74.0 on
the three evaluation metrics of SP, RLFP and RLFN, while obtaining a reduction rate of 96.19%. Exten-
sive experimental results demonstrate that the proposed method achieves new state-of-the-art results
in anomaly detection with data reduction. The proposed method is also deployed on a real-world
industrial project as a case study to prove the feasibility and effectiveness of the proposed method.

Keywords: anomaly detection; data reduction; edge–cloud; industrial internet of things (IIoT); deep
learning; neural networks; case study

1. Introduction

Industrial internet of things (IIoT) sensors have been widely deployed and applied to
continuously carry real-time anomaly detection [1] since it is one of the key ingredients for
guaranteeing the quality and safety of industrial production [2]. Typically, data collected
by IIoT sensors, such as servo motor power, filling pressure, ambient temperature, etc., can
be further analyzed by an online time-series detector to identify anomalies before system
failures really happen [3]. This requires massive sensor data to be obtained in time. In
order to keep the low latency and network traffic during anomaly detection, current works
apply edge–cloud IIoT architecture to connect these sensors [4]. The architecture is roughly
divided by the edge side and the cloud side. The edge side is deployed very close to IIoT
sensors but with a low computational capacity, while the cloud side is deployed far away
from IIoT sensors but has a much higher computational capacity. In such architecture, the

Electronics 2023, 12, 3229. https://doi.org/10.3390/electronics12153229 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12153229
https://doi.org/10.3390/electronics12153229
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4484-7428
https://orcid.org/0009-0008-6494-2335
https://doi.org/10.3390/electronics12153229
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12153229?type=check_update&version=2


Electronics 2023, 12, 3229 2 of 22

edge side is normally responsible for collecting sensor data in time while the cloud side is
responsible for accurate anomaly detection [5–9].

The more complete the data sent to the cloud side, the higher the anomaly-detection
accuracy that can be achieved [10,11]. It thus becomes a trade-off problem, as higher
anomaly-detection accuracy requires more complete sensor data to be sent to the cloud
side. It inevitably increases overheads on network traffic and latency from the edge
side to the cloud side. IIoT sensors collect large amounts of data in a very short period
and continuously increase. Researchers estimate that a typical industrial manufacturer’s
production line generates several gigabytes of sensor data per day, which is often multiplied
by a large number of sensors on the production line [12]. An extreme case is that a smart
city with 1 million residents is estimated to generate 180 petabytes of sensor data per
day [13]. Obviously, almost all these raw sensor data do not contain anomaly information,
especially in a mature industrial environment. It is difficult and inefficient for the cloud side,
instead of the edge–cloud architecture, to independently conduct the complete anomaly-
detection task.

There are many works focusing on online time-series anomaly-detection approaches
for edge–cloud IIoT environments. Cloud-oriented approaches focus on analyzing sen-
sor data on the cloud-side, which requires continuous raw sensor data collection [14,15].
Elaborated data collectors are thus designed to reduce raw sensor data with data-filtering
methods, such as down-sampling, rotation sampling, eigenvalue calculation, and repre-
sentative data extraction. These approaches are feasible and effective when the amount
of sensors is not very large, and the real-time performance is not essential for anomaly
detection. Edge-oriented approaches conduct anomaly detection at the edge side, and only
transmit the resulting data to the cloud side [5–7]. The edge side can obtain continuously
and complete raw sensor data in the field with very low latency. But a high computational
capacity and complex analyzing models are required at the edge side for time-series anal-
ysis. Edge-oriented approaches are useful in smart city and smart home scenarios since
edge-side IoT devices, such as smart refrigerators, sweeping robots, smart charging stations,
etc., are intelligent devices that have enough abilities to analyze anomalies by themselves.
But edge-oriented approaches are infeasible for the industrial production environment
because almost all IIoT sensors, such as turbidimeters, manometers, thermometers, etc., are
non-smart devices that cannot actively analyze the data. Edge–cloud hybrid approaches
discover data features from raw sensor data at the edge side, then detect anomalies based
on these data features at the cloud side [8,9,16]. The anomaly-detection model proposed in
this paper is also an edge–cloud hybrid approach, which significantly reduces the amount
of data transmission and to some extent, maintains the data integrity. However, a trade-off
problem still exists.

Anomaly Detection with Data Reduction. It is quite easy for online time-series
anomaly detection to generate large amounts of real-time data. Increasingly with the edge
data, to relieve the computing pressure in the cloud, edge–cloud hybrid approaches offload
some tasks to the edge. However, the above approaches inevitably suffer from the problem
that is “the model should achieve a higher accuracy rate on anomaly detection but requires less
amount of data transmission”. Therefore, how to balance the amount of raw sensor data
transmission and the accuracy of anomaly detection becomes the research focus.

To this end, in the paper, a binary-convolution data-reduction network for
edge–cloud IIoT anomaly detection is proposed. It collects raw sensor data and extracts
their features at the edge side, while on the cloud side, only data features are received to
discover anomalies. To implement this, a time-scalar binary feature encoder is proposed
and deployed on the edge side that encodes raw data into time-series binary vectors. Then,
a binary-convolution data-reduction network is presented at the edge side to extract data
features that significantly reduce the data size without losing critical information. At last, a
real-time anomaly detector based on hierarchical temporal memory (HTM) is established
on the cloud side to identify anomalies. Extensive experimental results demonstrate the
proposed method achieves new state-of-the-art results on anomaly detection with data
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reduction. We also deploy the proposed method on a real-world industrial project as a case
study to prove its feasibility and effectiveness.

In summary, the main contributions of this paper are as follows:

• We propose a new time-series data-encoding method called the time-scalar binary feature
encoder that can significantly extract sensor data features with binary representations.

• We propose a binary-convolution data-reduction network that can extract binary data
features without losing critical data information. It is useful for the edge side to
pre-process the raw data and then transmit them to the cloud-side for further analysis.

• We propose a new hierarchical temporal memory-based detection model that achieves
new state-of-the-art anomaly detection with data reduction. The model is also de-
ployed on a real-world industrial project to present a representative case study.

The rest of this paper is organized as follows. Section 2 discusses the related work.
Section 3 presents the proposed online anomaly-detection method for time series. Section 4
analyzes the experimental results. Section 5 presents a real-world case study based on the
proposed method. Section 6 concludes the work and discusses the future research lines.

2. Related Work
2.1. Online Time-Series Anomaly Detection

Online time-series anomaly detection is an emerging and interesting research field in
recent years. However, due to its stringent requirements, very few of the research studies pro-
posed in the anomaly-detection field can directly meet online time-series anomaly detection.

