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Abstract: One of the greatest engineering feats in history is the construction of tunnels, and the
management of tunnel safety depends heavily on the detection of tunnel defects. However, the
real-time, portability, and accuracy issues with the present tunnel defect detection technique still
exist. The study improves the traditional defect detection technology based on the knowledge
distillation algorithm, the depth pooling residual structure is designed in the teacher network to
enhance the ability to extract target features. Next, the MobileNetv3 lightweight network is built into
the student network to reduce the number and volume of model parameters. The lightweight model
is then trained in terms of both features and outputs using a multidimensional knowledge distillation
approach. By processing the tunnel radar detection photos, the dataset is created. The experimental
findings demonstrate that the multidimensional knowledge distillation approach greatly increases
the detection efficiency: the number of parameters is decreased by 81.4%, from 16.03 MB to 2.98 MB,
while the accuracy is improved by 2.5%, from 83.4% to 85.9%.

Keywords: tunnel defects; target detection; knowledge distillation; attention mechanism

1. Introduce

Road tunnels of 24,698,900 long meters had been constructed nationwide by the end
of 2021, according to the Statistical Bulletin of Transport Industry Development 2021.
However, there are several flaws in tunnels, including uncompacted, empty, and water-
filled tunnels, because of the circumstances surrounding tunnel construction and the
surrounding environment. Tunnel defect detection is the cornerstone of ensuring the safe
operation of tunnels because these flaws can significantly impair the service life and safety
of tunnels.

Traditional tunnel defect detection methods include visual inspection methods, acous-
tic inspection methods, and multi-sensor inspection methods. For instance, Minardo and
Monsberger [1,2] highlighted the shortcomings of conventional structural monitoring
techniques. Infrared thermal imaging was employed by Afshani et al. [3] for tunnel inspec-
tion. It is challenging to satisfy the demands of large-scale, effective, and high-precision
defect detection using these conventional methods, which are not only susceptible to
missing parts and leakage detection but also use a lot of human and material resources.
Researchers’ focus has steadily shifted to developing inspection techniques based on deep
learning that can automatically identify and locate tunnel flaws. The issue of small size
and damage overlap in defect identification was successfully resolved by Dong et al. [4] by
combining the SegNet model with the focused loss function. A full convolutional network
model (FCN) based on classification was utilized by Xue et al. [5], which significantly
increased detection efficiency and accuracy while consuming fewer processing resources.
By training and testing photos with various backdrop complexity levels, Zhou [6] and
coworkers considerably increased the detection speed and accuracy of the Yolov4 network.
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Three-dimensional ground-penetrating radar data and the Yolo model were merged by
Liu et al. [7] to quickly identify road problems and accomplish automated defect detection.
The project team enhanced the SGD network [8] to increase model accuracy and added an
adversarial network [9] to increase the dataset. Researchers’ attention is now focused on
finding ways to ensure lightweight deployment in the context of the development of edge-
enabled devices. To address the issue of data learning rate during training, Liu et al. [10]
created variable convolutional layers as well as joint learning methodologies. In order to
improve interference countermeasures and transfer the knowledge obtained by the model
to other recognition models using transfer learning approaches, Liu et al. [11] created a
network based on two-layer adversarial. This significantly increases training efficiency and
model accuracy. In order to implement the deployment on the robot side, Huang [12] et al.
employed a weight quantization approach, which compressed the memory by 22.5 times
but required continual parameter adjustment and a lot of labor. Class-aware tracking ratio
optimization (CATRO) was utilized by Hu [13] and others to minimize computation, which
considerably boosted calculation performance but also increased model sparsity, increased
hardware needs, and made it challenging to deploy at the edge devices. Zhang [14] et al.
used a knowledge distillation method for human posture prediction to enable lightweight
deployment without altering the model’s structure. A similar information distillation
technique was applied by Zhao [15] et al. to produce a lightweight fusion of infrared and
visible pictures. Hinton [16], Romero [17], and Zagoruyko [18] have each put forth a variety
of knowledge distillation-based methodologies.

