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Abstract: In this paper, a computationally efficient optimization algorithm for independent vector
analysis (IVA) is proposed to accelerate iterative convergence speed and enhance the overdetermined
convolutive blind speech separation performance. An iterative projection with adjustment (IPA) is
investigated to estimate the unmixing matrix for OverIVA. The IPA algorithm jointly executes the
iterative projection (IP) algorithm and the iterative source steering (ISS) algorithm to jointly update
one row and one column of the mixing matrix, which can perform computationally-efficient blind
source separation. It is achieved by updating one demixing filter and jointly adjusting all the other
sources along its current direction. Motivated by its technology superiorities, this paper proposes a
modified algorithm for the OverIVA, fully exploiting the computational efficiency of IPA optimization
scheme. Experimental results corroborate the proposed OverIVA-IPA algorithm converges faster and
performs better than the existing state-of-the-arts algorithms.

Keywords: blind source separation; independent vector analysis; optimization methods; speech
separation

1. Introduction

Blind source separation (BSS) [1] refers to unmixing or extracting the latent sources
from the observed mixed signals with minimal prior information. It has become a versatile
technology with diverse applications, such as in speech signals [2,3], biomedical signals [4]
and digital communication signals [5,6]. Independent component analysis (ICA) [7,8] is one
of the most basic means proposed to deal with BSS. ICA is an unsupervised, data-driven
blind separation technique for separating linear mixture signals based on non-Gaussian
maximization. The frequency domain independent component analysis (FD-ICA) model [9]
is proposed for convolutional mixed signals to overcome the high computational complexity
of directly implementing ICA in the time domain processing. In FD-ICA, the observed
signal is converted from the time domain to the frequency domain representation through
the short-time Fourier transform (STFT), and then ICA is applied to estimate the unmixing
matrix at each frequency. However, FD-ICA will suffer from the random permutation
ambiguity problem.

To solve the permutation ambiguity of ICA, independent vector analysis (IVA) [10,11]
has been proposed and gained remarkable attention from scholars. IVA is an extension
of ICA for the separation of multiple parallel mixtures. It resolves the random permuta-
tion ambiguity of signal separation outputs by exploiting statistical dependencies across
datasets to generalize ICA to multiple datasets. IVA preserves the statistical dependency
within a frequency source vector and minimizes statistical dependencies between them.
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IVA can naturally solve the random permutation problem without any pre-processing
or post-processing during the learning process. The traditional IVA algorithm updates
the separation matrix through the method based on gradient [10] and fast fixed-point
algorithm [12]. The method based on gradient update needs to adjust the parameters such
as step size to make the convergence stable, and it needs to balance the convergence speed
and stability. To achieve faster convergence, a hyperparameter-free iterative projection (IP)
algorithm based on auxiliary-function-based IVA (AuxIVA) was proposed [13]. Recently,
fast-converging optimization algorithms have been proposed for AuxIVA, for example,
IP2 [14], iterative source steering (ISS) [15], ISS2 [16], and iterative projection with adjust-
ment (IPA) [17]. IPA is the combination of IP and ISS, which solves the problem that IP
and ISS can only correct the update in the next iteration when performing the update. This
algorithm is superior to other algorithms in terms of convergence speed and performance.

In the case of overdetermined BSS, where the number of non-stationary signals N is
smaller than the number of microphones M, i.e., M > N. In the multi-source case (N ≥ 2),
the initial approach is to resolve the oversubscription situation by selecting the N best
channels [18,19] or reducing the number of channels to N by principal component analysis
(PCA) [20,21]. Unfortunately, these methods risk removing the source signal of interest
and reducing separation performance. For the case of a single source, several independent
vector extraction (IVE) methods [22,23] have been proposed. And on this basis, IVA is
extended to the overdetermined situation (M > N), and the overdetermined independent
vector analysis algorithm (OverIVA) [24] is proposed. The traditional OverIVA relies on
the orthogonality constraint (OC), which ignores the sample correlation between the target
source signal and the noise signal and makes the limited separation. To solve this problem,
an OverIVA [25] is proposed which only utilizes the independence between source signals
and the stationarity of Gaussian noise for source separation. Recently, algorithms such as IP
and ISS have been combined with OverIVA to achieve efficient overdetermined BSS [24–27].