• EXPoSE (expected similarity estimation) [17]: an algorithm that determines anomalies
by computing the deviation between input observations and the estimated distribution
of past input values.

• Bayesian changepoint [18]: a Bayesian-based algorithm that detects a sudden change-
point.

• Skyline (https://github.com/etsy/skyline (accessed on 20 June 2023), https://github
.com/earthgecko/skyline (accessed on 20 June 2023)): an ensemble learning algorithm
that identifies anomalies when most detections are confirmed.

• Windowed Gaussian (https://github.com/numenta/NAB/blob/master/nab/det
ectors/gaussian/windowedGaussian_detector.py (accessed on 20 June 2023)): an
anomaly-detection algorithm that determines anomalies based on the probability
calculated by the new observation on the Gaussian distribution.

• Twitter ADVec (https://github.com/twitter/AnomalyDetection (accessed on 20 June
2023)): a method based on the seasonal hybrid ESD (S-H-ESD) algorithm. Extreme
student deviations from the given time-series values are calculated for anomaly detec-
tion.

• Random cut forest [19]: an anomaly-detection algorithm published by Amazon, an
improvement on the isolated forest.

• Relative Entropye [20]: a method that uses Kullback–Leibler divergence of two data
distributions to decide whether the data are an anomaly.

• KNN CAD [21]: an algorithm based on K-nearest neighbors classification, which
compares the observed values with reference values on the non-conformity measure
that are calculated using the created caterpillar matrix to identify anomalies.

• CAD OSE (https://github.com/smirmik/CAD (accessed on 20 June 2023)): a method
that determines anomalies if the contexts of the recent subsequence are significantly
different from the past subsequences.

These methods judge anomalies based on previous data patterns but do not take full
advantage of the impact of the current data on the future. From the perspective of prediction-
based time-series methods, online anomaly detection has been improved [22]. Several repre-
sentative proposals based on time-series prediction in recent years are as follows:

https://github.com/etsy/skyline
https://github.com/earthgecko/skyline
https://github.com/earthgecko/skyline
https://github.com/numenta/NAB/blob/master/nab/detectors/gaussian/windowedGaussian_detector.py
https://github.com/numenta/NAB/blob/master/nab/detectors/gaussian/windowedGaussian_detector.py
https://github.com/twitter/AnomalyDetection
https://github.com/smirmik/CAD
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• HTM (hierarchical temporal memory) [23]: This is a representative unsupervised
prediction-based method for online time-series anomaly detection. It implements a
working mechanism similar to that of the cerebral cortex.

• OLAD (online non-parametric Bayesian method) [24]: This is a predictive algorithm
with HTM as the base anomaly detector. It identifies anomalies when observations
deviate from the modeled normality.

• OeSNN-UAD (the online evolving spiking NNs for unsupervised anomaly-detection
framework) [25]: This is an online anomaly-detection algorithm based on OeSNN
architecture but that works in an unsupervised way. With eSNNs, input values are
labeled as inliers or outliers.

• EORELM-AD [26]: This is an anomaly-detection framework that contains streaming
data normalization and online anomaly scoring and identification, enabling predictive
algorithms to adapt to online time-series anomaly detection.

Compared to other methods, the HTM algorithm has the capabilities of continuous
learning to handle concept drift, detecting subtle temporal anomalies, making fewer as-
sumptions and adapting to diverse datasets [23]. Methods like Skyline are flawed in
concept drift and non-parametric. EXPoSE meets the first three points, but depends on
the size of the dataset and is more suitable for large-scale datasets with high-dimensional
features. OeSNN-UAD relies on a large window to capture data features, causing a slow
startup speed. EORELM-AD is an ensemble framework with a complex structure and a
number of parameters. Also, due to the advanced encoding format of sparse distributed
representations (SDRs), the HTM algorithm is faster, more robust, and more energy efficient
than conventional neural networks [27]. In addition, for anomaly detection at a single
point, the HTM algorithm can achieve millisecond-level analysis speed, which makes it
achieve timely online real-time anomaly detection [23,28]. So far, HTM has been used by
several enterprises, such as Grok (https://grokstream.com/anomaly-detection/ (accessed
on 20 June 2023)), for anomaly detection.

The above properties enable HTM to be more suitable for IIoT anomaly detection,
compared with other algorithms. In IIoT, a real-time anomaly detector is very important
to ensure production safety. The fine-grained detection capability of HTM can meet the
requirements of real-time monitoring in actual production, and its high robustness accom-
modates noise data in complex production environments [27]. So, in this paper, we improve
HTM to make it more suitable for anomaly-detection tasks in the edge–cloud architecture.

2.2. Data Reduction for Edge–Cloud

Data-reduction methods for edge–cloud can be broadly divided into two categories,
representative data sampling, and data features extraction.

2.2.1. Representative Data Sampling

These approaches calculate important values or results at the edge to minimize the
data transferred to the cloud. Ref. [14] gave weights to data points to find important
values but changed those values as a result. They are not suitable for applications that
require actual values or ranges. Ref. [29] reduced the amount of data to be stored by
studying problem approximations of the data stream. Ref. [15] proposed an adaptive
moving average window sampling (AWBS) algorithm to reduce data, where the window
size changes based on the changes in the incoming data. Ref. [30] passed the collected
sensor data to the intelligent gateway to reduce them according to a defined pattern and
then transmit them to the cloud. However, without complete information, the cloud can no
longer perform further analysis.

2.2.2. Data Features Extraction

These approaches put part of the entire model at the edge to extract data features
and reduce them. Tang et al. [8] proposed a hierarchical fog computing architecture for
connected devices in smart city scenarios. They implemented feature extraction at the edge

https://grokstream.com/anomaly-detection/
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to complete the corresponding machine-learning tasks. However, they only analyzed the
mean and variance of the signal, so they lack the generalization of the application scenario.
Refs. [9,16] place the encoder and decoder of the autoencoder in the edge and in the cloud,
respectively, to enable feature extraction and data reduction at the edge. The former is used
for image classification, while the latter transmits sensor data to the cloud to complete the
classification of human activities. Such methods relieve computing pressure in the cloud
but require computing power at the edge.

3. Binary-Convolution Data-Reduction Network for Edge–Cloud IIoT
Anomaly Detection

As shown in Figure 1, our proposed method is mainly divided into three modules.
The first module is time-scalar binary feature encoding, which collects production data at
the edge and encodes them as time-scalar binary feature vectors for anomaly detection in
the cloud. The second module is the binary-convolution data-reduction network, which
contains feature smoothing for enhancing semantic expressiveness and binary feature
reduction for feature compression. The last module is binary feature sequence anomaly
detection, which detects anomalies in the current data based on the HTM model.