Based on conventional tunnel defect detection methods, deep learning methods, and
knowledge migration methods, the study enhances the knowledge distillation methodology.
The following are the research’s main contributions:

(1) Create a deep pooling residual structure to pool and weight feature information deeply
(2) Use MobileNetv3 to optimize the network backbone for improved model lightweight
(3) Construct a method for multidimensional knowledge extraction that can extract

information from both the feature layer and the output layer.

2. Related Work

Deep learning is one of the most popular methods in the field of computer vision,
which typically uses deep neural networks to extract features from images. These neural net-
work models often have several layers of neurons, each of which can separate higher-level,
more abstract properties from the input data. A back-propagation technique optimizes the
models during deep learning training by progressively changing the network parameters
and enhancing model performance. Computer vision systems can learn to extract helpful
features from input photos for a range of different vision programs by employing deep
learning models for training.

2.1. YOLO Method

A highly popular real-time target identification technique, the YOLO (You Only Look
Once) [19–21] algorithm offers very quick target recognition at the tradeoff of very little
accuracy. As seen in Figure 1, the YOLO algorithm divides the entire image into numerous
grids and forecasts bounding boxes and class probabilities for each grid. This method
is extremely quick and enables the YOLO algorithm to detect several targets in a single
forward pass, which is ideal for the real-time demands of tunnel detection.

The relationship between the network input x and output ŷ is as in Equation (1). The
loss function in Equation (2) is used to characterize the error between the model output ŷ
and the desired output y. For the regression problem, the output of the model h(x) and the
sample labeling are real numbers, and the common method to evaluate its performance on
the sample set is the mean square error, i.e., Equation (3).

ŷ = h(xi) (1)



Electronics 2023, 12, 3222 3 of 17

L(ŷ, y) = L(h(xi), y) (2)

E(h) =
1
N

N

∑
i=1

(h(xi)− yi)
2 (3)Electronics 2023, 12, x FOR PEER REVIEW 3 of 19 

 

 

 
Figure 1. Process of yolo detection in a grid. Each fixed-size cell must identify one object in the image 
before a confidence score determines which prediction frame is the best. 
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Figure 1. Process of yolo detection in a grid. Each fixed-size cell must identify one object in the image
before a confidence score determines which prediction frame is the best.

As shown in Figure 1, in the YOLO algorithm the input image is divided into S × S
grids, each grid contains five pieces of information: (x, y, w, h, c), where x and y represent
the horizontal and vertical coordinates of the prediction frame, w and h represent is the
width and height of the prediction frame, c represents the confidence level, and the formula
is calculated as in Equation (4):

c = p0 × PIOU (4)

where p0 denotes the probability that the prediction frame contains a detection object, if
it does, then p0 = 1, and vice versa p0 = 0; PIOU denotes the area of overlap between the
prediction frame and the real detection object area. Then the YOLO algorithm loss function
can be expressed as Equation (5):

L = LIOU + Lobj + Lclass

= λcoord
S2

∑
i=0

B
∑

j=0
lobj
ij
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2 + (yi − ŷi)
2
]
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∑
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∑
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1obj
ij ∑
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(pi(c)− p̂i(c))

2

(5)

where LIOU denotes the regression loss, which measures the match between the prediction
frame and the true frame, and is calculated as the intersection ratio of the prediction frame
and the true frame, and Lobj denotes confidence loss, which measures the presence or
absence of a target in the prediction frame, i.e., the probability that a target exists in the
prediction frame; Lclass denotes classification loss, which is used to measure the accuracy of
the model in predicting the target class, and is calculated as the multivariate cross-entropy
loss. xi, and yi denote the true frame coordinates, the x̂i, and ŷi denote the prediction frame
coordinates;ωi and hi denote the true frame width and height, and ω̂i and ĥi denotes the
predicted frame width and height; lobj

ij denotes the part with loss of detection target, and

lnoobj
ij denotes the part without detection target loss, and ci is the confidence label, and ĉi is

the prediction confidence label; pi(c) indicates the current category true value (0, 1), and
p̂i(c) denotes the current category probability obtained by the activation function.