In this paper, an efficient approach for BSS is proposed, which we call OverIVA-IPA. It
combines the technology of OverIVA-IP and OverIVA-ISS with the technology of AuxIVA-
IPA. It is an algorithm that can achieve high efficiency and ensure convergence. IP and ISS
fix all other sources while doing one of the updates. This means that further correction
can only happen at the next iteration. The IPA combines the advantages of the IP and
ISS technologies to jointly update the mixing matrix of the source signal. As opposed to
IP and ISS, when updating the demixing filter of one source, we simultaneously correct
the demixing filters of all other sources accordingly. Therefore, we apply the modified
IPA technique to the OverIVA algorithm to update the source part of the demixing matrix
as well as the orthogonal noise part. Finally, we validate it in our convolutional speech
separation experiments. Experimental results show that the OverIVA-IPA method has faster
convergence speed and better performance than the existing OverIVA-IP, OverIVA-IP2, and
OverIVA-ISS methods.

The rest of this paper is organized as follows. We describe the background of the
overdetermined BSS problem, AuxIVA-IP, OverIVA-IP, AuxIVA-ISS, OverIVA-ISS, and
AuxIVA-IPA in Section 2. In Section 3, the proposed algorithm is derived and the time
complexity of the algorithm is analyzed. In Section 4, we show the comparative experi-
mental results of different algorithms and conduct related analysis. Section 5 concludes the
full text.

2. Background
2.1. Overdetermined Blind Source Separation Model

In general, the model of the BSS algorithm consists of a cost function and an optimiza-
tion method. The cost function of BSS is constructed according to the characteristics of the
limited source and the separation criterion. The purpose of BSS is to find a suitable linear
transformation matrix or separation matrix W by optimizing the cost function. The BSS
separation process usually estimates the separation matrix and then restores the source
signal by estimating the separation matrix. In BSS, usually according to the relationship
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between the number of sensors sending and receiving signals, BSS system models can
be divided into three categories: determined model (M = N), underdetermined model
(M < N), and overdetermined model (M > N). This paper mainly studies the method
of optimizing the cost function in the BSS overdetermined model. Assume that under
overdetermined conditions (M > N), M microphones observe N signal sources. Settings
f = 1, . . . , F and t = 1, . . . , T denote the frequency bin index and the time frame index,
respectively. After STFT of the observed multi-channel signal, the microphone signal
x f

t = [x f
1t, . . . , x f

M t]
T ∈ CM at frequency f and time t is modeled as

x f
t = A f s f

t + ψ f z f
t , (1)

where s f
t = [s f

1t, . . . , s f
N t]

T ∈ CN is the source signal, z f
t ∈ CM−N is the noise vector,

A f ∈ CM×N and ψ f ∈ CM×(M−N) denote their corresponding mixing matrices, respec-
tively. Our goal is to estimate the unmixing matrix W̃ f ∈ CM×M to recover the original
vector s f

t from the observed signal [
s f

t
Φ f z f

t

]
= W̃ f x f

t , (2)

where matrix Φ f can be an arbitrary reversible linear transformation, indicating that our
focus is not to separate the noise vector z f

t . The parameter Φ f is chosen to simplify the
processing task such that there is [

W f

U f

]
x f

t = W̃ f x f
t , (3)

where W f = [w f
1 , . . . , w f

N ]
H ∈ CM×N and U f = [J f − IM−N ] ∈ CM×(M−N) denote the

unmixing matrices of the source and noise, respectively, and J f ∈ CM×(M−N). In this paper,
(·)H , (·)T , det(·), | · |, (·)∗ and (·)−1 denote the conjugate transpose, transpose, determinant,
absolute value, complex conjugate and inverse of (·), respectively.