Figure 1. The overview of the proposed method. It can be divided into three modules. The first
module, time-scalar binary feature encoding, is introduced in Section 3.1; the second module, binary-
convolution data-reduction network, including feature smoothing and binary feature reduction, is
detailed in Section 3.2; the last module, binary feature sequence anomaly detection, is explained in
Section 3.3.

Throughout the whole model, the three modules play different roles and are closely
linked. As shown in Figure 2, the middle module reduces the raw sensor data encoded by
the first module in the edge for the last one to detect anomalies in the cloud with fewer
data features.
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Figure 2. The relationship between the modules.

3.1. Time-Scalar Binary Feature Encoding

The raw data collected by IIoT sensors, consisting of “time” (t) and “value” (v), cannot
be directly used for anomaly detection. This is because (1) there is no clear semantics that
can be described among “t,v” records. (2) “t,v” records cannot be identified and used by
the downstream machine learning models for anomaly detection and data reduction. A
semantic-rich and learning-acceptable encoding is required. In this work, a famous scalar
encoding format called sparse distributed representations (SDRs) [31] is referred to for
“time”(t) and “value”(v) encoding. An SDR consists of a large array of bits, of which most
are zeros and a few are ones. Each bit carries some semantic meaning, so if two SDRs have
more than a few overlapping one bits, then those two SDRs have similar meanings.

In detail, we encode the time data by using the cyclic categories encoder (Et) and value
data by the cochlea encoder (Ev) [32], while Et and Ev are the implementations of SDR. With
Et, “time” (t) is converted to an SDR like “000111...11000...00”, where the relative position of
consecutive 1s reflects a certain time, just like the Monday of the week. Unlike time, which
has cyclic properties, “value” (v) is better suited for discrete representations. Ev encodes
“value” (v) into an intensively 1-distributed SDR and converts it to a discrete distribution
like “00100...0100...0010” using a hash function. Then, the encoded time and value are
concatenated into a time-scalar merged binary vector zk, defined as the following equation:

zk = Et(tk)⊕ Ev(vk), (1)

where k denotes the k-th record collected by an IIoT sensor. tk and vk represent the time
and value of this record, respectively.

The process of encoding is illustrated in Figure 3. A turbidimeter produces turbidity
values with time series. Then, the turbidity values are encoded into an SDR by Ev, while
time series are encoded by Et. At last, the time SDR and value SDR are concatenated into
a time-scalar merged binary vector zk. This will be the input data for the downstream
learning tasks.
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Figure 3. The process of time-scalar binary feature encoding.

3.2. Binary-Convolution Data-Reduction Network

As introduced in Section 3.1, the raw sensor data are encoded into a binary representa-
tion zk on the edge side. Massive sensors continuously produce a large amount of zk that is
unable to be completely sent back to the cloud side in a timely manner. In this section, the
binary-convolution data-reduction network (deployed on the edge side) is introduced to
reduce zk without losing significant information before sending it back to the cloud side.

3.2.1. Feature Smoothing

The encoded data feature zk follows the SDR structure, according to which similar
data (e.g., z1 and z2) hold more than a few overlapping one bits. The purpose of feature
smoothing is to gather as many semantics as possible among previous data records to
enhance semantic expressiveness, compensating for the lack of semantic information
caused by the subsequent binary feature reduction. The idea of feature smoothing is to
apply a sliding window (whose size is ρ) to combine features from zk to zk+ρ by an “or”
operation. The “or” operation combines corresponding bits to a one bit if a one bit exists,
else to a zero bit. Since the overlapping of one bits holds semantics among data features, the
sliding window, indeed, propagates semantics from the current feature to the next feature.
The following equation defines the feature smoothing with a sliding window:

z′k = zk−ρ+1 or zk−ρ+2 or . . . zk, (2)

where z′k is the data feature after smoothing. ρ is the size of the sliding window. An example
of a feature-smoothing process is presented in Figure 4, with ρ = 2. The current feature
is enhanced by the semantic representation of the previous time step, which enriches the
current information.

3.2.2. Binary Feature Reduction

The feature smoothing, indeed, focuses on extracting data features from other adjacent
data records. However, in this part, the proposed binary feature-reduction module focuses
on extracting data features only from its own data record. It is designed to extract highly
concentrated features but with a rather small data size. The input of the reduction module
is the smoothed feature z′k, and the output is the reduced data feature hk. In detail, the
three operations, a convolution network Convλ(·), a max pooling Mpµ(·) and a binary
compression BC(·) are used. Both the convolution core and the max pooling core are
one-dimensional vectors. In the experiments, the convolution core’s size is 1 × λ, and the
size of the max pooling core is 1 × µ, with its stride also being µ. The binary compression
is to merge all continuous zero bits into one bit, whose value is the number of zero bits.
The reduction process is defined as the following equation:

hk = BC(Mpµ(Convλ(z′k))). (3)
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Figure 4. The process of feature smoothing.

As shown in Figure 5, the value part of each z′ is calculated by the convolution core,
from the first dimension to the last with step = 3. Then, the data feature is calculated by the
max pooling core, also from the first dimension to the last with step = 3. After max pooling,
the size of the data feature will be 1/µ of the original feature. At last, the data feature is
further compressed by a binary compression operation BC(·). It compresses all continuous
zero bits into a single bit with the value representing the number of zero bits. Thus, the
compression rate depends on the sparsity of the data feature and is marked as θ. The size
of the final data feature will be close to θ/µ of the original feature size.

Figure 5. An example of binary feature reduction.

After convolution and max pooling, the value part feature is concatenated with its
time part feature, and then becomes the reduced data feature hk with binary compression.
It is used for anomaly detection, which is described in the next section.

3.3. Binary Feature Sequence Anomaly Detection

The reduced data feature hk is a sparse vector with zero bits and one bits. Based on hk,
the idea of prediction is to use a spatial network to activate hk by the spatial relationships
among the vector’s one bits. We call this activated feature h′k, which is a highly concentrated
data feature. Then, based on h′k, we push the time sequence to k + 1 by using a sequence
network to predict the next data feature (k + 1 data feature). We call this predicted data
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feature h
′pred
k+1 . In the experiment and the case study, the spatial pooler [33] is used for

feature activation, while sequence memory [28] is used for feature prediction, given as

h′k = SpatialPooler(hk),

h
′pred
k+1 = SequenceMemory(h′k).