2.2. Knowledge Distillation

Deep learning models often require large amounts of computational resources for
training and inference, which limits their use in many practical applications. To address
this problem, model compression, and acceleration techniques have become popular areas
of research.
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Among these, the knowledge distillation algorithm [16,22–25] is a very effective model
compression and acceleration technique that extracts knowledge from large, complex deep
teacher models and passes it on to small, simple student models. This approach can
significantly reduce the complexity and computational cost of student models, while still
maintaining model performance.

The loss function of the knowledge distillation algorithm utilizes the generalized
softmax function defined in Equation (6):

qi =
exp(zi)

∑j exp
(
zj
) (6)

where zi denotes the output of the teacher model and qi is the output of using the softmax
function, the dark knowledge of the teacher’s network can be better extracted to guide the
learning of the student model. To solve the problem of prediction results converging to the
zero phenomena in the case of multiple classifications, the cross-entropy loss function is
constructed as in Equation (7):

Li = −logqi = − log
exp(zi)

∑j exp
(
zj
) (7)

where Li denotes the cross-entropy loss function for the ith sample, and qi denotes the
model output of the ith sample. By minimizing the cross-entropy loss function, the student
model output can be made closer to the teacher model output. The final target loss function
for the teacher model and the student model is obtained as in Equation (8):

L = αLsoft + βLhard (8)

where Lsoft denotes the teacher model with a soft loss of cross-entropy to the student model,
Lhard denotes the student model with a hard loss of cross-entropy to the true value, and α
and β denote the weights of the two loss components.

3. Improving the Model

The multidimensional distillation model demonstrated in this section is shown in
Figure 2 and consists of three main components: the teacher network, the student network,
and the distillation architecture, where rectangles indicate the neural network layers and
arrows indicate the direction of information flow. During the training process, the input
data were first fed into the teacher network for feature extraction, resulting in a series
of complex feature representations. These feature representations are then fed into the
distillation architecture, which is transformed by temperature parameters and soft targets
to obtain an intermediate representation suitable for learning by the student network.
Finally, the student network is trained based on the intermediate representation to learn
the knowledge in the teacher network and obtain the final output.

3.1. Deep Pooling of Residual Structures

In the knowledge distillation process, a teacher model is often a high-performance,
high-complexity model. The teacher model helps the student model learn a more accurate
and generalized representation of knowledge by "teaching" what it has learned from the
training data. Improving the teacher model can improve knowledge transfer efficiency
and knowledge generalization, reduce overfitting, and improve the interpretability of the
model, leading to better knowledge distillation and better applications.

The YOLO algorithm introduces the concept of residual blocks in the training process
to avoid problems such as gradient disappearance and low training efficiency due to
the depth of the network [26] as shown in Figure 3. The introduction of the residual
structure allows YOLO to achieve deeper and easier training while improving classification
accuracy [27,28].
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The improved residual structure is applied to the C3 module of the YOLO algorithm,
as shown in Figure 4. Two simultaneous pooling layers are added to the jump connection
section, namely average pooling and maximum pooling, where average pooling can pre-
serve the spatial information of the feature map and smooth the feature map to improve
robustness; maximum pooling can smooth the input feature map noise; and maximum
pooling can smooth out the noise of the input feature map and extract the most significant
feature information from the feature map. In summary, the pooling layer can reduce the
size of the input feature map, reduce the number of parameters in the network, and further
learn the feature information.

The new feature information is obtained by normalizing the output of the two pooling
layers by giving weights to the weights, which are fed into the convolution layer as an
intermediate layer feature, and the deflated low-resolution feature map is mapped to
the original feature map in higher space, thus restoring the expressiveness of the feature
information, after which the non-linear expressiveness of the feature is enhanced by the
Relu activation function.

3.2. Multidimensional Knowledge Distillation

Deep neural networks excel at learning multi-level feature representations of increas-
ing abstraction, so both the image output of the final layer and the feature output of the
middle layer can be used as knowledge for supervised student model training. In this
study, a multidimensional knowledge distillation algorithm fusing the feature and output
layers is designed to transfer pre-trained dark knowledge of complex teacher models to
lightweight student models for better control of the compression performance trade-offs.
Researchers have created thin network topologies including SqueezeNet, ShuffleNet, and
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MobileNet for the lightweight student model. The employment of the Fire module, which
lowers the number of network parameters while raising the nonlinear transformations,
is the key component of the SqueezeNet network. The Fire module combines a Squeeze
layer, which reduces the number of channels, with an Expand layer, which increases the
number of channels. This significantly reduces the number of convolution kernels but at the
expense of a deeper network architecture, which prolongs detection times and significantly
lowers detection accuracy. ShuffleNet networks are most notable for their use of channel
shuffle operations, which involve first segmenting the input channel into a number of
groups and then rearranging each group’s channels to improve inter-group communication.
However, because the operation is so complex, it is more challenging to implement at the
device’s edge. The foundation of the MobileNet network is the division of convolution
into Depthwise Conv and Poingwise Conv. It has been upgraded to the v3 version, which
adds new technologies such as SE Attention Module, h-swish activation function, etc., and
further reduces network size and computation amount in comparison to SqueezeNet and
ShuffleNet networks and enhances precision without lengthening consumption time.
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The knowledge transfer process is shown in the Figure 5. In the training process,
the original data were first trained using a complex teacher model, which records the
feature representations of the intermediate and output layers. These feature representations
are then passed on to the lightweight student model for training as dark knowledge.
During the training of the student model, a multidimensional knowledge distillation
algorithm is used to transfer the dark knowledge from the teacher model to the student
model and to train it in conjunction with the student model’s feature representations. The
multidimensional knowledge distillation algorithm fuses the intermediate and output
layer feature representations from the teacher model with the corresponding layer feature
representations from the student model in a weighted manner, thus better guiding the
learning of the student model.
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Figure 5. The multidimensional knowledge distillation process, where the leftmost component is the
teacher model learning process, is connected to the middle student model through the distillation
parameter “T” to form Soft loss, and the rightmost component is the real label with parameter “T” of
1, connected to The rightmost component is the real label with parameter “T” of 1, connected to the
student model to form Hard loss, and the two losses are combined to form the full multidimensional
knowledge distillation loss.

To help train the student network in depth, the outputs of the intermediate layers
of the teacher network were introduced, and then each intermediate and output layer
parameter was optimized by a loss function as in Equation (9):

LFeaD( ft(x), fs(x)) = LF(φt( ft(x)), φs( fs(x))) (9)

Of these, the ft(x) and fs(x) are the feature maps of the middle layer of the teacher
and student models respectively. When the feature maps of the teacher and student
models are not in the same shape, it is common to apply the transformation functions
φt( ft(x)) and φs( fs(x)). LF( ) denotes the similarity function used to match the feature
maps of the teacher and student models, and in this study LF( ) denotes the cross-entropy
loss function.

The training process is distilled by distilling the output with the high-temperature
match to obtain a hard loss Lhard defined as the cross-entropy loss between the ground
truth label and the student model as in Equation (10):

Lhard = −
N

∑
i

ci log
(
qT

i
)

qT
i =

exp(zi)

∑N
i (zi)

(10)

Soft loss Lsoft is defined as the cross-entropy between the teacher model and the
student model as in Equation (11):

Lsoft = −
N

∑
i

pT
i log

(
qT

i
)

pT
i =

exp( vi
T )

∑N
k (

vk
T )

qT
i =

exp( zi
T )

∑N
k (

zk
T )

(11)

where vi denotes the output of the teacher network, zi denotes the output of the student
network and pT

i , and qT
i denotes the value of the softmax output of the teacher network

and the student network at temperature T for class i, respectively. ci denotes the value of
ground truth at class i. cj ∈ {0, 1} N denotes the total number of samples.
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The total loss in the output layer is obtained through Equation (8) as Equation (12):

L = α

N

∑
i

pT
i log

(
qT

i

)
+ β

N

∑
i

ci log
(

qT
i

)
(12)

Through a multidimensional knowledge distillation approach, the dark knowledge of
a pre-trained complex teacher model is successfully transferred to a lightweight student
model, and model compression and acceleration are achieved while maintaining model
performance. The experimental results show that the multidimensional knowledge distilla-
tion algorithm in this study, which fuses the feature and output layers, can better maintain
the performance and robustness of the model while achieving higher compression rates
and faster inference than direct pruning or distillation of the student model.