(4)

In detail, during the spatial pooler process, an SDR vector hk from the binary-convolution
data-reduction network is activated as a sparser SDR ok according to Equation (5). The top
2% bits in ok is converted to 1, and the rest is 0:

oki = bi ∑
j

Wijhkj,

h
′
ki =

{
1 if oki in top 2% of ok

0 otherwise
,

(5)

where oki is the i-th element in ok, and hkj is the j-th element in hk. W is a transformation
matrix connecting hk and h

′
k. b is the weight.

In sequence memory, we use a set of the matrix, D =
{

Dd | d = 1, 2, ..., 128
}

, to denote

the permanence of the predictive state. If there is a Dd making the predictive state match
the activated state beyond the threshold, the position of the predicted feature becomes one
bit; otherwise, it is zero bit:

h
′pred
k+1,i =

1 if ∃d

∥∥∥Dd
i � h′k

∥∥∥
1
> η

0 otherwise
, (6)

where h
′pred
k+1,i denotes the i-th element in h

′pred
k+1 , Dd

i is the i-th vector in the matrix Dd, and �
represents element-wise multiplication.

Based on the prediction, we can calculate the errors between the predicted data
feature and the actually happened data feature. An anomaly might happen if the errors
continuously grow. In detail, the errors are divided into three categories that are single
errors, short-term errors, and long-term errors. The single error E single

k is measured between

h′k and h
′pred
k as defined in Equation (7):

E single
k = 1−

h
′pred
k · h′k∣∣h′k∣∣ , (7)

where h
′pred
k is the predicted data feature based on h′k−1. And h′k is the actually happened

data feature.
Figure 6 presents the calculation process of E single

k . The long-term errors are the
accumulation of single errors during a long-term windowWl , while the short-term errors
are accumulated within a relatively shorter-term window Ws. Equation (8) provides
the definition:

E long
k =

∑
|Wl |
0 E single

k−i
|Wl |

,

E short
k =

∑
|Ws |
0 E single

k−i
|Ws|

,

(8)
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Figure 6. The calculation process of single error E single
k .

After, we calculate the distance between E short
k and E long

k , and put the result into a
Gaussian tail probability function Q(·) [34] to measure the anomaly probability as defined
in Equation (9):

σk =

√√√√∑Wl
0

(
E single

k−i − E
long
k−i

)2

|Wl |
,

P ano
k = 1−Q

(
|E short

k − E long
k |

σk

)
,

(9)

where σk is the standard deviation of error prediction in the long-term window. P ano
k is the

probability of anomaly detection. In the experiment, ε is a user-defined threshold. When
P ano

k ≥ ε, an anomaly can be reported.
The whole anomaly-detection process can be seen in Algorithm 1.

Algorithm 1 Anomaly-detection process.

Input: dataset, ρ, λ, µ
Output: P ano

k
1: Resultset = [ ]
2: for (tk, vk) in dataset do
3: zk ←− Encode(tk, vk)
4: z′k ←− FeatureSmoothing(zk)
5: hk ←− DataReduction(z′k)
6: h′k ←− SpatialPooler(hk)

7: h
′pred
k+1 ←− SequenceMemory(h′k)

8: E single
k ←− CalcSingleError(h′k, h

′pred
k+1 )

9: E long
k , E short

k ←− CalcError(E single
k )

10: P ano
k ←− CalcAnomaliy(E long

k , E short
k )

11: Resultset.append(tk, 1 i f P ano
k ≥ ε else 0)

12: end for
13: return Resultset

4. Experimental Evaluation
4.1. Preparations
4.1.1. Datasets

The Numenta anomaly benchmark (NAB) [35] is used as the benchmark of the ex-
periment. NAB consists of 58 time-series data files that are divided into seven categories:
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“realAWSCloudwatch”, “realAdExchange”, “realKnownCause”, “realTraffic”, “realTweets”,
“artificialNoAnomaly” and “artificialWithAnomaly”:

• realAWSCloudwatch: AWS server metrics including CPU utilization, network bytes
in, and disk read bytes.

• realAdExchange: online advertisement clicking rates, where the metrics are cost per
click (CPC) and cost per thousand impressions (CPM).

• realKnownCause: the data where we know the anomaly causes, with no hand labeling.
• realTraffic: real-time traffic data from the Twin Cities Metro area in Minnesota, includ-

ing occupancy, speed, and travel time from specific sensors.
• realTweets: a collection of Twitter mentions of large publicly traded companies, such

as Google and IBM.
• artificialNoAnomaly: artificially generated data without any anomalies.
• artificialWithAnomaly: artificially generated data with varying types of anomalies.

In the dataset, every record has two data items, time and value, for example (2014/4/1
5:40:00, 20). And every subdataset has thousands of pieces of data, totaling 329,270. More
detailed information about NAB is summarized in Table 1.

Table 1. NAB datasets structure: 7 categories consisting of 58 subdatasets.

Categories Subdatasets Anomaly Num Total Examples

artificialNoAnomaly

art daily no noise

0 4032

(2014/4/1 5:40:00, 20)
art daily perfect square wave (2014/4/2 11:50:00, 80)
art daily small noise (2014/4/1 0:00:00, 18.3249185392)
art flatline (2014/4/1 1:50:00, 45)
art noisy (2014/4/1 0:00:00, 18.6221849224)

artificialWithAnomaly

art daily flatmiddle

403 4032

(2014/4/1 0:00:00, -21.0483826823)
art daily jumpsdown (2014/4/1 1:30:00, 18.1821019992)
art daily jumpsup (2014/4/1 0:00:00, 19.761251903)
art daily nojump (2014/4/1 0:00:00, 21.5980110405)
art increase spike density (2014/4/1 0:00:00, 20)
art load balancer spikes (2014/4/1 5:45:00, 0.1465598018)

realAdExchange

exchange-2 cpc results 163 1624 (2011/7/1 0:00:01, 0.0819647355164)
exchange-2 cpm results 162 1624 (2011/7/1 0:00:01, 0.401048098657)
exchange-3 cpc results 153 1538 (2011/7/1 0:15:01, 0.102708933718)
exchange-3 cpm results 153 1538 (2011/7/1 0:15:01, 0.405422534525)
exchange-4 cpc results 165 1643 (2011/7/1 0:15:01, 0.0917952281677)
exchange-4 cpm results 164 1643 (2011/7/1 0:15:01, 0.61822635122)