4. Experimental Studies
4.1. Data Processing

To construct the dataset required for this study, we collected multiple segments of
tunnel defect radar data and performed post-processing operations such as uncompacted,
hollow, and water-filling on these data, which mainly include types of defects such as
uncompacted, emptying, hollow, and water-filled. Specifically, image enhancement algo-
rithms were used to enhance the quality and usability of the data, and manual annotation of
the data was carried out to obtain accurate annotation information. Some typical examples
of defects are illustrated in the Figure 6.
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emptying defect, (c) a hollow defect, (d) a water-filled flaw, and (e) a serious uncompacted defect.

The group increased the data samples by mosaic data enhancement and cropping and
stitching methods in previous studies, while the final data set of more than 5700 images
was obtained by labeling with LabelImg software (v1.8.6.) to form the data set for this study.
The defect images were classified into five categories, such as BM, TK, KD, CS, and YBM,
which represent the five types of defects: uncompact, dehollowed, hollow, water-filled,
and severely uncompacted defects. Table 1 shows the distribution of the defect images in
the dataset.
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Table 1. Distribution of Tunnel Defect Dataset.

Defect Type Training Set Validation Set Test Set Tags

BM 1301 114 76 0
TK 1815 127 139 1
KD 904 78 254 2
CS 1136 80 197 3

YBM 1175 111 107 4

4.2. Experimental Procedure
4.2.1. Experimental Configuration

The ground-penetrating radar vehicle is equipped with ground-penetrating radar
equipment that emits radar waves into the ground and then receives the bounced signals
to obtain information about underground objects or terrain with the relevant parameters
shown in Table 2.

Table 2. Radar rover related parameters.

Name Configure

Equipment Model TGRI-GPR200
Center Frequency 200 MHz

Operating Bandwidth 100 MHz–500 MHz
Depth of detection 10 m

Dynamic Range 40 dB

The deep learning simulation experiments were built on a Linux system (20.04.1), using
Python (3.8) and PyTorch (1.10.2) to build the deep learning framework. The hardware
setup shown in Table 3 includes components such as CPU, GPU, memory, and storage.

Table 3. Experimental hardware configuration.

Name Configure

Operating System Linux
Video Card NVIDIA RTX3090

Video Memory 24G
Processor Intel(R) Core i3-8100

Programming Language Python
Deep training framework PyTorch
Programming Platforms Pycharm

Table 4 shows some of the trainable parameters in the deep learning model, including
weights and biases, which are obtained by back-propagation and optimization of the
training data to minimize the loss function of the model.

Table 4. Experimental model parameters.

Name Value

Pixel 640 × 640
Epoch 100

Batch size 32

4.2.2. Evaluation Indicators

To accurately assess the effectiveness of the target detection algorithm in detecting
tunnel defects, the experiments in this study use the mean accuracy (mAP) and the number
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of parameters to measure the optimization effect. mAP can be calculated by Precision and
Recall, which are calculated as follows in Equation (13).

Precision = TP
TP+FP

Recall = TP
TP+FN

AP =
∫ 1

0 P(R)dR

mAP = ∑N
i=1 APi

N

mAP[@0.5,@0.95] = ∑0.95
i=0.5 mAP@0.5

10

(13)

where TP represents the number of positive examples correctly classified, TN represents
the number of negative examples correctly classified, FP represents the number of posi-
tive examples incorrectly classified, and FN represents the number of negative examples
incorrectly classified.

5. Experimental Results

The study used the distillation model for tunnel defect detection and successfully
detected a wide range of defect types and sizes, with some of the defect detection results
shown in Figure 7.
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Figure 7. Detection of five different types of defects. (a) Effect of uncompacted; (b) Effect of emptying;
(c) Effect of hollow; (d) Effect of water-filled; (e) Effect of severely uncompacted.

The loss function data during the training of the YOLO model, teacher model, student
model, and multidimensional knowledge distillation model were represented as scatter
plots, and the loss function curves shown in Figure 8 were obtained. By observing the
images, it can be seen that in the 20th round, the loss function starts to converge and then
tends to stabilize. The convergence and stabilization of the loss function values indicate
that the model gradually reaches an optimal state.
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To assess the model classification performance and compare the model prediction re-
sults with the actual label differences, the original model was compared with the confusion
matrix of the multidimensional distillation model as shown in Figure 9. It can be seen that
the improved model has improved the prediction accuracy for all types of defects, the most
obvious of which is the case of uncompacted defect prediction, which has improved from
48% to 94%.

Also, to verify the effectiveness of each model for various defects and highlight
the importance of each module, the study tallied the detection results of each model on
different defect types, as shown in Figure 10 and Table 5. The results showed that the
multidimensional distillation model proposed in this study outperformed the original
model for various tunnel roadbed defect types, which further validated the effectiveness of
the model in tunnel roadbed defect detection.

Table 5. Comparison of experimental results of the models in different categories of defects.

Models

Type Average Accuracy Rate/%

BM TK KD CS YBM
Yolov5 95.6 87.9 88.4 76.1 69.1

T-Model 92.4 88.1 91.6 72.4 82.5
S-Model 89.6 85.8 93.1 67.4 80.2

Distillation 93.5 89.8 93.6 69.0 83.5

To more accurately assess the performance of the multidimensional distillation model
proposed in this study, further ablation tests were conducted, and experimental results
were obtained as shown in Figure 11 and Table 6. The results show that with the improved
distillation technique, an accuracy of 87.1% of the parameter file size was achieved. These
results show that the distillation model can significantly improve the lightweight and
accuracy of the model in complex tunnel roadbed defect detection scenarios.



Electronics 2023, 12, 3222 12 of 17

Electronics 2023, 12, x FOR PEER REVIEW 12 of 19 
 

 

To assess the model classification performance and compare the model prediction 
results with the actual label differences, the original model was compared with the confu-
sion matrix of the multidimensional distillation model as shown in Figure 9. It can be seen 
that the improved model has improved the prediction accuracy for all types of defects, the 
most obvious of which is the case of uncompacted defect prediction, which has improved 
from 48% to 94%. 

 
(a) 

 
(b) 

Figure 9. Confusion_matrix, where (a) denotes the original model confusion matrix and (b) denotes 
the improved model confusion matrix. 

Figure 9. Confusion_matrix, where (a) denotes the original model confusion matrix and (b) denotes
the improved model confusion matrix.



Electronics 2023, 12, 3222 13 of 17

Electronics 2023, 12, x FOR PEER REVIEW 13 of 19 
 

 

Also, to verify the effectiveness of each model for various defects and highlight the 
importance of each module, the study tallied the detection results of each model on dif-
ferent defect types, as shown in Figure 10 and Table 5. The results showed that the multi-
dimensional distillation model proposed in this study outperformed the original model 
for various tunnel roadbed defect types, which further validated the effectiveness of the 
model in tunnel roadbed defect detection. 

 
Figure 10. Comparison of different models for different categories of detection. 

Table 5. Comparison of experimental results of the models in different categories of defects. 

Type
Models 

Average Accuracy Rate/% 
BM TK KD CS YBM 

Yolov5 95.6 87.9 88.4 76.1 69.1 
T-Model 92.4 88.1 91.6 72.4 82.5 
S-Model 89.6 85.8 93.1 67.4 80.2 

Distillation 93.5 89.8 93.6 69.0 83.5 

To more accurately assess the performance of the multidimensional distillation 
model proposed in this study, further ablation tests were conducted, and experimental 
results were obtained as shown in Figure 11 and Table 6. The results show that with the 
improved distillation technique, an accuracy of 87.1% of the parameter file size was 
achieved. These results show that the distillation model can significantly improve the 
lightweight and accuracy of the model in complex tunnel roadbed defect detection sce-
narios. 

Figure 10. Comparison of different models for different categories of detection.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 11. Comparison of model accuracy and number of parameters. 

Table 6. Model performance comparison. 