realAWSCloudwatch

ec2 cpu utilization 5f5533 402 4032 (2014/2/14 14:27:00, 51.846)
ec2 cpu utilization 24ae8d 402 4032 (2014/2/14 14:30:00, 0.132)
ec2 cpu utilization 53ea38 402 4032 (2014/2/14 14:30:00, 1.732)
ec2 cpu utilization 77c1ca 403 4032 (2014/4/2 14:25:00, 0.068)
ec2 cpu utilization 825cc2 343 4032 (2014/4/10 0:04:00, 91.958)
ec2 cpu utilization ac20cd 403 4032 (2014/4/2 14:29:00, 42.652)
ec2 cpu utilization c6585a 0 4032 (2014/4/2 14:29:00, 0.066)
ec2 cpu utilization fe7f93 405 4032 (2014/2/14 14:27:00, 2.296)
ec2 disk write bytes 1ef3de 473 4730 (2014/3/3 7:59:00, 2423190)
ec2 disk write bytes c0d644 405 4032 (2014/4/2 15:00:00, 19949200)
ec2 network in 5abac7 474 4730 (2014/3/1 17:36:00, 42)
ec2 network in 257a54 403 4032 (2014/4/10 0:04:00, 251643)
elb request count 8c0756 402 4032 (2014/4/10 0:04:00, 94)
grok asg anomaly 465 4621 (2014/1/16 0:00:00, 33.5573)
iio us-east-1 i-a2eb1cd9 NetworkIn 126 1243 (2013/10/9 16:25:00, 9926554)
rds cpu utilization cc0c53 402 4032 (2014/2/14 14:30:00, 6.456)
rds cpu utilization e47b3b 402 4032 (2014/4/10 0:02:00, 14.012)
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Table 1. Cont.

Categories Subdatasets Anomaly Num Total Examples

realKnownCause

ambient temperature system failure 726 7267 (2013/7/4 0:00:00, 69.88083514)
cpu utilization asg misconfiguration 1499 18,050 (2014/5/14 1:14:00, 85.835)
ec2 request latency system failure 346 4032 (2014/3/7 3:41:00, 45.868)
machine temperature system failure 2268 22,695 (2013/12/2 21:15:00, 73.96732207)
nyc taxi 1035 10,320 (2014/7/1 0:00, 10844)
rogue agent key hold 190 1882 (2014/7/6 20:10:00, 0.064534524)
rogue agent key updown 530 5315 (2014/7/6 20:10:00, 1.04725631)

realTraffic

occupancy 6005 239 2380 (2015/9/1 13:45:00, 3.06)
occupancy t4013 250 2500 (2015/9/1 11:30:00, 13.56)
speed 6005 239 2500 (2015/8/31 18:22:00, 90)
speed 7578 116 1127 (2015/9/8 11:39:00, 73)
speed t4013 250 2495 (2015/9/1 11:25:00, 58)
TravelTime 387 249 2500 (2015/7/10 14:24:00, 564)
TravelTime 451 217 2162 (2015/7/28 11:56:00, 248)

realTweets

Twitter volume AAPL 1588 15,902 (2015/2/26 21:42:53, 104)
Twitter volume AMZN 1580 15,831 (2015/2/26 21:42:00, 57)
Twitter volume CRM 1593 15,902 (2015/2/26 21:42:53, 11)
Twitter volume CVS 1526 15,853 (2015/2/26 21:42:53, 0)
Twitter volume FB 1582 15,833 (2015/2/26 21:42:53, 53)
Twitter volume GOOG 1432 15,842 (2015/2/26 21:42:53, 35)
Twitter volume IBM 1590 15,893 (2015/2/26 21:42:53, 7)
Twitter volume KO 1587 15,851 (2015/2/26 21:42:53, 8)
Twitter volume PFE 1588 15,858 (2015/2/26 21:42:53, 3)
Twitter volume UPS 1585 15,866 (2015/2/26 21:42:53, 2)

4.1.2. Hyperparameters

Three hyperparameters need to be considered in the proposed method. The first
hyperparameter is the sliding window size (ρ) used in Equation (2), which is proposed
for feature smoothing. With the sliding window, features from the latest ρ timestamps are
fused into one, enhancing the semantic expressiveness of the current data. The second
one is the size of the convolution core (λ) used in Equation (3), which is a hyperparameter
for binary feature reduction. Convolution makes semantic information in features more
concentrated. The last one is the size of the pooling core (µ) also used in Equation (3), which
is another hyperparameter for binary feature reduction. Max pooling removes redundant
1s and 0s in SDR to achieve data reduction. In the experiments, all the settings of these
hyperparameters are summarized in Table 2.

Table 2. The settings of hyperparameters.

Symbol Description Settings

ρ size of sliding window 1/2/3/4/5/6/7/8/9/10
λ size of convolution core 2/3/4/5/6/7/8/9/10
µ size and stride of pooling 2/3/4/5/6/7/8/9/10

4.1.3. Evaluation Metrics

In the experiment, the NAB scoring mechanism [35] is applied for evaluating the
performance of anomaly detection. It is a novel scoring mechanism that has been widely
used for performance evaluation in industrial anomaly detection. It contains three metrics
that are standard profile (SP), reward low FP (RLFP) and reward low FN (RLFN), whose
definitions are shown in Equation (10):

Score = Norm(α ·∑D(TP) + β ·∑D(FP)− γ ·∑ FN), (10)
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where TP is the true positive anomaly detection. FP and FN are false positive and false
negative detections, respectively. D(TP/FP) is a sigmoid function that lets TP/FP be
distributed from −1.0 to 1.0. Norm(·) is a normalization function that lets the result score
be distributed from −∞ to 100.

Then, to set different values for α, β and γ, we can obtain SP, RLFP and RLFN metrics
as presented in Table 3.

Table 3. Scoring weights for three metrics.

Metrics α β γ

SP 1.0 1.0 0.11
RLFP 1.0 1.0 0.22
RLFN 1.0 2.0 0.11

In addition, to evaluate the performance of data reduction during the data transmis-
sion from the edge side to the cloud side, a metric called the data-reduction rate (DRR)
is provided:

DRR = 1−
(lt +

lv+µ−1
µ ) · θ

lt + lv
, (11)

where lt and lv are the lengths of the time part and value part of the raw data feature,
respectively. µ is the size of the max pooling core. θ is the sparsity of one bits in the raw
data feature.

4.2. State-of-the-Art Comparisons

In the experiment, twelve well-known anomaly-detection methods are selected as the
competitors. They are EORELM-AD (EA) [26], ARTime (AR) https://github.com/markN
Zed/ARTimeNAB.jl (accessed on 20 June 2023), Numenta HTM (HTM) [23], CAD OSE
(CO) https://github.com/smirmik/CAD (accessed on 20 June 2023), earthgecko Skyline
(EGS) https://github.com/earthgecko/skyline (accessed on 20 June 2023), KNN CAD
(KC) [21], relative entropy (RE) [20], random cut forest (RCF) [19], Twitter ADVec (TA)
https://github.com/twitter/AnomalyDetection (accessed on 20 June 2023), Windowed
Gaussian (WG) https://github.com/numenta/NAB/blob/master/nab/detectors/gauss
ian/windowedGaussian_detector.py (accessed on 20 June 2023), Etsy Skyline (ES) https:
//github.com/etsy/skyline (accessed on 20 June 2023), Bayesian changepoint (BC) [18],
and EXPoSE (EX) [17]. In these methods, the latest online time-series anomaly-detection
method is EORELM-AD (EA), the state-of-the-art methods are ARTime (AR) and Numenta
HTM (HTM), and the baseline method is EXPoSE (EX). Also, a random detection method
(RD) https://github.com/numenta/NAB/blob/master/nab/detectors/random/random
_detector.py (accessed on 20 June 2023) is referred to as the bottom bound.

In the comparisons, the hyperparameters are set as ρ = 2, λ = 2, and µ = 3. As
shown in Table 4, the proposed method surpasses almost other methods on evaluation
metrics of SP, RLFP, and RLFN, and achieves a comparable performance with the HTM
method. It has better performance results than HTM on realKnownCause, realTraffic, and
realTweets datasets, and has similar performance results on artificialWithAnomaly and
realAdExchange. When compared with the latest method EORELM-AD (EA), it still holds
the full advantage. Moreover, the effect of the proposed model is quite close to that of
SOTA models AR and HTM, and even better on some subdatasets, such as realAdExchange
and realAWSCloudwatch. It is indicated that the data-reduction module is more suitable
for data that change slowly and smoothly, because HTM-based methods have the ability to
detect subtle temporal anomalies. The model smooths the current record with historical
data to synthesize time-series information, and fuses numerical features to reduce the
amount of data, which further accurately establishes the pattern of similar data. In addition,
thanks to feature smoothing and binary feature reduction, the proposed method can

https://github.com/markNZed/ARTimeNAB.jl
https://github.com/markNZed/ARTimeNAB.jl
https://github.com/smirmik/CAD
https://github.com/earthgecko/skyline
https://github.com/twitter/AnomalyDetection
https://github.com/numenta/NAB/blob/master/nab/detectors/gaussian/windowedGaussian_detector.py
https://github.com/numenta/NAB/blob/master/nab/detectors/gaussian/windowedGaussian_detector.py
https://github.com/etsy/skyline
https://github.com/etsy/skyline
https://github.com/numenta/NAB/blob/master/nab/detectors/random/random_detector.py
https://github.com/numenta/NAB/blob/master/nab/detectors/random/random_detector.py
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achieve data reduction and maintain competitive anomaly-detection performance. It
means, compared with HTM, the proposed method only requires 3.81% of data, which can
achieve comparable anomaly-detection performance. It is an interesting and feasible way
to apply the method to the edge–cloud IIoT environment, especially when a large amount
and distributed IIoT sensors are deployed.

Table 4. State-of-the-art comparisons.

Dataset Ours EA AR HTM CO EGS KC RE RCF TA WG ES BC EX RD

Total

SP 70.0 46.4 74.9 70.1 69.9 58.2 58.0 54.6 51.7 47.1 39.6 35.7 17.7 16.4 11.0

RLFP 64.6 32.1 65.2 63.1 67.0 46.2 43.4 47.6 38.4 33.6 20.9 27.1 3.2 3.2 1.2

RLFN 74.0 52.5 80.4 74.3 73.2 63.9 64.8 58.8 59.7 53.5 47.4 44.5 32.2 26.9 19.5

DRR(%) 96.19 - - - - - - - - - - - - - -

artificialWithAnomaly
SP 68.9 0.2 70.3 70.2 73.0 40.2 45.3 56.6 15.5 76.7 2.6 30.9 -5.8 40.3 56.9

RLFP 62.6 −32.2 60.6 68.4 67.1 33.2 26.9 50.2 15.5 57.4 −11.2 0.0 −1.7 0.0 51.4

RLFN 73.7 11.2 74.7 74.6 74.7 43.5 52.4 60.0 31.1 84.5 7.3 31.7 25.9 33.1 71.2

realAdExchange
SP 72.4 58.8 75.1 76.9 72.0 56.8 71.0 36.8 62.8 49.6 56.9 18.8 42.9 13.0 -

RLFP 71.6 50.9 70.8 67.7 70.4 53.7 62.6 29.9 45.9 48.8 53.8 0.0 −0.8 6.3 -

RLFN 74.4 63.0 78.7 79.8 72.9 59.3 75.9 41.2 65.4 52.1 59.4 19.7 60.8 13.1 -

realAWSCloudwatch
SP 73.3 50.0 69.5 73.4 71.5 58.1 60.7 50.0 57.6 38.5 31.2 49.3 39.7 2.3 16.4

RLFP 69.7 36.2 59.0 65.8 67.7 45.2 53.1 44.0 44.9 25.5 4.9 42.2 24.1 2.8 7.0

RLFN 76.6 56.6 75.2 76.7 75.8 64.3 64.9 53.3 64.7 45.7 41.9 56.2 51.0 15.0 25.4

realKnownCause
SP 56.3 28.0 63.9 55.5 41.8 32.9 45.2 49.9 43.1 26.7 13.4 10.1 −1.2 13.5 44.4

RLFP 49.4 15.8 52.2 49.3 38.0 27.7 27.9 39.3 16.0 21.5 9.9 6.8 −38.7 5.1 25.1

RLFN 62.1 32.7 70.7 61.5 49.4 36.0 54.7 56.1 47.8 30.1 15.9 12.0 22.9 21.8 57.7

realTraffic
SP 84.1 51.0 86.9 82.5 91.2 76.5 49.9 78.6 63.8 57.7 64.3 74.9 44.1 36.1 -

RLFP 81.7 41.6 81.5 75.7 88.4 73.5 40.0 71.3 36.8 55.7 61.5 49.6 25.1 0.0 -

RLFN 87.0 55.4 91.2 86.0 92.7 79.6 54.7 83.4 66.1 59.9 66.7 78.5 51.8 55.9 -

realTweets
SP 68.4 54.8 81.8 68.0 74.5 68.9 64.3 59.8 48.1 59.6 51.4 29.4 2.7 19.8 -

RLFP 59.6 37.4 70.1 61.1 73.1 45.3 42.2 55.0 46.9 35.8 16.3 31.8 1.7 3.0 -

RLFN 72.9 61.8 87.9 72.6 76.5 78.3 73.2 63.1 62.2 69.0 64.6 50.9 9.4 33.5 -

The bold indicates best performance, and the underline indicates secondary performance. ArtificialNoAnomaly is
missing because there are no anomalies in this type of dataset and cannot be calculated separately. EORELM-AD
(EA) is reported using global optimal hyperparameter values for all datasets to ensure fairness.