Model 
mAP@0.5 

(%) 

Error! Hyperlink 
reference not 

valid. 
(%) 

Precision 
(%) 

Recall 
(%) 

GFLOPS 
(G) 

Size 
(MB) 

Faster-RCNN 78.8 48.8 78.6 80.2 88.2 315.15 
RetinaNet 81.1 49.8 79.7 81.3 70.3 248.19 

SSD 79.2 47.0 75.2 82.1 15.2 16.15 
Yolov3 83.1 49.1 80.3 81.6 154.6 118.54 
Yolov5 83.4 47.9 75.4 82.4 16.8 16.03 

T-Model 85.4 49.6 76.3 80.3 15.8 13.75 
S-Model 83.2 46.7 74.8 80.9 2.3 2.98 

Distillation 85.9 50.3 77.4 83.1 2.3 2.98 

The loss function and prediction correctness, recall, and accuracy data during the 
training of the distilled model are recorded as shown in Figure 12, which shows that the 
model converges very quickly. 

Figure 11. Comparison of model accuracy and number of parameters.

Table 6. Model performance comparison.

Model mAP@0.5
(%)

mAP@0.5:0.95
(%)

Precision
(%)

Recall
(%)

GFLOPS
(G)

Size
(MB)

Faster-
RCNN 78.8 48.8 78.6 80.2 88.2 315.15

RetinaNet 81.1 49.8 79.7 81.3 70.3 248.19
SSD 79.2 47.0 75.2 82.1 15.2 16.15

Yolov3 83.1 49.1 80.3 81.6 154.6 118.54
Yolov5 83.4 47.9 75.4 82.4 16.8 16.03

T-Model 85.4 49.6 76.3 80.3 15.8 13.75
S-Model 83.2 46.7 74.8 80.9 2.3 2.98

Distillation 85.9 50.3 77.4 83.1 2.3 2.98

The loss function and prediction correctness, recall, and accuracy data during the
training of the distilled model are recorded as shown in Figure 12, which shows that the
model converges very quickly.
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The dataset was tested in this study, and the test results are presented through a visual
display in Figure 13. An in-depth analysis of Tables 5 and 6 and Figures 7–12 reveals
that the detection efficiency of the improved algorithm relative to the original algorithm
has been significantly improved, with the number of its references reduced by 81.4%,
from 16.03 MB to 2.98 MB, while the accuracy has been improved by 2.5%, from 83.4%
to 85.9%; the prediction accuracy for various types of defects has also been significantly
improved, and the matching between the detection frame and the target to be detected has
also been significantly improved; at the same time, the algorithm proposed in this study
can detect small targets that were missed or wrongly detected by the original algorithm.
These improvements highlight the superiority and effectiveness of the proposed algorithm
compared to existing algorithms.

Figure 14 depicts the experimental findings from this study’s use of the publicly
available VOC data set, which demonstrated that the improved model is In the VOC data
set, the multi-location knowledge distillation model’s detection accuracy In the VOC data
set, the multi-location knowledge distillation model’s detection accuracy increased by 3.6%
from the original model’s 59.9% to 63.5%.
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6. Conclusions

In this study, we suggest a multidimensional knowledge distillation and detection
approach. First, we increase the detection accuracy of the teacher model using pooling
and weighting operations using a deep pooling residual structure; next, we introduce the
MovileNetv3 lightweight backbone network into the student model; and finally, we learn
how to extract feature information from the feature layer and the output layer in order
to transfer the teacher model. The experimental results show that the improved model
achieves 85.9% accuracy in tunnel defect detection, an improvement of 2.5%, and the model
size is 2.98 MB, a volume compression of 83.2%, which meets the current demand for
lightweight tunnel defect detection engineering. This accuracy improvement was achieved
by testing the model on the radar detection dataset.

In order to further improve the detection efficiency and robustness of the algorithms,
future work will explore how to combine transfer learning with knowledge distillation
techniques to achieve simultaneous migration across domains and models, and combining
these two techniques can effectively improve the generalization ability and robustness of the
models while reducing the training time and computational cost; in terms of lightweight,
we will continue to investigate how to combine pruning quantization techniques with
knowledge distillation techniques to further reduce the number of parameters and compu-
tation of the model, such as quantization-aware training, weight clustering, etc.; in terms of
accuracy, we will focus on designing more effective model structures to improve model
performance and loss functions.
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