4.3. Hyperparameters Learning
4.3.1. Smoothing Window Size Tuning

In the tuning process, the window size ρ is increased from 1 to 10. Three metrics,
SP, RLFP, and RLFN, are used for the evaluation. It can be observed in Figure 7 that the
proposed model achieves relatively good results when ρ equals 2 or 3. In more detail, the
model achieves the best performance when ρ equals 2 since it has better SP and RLFP than
ρ equals 3. Thus, in this work, ρ = 2 is selected.
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Figure 7. Smoothing window size tuning.

4.3.2. Binary-Convolution Hyperparameters Tuning

There are two hyperparameters, λ and µ, in the binary-convolution network. In the
tuning process, λ increases from 2 to 10, combined with µ increased from 2 to 10. It can be
observed from Figure 8 that the model achieves the best performance when λ = 2 and µ = 3.

Figure 8. Binary-Convolution Hyperparameters Tuning.

4.4. Data-Reduction Analysis

From the definition of the data-reduction rate (DRR), we can know that DRR de-
pends on two parameters, µ and θ. Actually, θ is a fixed value decided by the sparsity of
data features. In the practice, the sparsity is 0.092. Thus, we conduct a series of experiments
to evaluate the data reduction by tuning µ. The result is shown in Table 5.

It can be observed from the result that the profits from data reduction become less
than the loss of the performance with the increase in µ. However, when µ = 3, the model
achieves the best performance and a rather good data-reduction rate.
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Table 5. Data-reduction analysis.

SP RLFP RLFN APD * DRR (%)

HTM 70.1 62.2 74.7 baseline none

ours, µ = 2 67.9 62.8 71.9 −1.94% 94.84%

ours, µ = 3 70.0 64.6 74.0 +0.91% 96.19%

ours, µ = 4 64.0 60.7 67.8 −6.79% 96.86%

ours, µ = 5 59.5 56.7 62.4 −13.51% 97.27%

ours, µ = 6 60.3 56.3 63.5 −12.84% 97.54%

ours, µ = 7 60.7 56.7 63.7 −12.30% 97.73%

ours, µ = 8 55.9 53.8 58.3 −18.58% 97.87%

ours, µ = 9 52.4 50.7 54.4 −23.63% 97.99%

ours, µ = 10 51.5 50.2 53.6 −24.71% 98.08%
* The average performance difference (APD) of our method compared to Numenta HTM on SP, RLFP and RLFN.

4.5. Anomaly Detection-Duration Analysis

With the edge–cloud architecture, the duration of anomaly detection in the cloud
is dropped. In Figure 9, we analyze the anomaly detection-duration reduction and the
relationship between the anomaly-detection duration and the data-reduction rate. In
Figure 9a, every bar shows the original anomaly-detection duration in the cloud. The
dark blue bars represent the duration using the proposed reduction method with different
pooling sizes (µ), while the light blue ones denote the reduction after using it. Apparently,
less duration is needed when using a larger µ. In Figure 9b, with the size and stride of
pooling (µ) increasing, the data-reduction rate is increased simultaneously. As fewer data
features are analyzed in the cloud, the anomaly-detection duration is reduced. Thus, the
anomaly-detection duration and the data-reduction rate are in reverse proportions.

(a) (b)
Figure 9. Anomaly detection-duration analysis. (a) Duration proportion. (b) Duration and data-
reduction rate.

4.6. Ablation Studies

The core part of the proposed method is the binary-convolution data-reduction net-
work, which consists of a data feature-smoothing module and a binary convolution module.
To reveal the effects of each module, three sub-experiments, “binary-convolution only”,
“smoothing only” and “binary-convolution + smoothing”, are conducted for ablation. In
the ablation experiments, the hyperparameters are the same with the best performance
settings of the method, which are ρ = 2, λ = 2, and µ = 3.

It can be observed from Table 6 that the performance of the model increased with the
modules applied. The model achieves the best performance when all modules are added.
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Table 6. Ablation studies.

Method SP RLFP RLFN

Smoothing + Binary Convolution 70.0 64.6 74.0

Smoothing 69.7 63.5 73.7

Binary Convolution 58.2 50.6 63.5

4.7. Discussion

The experimental results demonstrated that the proposed method is able to balance the
performance of anomaly detection and the data-reduction rate in the edge–cloud IIoT envi-
ronment. Moreover, we found that the method performs better, while the hyperparameters,
ρ, λ, and µ, are relatively in a small value range (2 to 4). When ρ, λ, and µ are increasing,
the data-reduction rate is increasing. But meanwhile, the performance of anomaly detection
is significantly declining. We consider that this is because feature smoothing and binary
convolution will lose lots of critical information when ρ, λ, and µ are increasing.

The work proposed a data-reduction module to significantly reduce the amount of
data before sending them to the cloud-side for anomaly detection. But interestingly, we
find that this reduction module has no negative impact on the performance of anomaly
detection. In the contrary, the proposed method has even better performance results than
the state-of-the-art method on some sub-datasets. We speculate that this is because the
feature smoothing and binary convolution in the data-reduction model are useful for the
detection model to gather more significant feature information. Since the data-reduction
module fuses previous data into the current record, it smooths multiple records to extract
information. It can more easily obtain slow-changing data patterns, but it is difficult to
cope with data that are stable but change abruptly because feature smoothing tends to blur
the trend of change. For example, when analyzing load data in the artificialWithAnomaly
subdataset, the proposed model misjudges sudden changes in data that are always 0 as
anomalies and often lags. For subdatasets like realAWSCloudwatch, whose data are always
changing slightly, the model can have good anomaly-detection performance.

Since we only apply the binary convolution on the value part features, the time part
features are not reduced by the binary convolution. We also try to apply binary convolution
on the time part features, but the effect is not ideal. This is probably because the time-part
feature is a cyclic-categories encoding of SDR, whose one bits are continuous. The more
concentrated one-bits data features are not suitable for convolution.

5. Case Study
5.1. The Scenario

There is a copper alloy rod material production line in Chinalco Kunming Copper
Co., Ltd. It is designed to produce high-strength and high-conductivity copper alloy rods
with a capacity of 2000 tons per year. However, it does not have an integrated anomaly-
detection system since almost all IIoT sensors are not smart and online. This significantly
affects the stability and productivity of the production line. The company thus launched
an updating project to reform the production line, and it aims to identify anomalies of all
sensor data. In order to control the cost and stability, all the sensors and related devices
are not allowed to be replaced. Since almost all the IIoT sensors are non-smart devices that
cannot be connected to high-level networks, such as the internet, Wi-Fi, Ethernet, etc., they
are unable to directly collect the IIoT sensor data in the anomaly-detection model. Thus, in
this scenario, an edge–cloud architecture is required.

The production line consists of four processes—smelting, upward casting, rolling, and
extruding—as shown in Figure 10a,b. The IIoT sensors are distributed among these pro-
cesses to acquire real-time manufacturing data, like temperature, voltage, power, viscosity,
etc. As an example, Figure 10c shows a series of crystallizer water temperature sensors for
the melting process. However, anomalies that happen during the melting process cannot
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be obviously detected because workers cannot always keep their eyes on these sensors to
observe anomalies.

In this work, as a case study, we apply the proposed method in the melting process to
collect crystallizer water temperature sensor data on the edge side, and predict anomalies
on the cloud side. Then, the detected anomalies are reported in the manufacturing digital
system of the production line.

(a) (b) (c)
Figure 10. Production line processes and sensors: (a) smelting, upward casting and rolling, (b) ex-
truding and (c) crystallizers.

5.2. The Deployment

The configuration of the deployment is shown in Figure 11, which has three layers, a
sensor layer, an edge layer, and a cloud layer. In the sensor layer, we deploy PLCs (Siemens
S1200) and use the Modbus protocol to connect all IIoT sensors (crystallizer water temperature
sensors). In the edge layer, a gateway (Flex Fbox-4G) is deployed. It connects to PLCs
through Ethernet and connects to the cloud layer by using the MQTT protocol. The gateway
also supports self-defined edge computing. The proposed time-scalar binary encoder and
binary convolution reduction network are deployed in this gateway. In the cloud layer, the
detection model is deployed in a flask service framework. In the service, a series of MQTT
controllers are used to receive the reduced data features sent from the edge layer. In detail, a
Huawei-cloud computation-aware server with 64 cores and 256 GB of main memory holds
the anomaly-detection model in the cloud. We also developed a manufacturing digital system
for this production line to receive anomaly information and visualize them. The digital system
was deployed in another Huawei-cloud ECS server with 12 cores and 64 GB of main memory.
The digital system provides a series of HTTP RESTful services for querying, visualizing, and
reporting the detected anomalies as shown in Figure 12.

Figure 11. The deployment of the edge–cloud IIoT anomaly detection.
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Figure 12. Digital visualizing system for anomaly detection.

5.3. The Evaluations

We monitored the deployed anomaly reporting system for 168 h during the smelting
process. There were 231,840 records (t,v) of crystallizer water temperature collected and
encoded in the edge. After reduction, these encoded data were sent to the cloud side for
anomaly detection. For the evaluation, the records were further divided into five groups,
each group having about 46,000 records. For all these records, there were 54 anomalies
reported by the system, of which 46 reported anomalies are true positive, while 8 are false
positive. According to the site workers’ reports, 19 anomalies were not found by the system
during this time. In summary, the evaluation result is shown in Table 7. Generally, the
proposed model can reach about 70 scores on the three evaluation metrics of SP, RLFP and
RLFN, and group 2 is even close to 80. With the data-reduction module, the amount of
data transferred from the edge to the cloud can be reduced by 96.19%. Since each data bit
occupies 4 B, each data feature requires 1816 B. As a result, a total of 401.5 MB of data in
168 hours can be reduced by about 386.2 MB.

Table 7. The statistical performance of the model in the case.

SP RLFP RLFN DRR

group1 65.3 63.9 65.8

96.19%
group2 79.5 78.9 79.6

group3 66.3 65.9 66.4

group4 70.6 69.9 70.9

group5 71.0 70.6 71.2

Moreover, a representative anomaly detection is presented in Figure 13. In Figure 13a,
the temperature values fluctuate reasonably in a range with no anomalies. Correspondingly,
the system continuously reports a stable and relatively low anomaly probability (close to
0.2), which means there are no anomalies that can be reported. However, at 02:42:15, a
series of abnormal values is increasing, which causes the system to report high-confidence
anomalies. In Figure 13b, at 14:31:05, there are abnormal values that are decreasing, which
also lead to reporting an anomaly. But, according to the site working report, this is not a
true positive anomaly, which means the system has reported a wrong anomaly.

It can be seen that the proposed model can realize “anomaly detection with data
reduction”, which solves the problem that “the model should achieve a higher accu-
racy rate on anomaly detection but requires less amount of data transmission” in the
edge–cloud environment.
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(a) (b)
Figure 13. The representative detected anomalies. (a) True positive in red. (b) False positive in orange
and true positive in red.

In practice, all the detected anomalies are pushed to the “digital visualizing system
for anomaly detection” (as shown in Figure 12). The system will raise warnings for these
anomalies with customized ranking strategies. Managers and workers can easily and
quickly receive, analyze, and respond to anomalies.

6. Conclusions

The trade-off between performance and data transmission in IIoT anomaly detection
is a challenge in an industrial production environment. In this work, we proposed a
binary-convolution data-reduction network for edge–cloud IIoT anomaly detection. The
proposed method collects raw sensor data and extracts their features at the edge side, while
the cloud side only receives data features to identify anomalies. It is thus able to balance
the performance of anomaly detection and the data-reduction rate in the edge–cloud IIoT
environment. To implement this, a time-scalar binary feature encoder is proposed and
deployed on the edge side that encodes raw data into time-series binary vectors. Then, a
binary-convolution data-reduction network is presented at the edge side to extract data
features that significantly reduce the data size without losing critical information. At last, a
hierarchical temporal memory (HTM)-based detection model is established on the cloud-
side to conduct anomaly detection. Extensive experimental results demonstrate that the
proposed method achieves a new state-of-the-art anomaly detection with data reduction.
We also deployed the method in a real-world industrial project as a case study that proves
the feasibility and effectiveness of the proposed model.

The current research is limited to the numerical time-series data collected by IIoT
sensors, such as crystallizer water temperature. In the near future, multimedia time-series
data, such as audio and video, should be supported to realize multi-modal industrial edge
data offloading. Meanwhile, multi-device and multi-modal streaming data in IIoT can be
deeply fused to more precisely detect anomalies and further reduce the amount of data
transmitted throughout the production line.
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