2.2. Cost Function

In previous studies [24,25], it is usually assumed that the source signal s f
t = [s f

1t, . . . , s f
N t]

T

∈ CN follows a non-Gaussian distribution, such as a circularly symmetric Laplace distribu-
tion or a time-varying Gaussian distribution. In this paper, the Laplace source prior model
is used, with

f (x|µ, b) =
1
2b

e−
|x−µ|

b . (4)

Among them, we set the parameter expectation µ = 0, variance 2b2 = 2, skewness to
0, and kurtosis to 3. And assuming that the noise signal z f

t ∈ CM−N follows a stationary
Gaussian distribution, we have

p(z f
t ) =

1
πM−N |det(R f )|

e−(z
f
t )

H
(Rf)

−1
z f

t , (5)

where R f is the location-space covariance matrix after noise separation. Also, the separated
background noise is statistically independent in frequency. By using the distribution
of the source and noise signals and ignoring all constants. We can obtain the negative
log-likelihood function (objective function) of the observed data, which is given by
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`1
OverIVA

= −2
F
∑

f=1
log |det(W̃ f )|+ 1

T

N
∑

n=1

T
∑

t=1
G(

√
F
∑

f=1
|(w̃ f

n)
H

x f
t |)

+
F
∑

f=1
((log det(R f )) + Tr(U f Γ f (U f )

H
(R f )

−1
),

(6)

where G(·) is a contrast function determined by the distribution of the source signal s f
t and

Γ f = 1
T

T
∑

t=1
x f

t (x
f
t )

H
is the sample covariance matrix of the observed signal, and Tr(·) is the

trace of the matrix. Because the above formula is difficult to directly find the minimum
value of W f , on the contrary, the upper bound of the cost function can be minimized,
there is

`2
OverIVA = −

F
∑

f=1
log |det(W̃ f )|+

N
∑

n=1

F
∑

f=1
((w̃ f

n)
H

V f
nw̃ f

n)

+
F
∑

f=1
((log det(R f )) + Tr(U f Γ f (U f )

H
(R f )

−1
),

(7)

where

V f
n =

1
T

T

∑
t=1

φ(rnt)x
f
t (x

f
t )

H
, (8)

where φ(rnt) depends on the definition of the contrast function G(·), rnt ∈ R is a variable

with rnt ←
F
∑

f=1
|(w̃ f

k )
H

x f
t |2. Where x f

t = [x f
1t, . . . , x f

M t]
T ∈ CM represents the microphone

signal at frequency f and time t, and w f
n is the nth unmixing vector at frequency f in the

unmixing matrix W f . It should be noted that the random variables in the cost function
are multivariate, and each source signal is also multivariate. During the separation pro-
cess, the optimization algorithm needs to maintain the statistical dependence within each
source vector, and at the same time minimize the statistical dependence between different
source vectors, so as to avoid problems such as arrangement ambiguity and separate the
source signals.

2.3. ISS and IP of OverIVA and AuxIVA

In the overdetermined case, Ref. [24] conjectures that the strongest source signal has a
very non-Gaussian distribution, while noise mixed with other weaker sources will have
a distribution that is closer to Gaussian, thus guaranteeing linear independence between
vectors (In this paper, the source signal adopts Laplace distribution). There is no doubt that
ISS and IP are hybrid matrix updates that can be directly applied to determined situations.
However, using these update methods in the overdetermined situation cannot directly
extract the target signal from the noise subspace. The lower part J f of the matrix needs to
be modified so that the noise subspaces remain orthogonal.

To effectively derive the parameter estimation algorithm of OverIVA, it is necessary to
refer to the proven Propositions derived from [26,28].

Proposition 1. For any local optimum, a new U f can be found without changing the value of the
cost function (6).

Proposition 2. U f Γ f (W f )H = 0(M−N)×N , R f = U f Γ f (U f )H are the necessary conditions for
the optimal solution.
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According to the guidance of Proposition 1 above, Formula (3) can be simplified
as follows: [

W f

J f − IM−N

]
=

[
W f

U f

]
= W̃ f . (9)

Our goal is obvious, to estimate W f and J f (M < N) or only W f (M = N) that
minimized (6).

2.4. Iterative Projection

In OverIVA-IP [25], the rows of the optimized unmixing matrix W f are updated in
regular order by IP [14]. Its updated rule is

w̃ f
k ← (W̃ f V f

k )
−1ek(e

T
k (W̃

f V f
k W̃H)−1ek)

−1/2 , k = 1, . . . , N. (10)

Based on Proposition 2, R f is fixed to U f Γ f (U f )H , and the update of J f must satisfy
the orthogonal constraint U f Γ f (W f )H = 0(M−N)×N between the source subspace and the
noise subspace. Due to the equivalence relation of Formula (9), U f Γ f (W f )H = 0(M−N)×N
can be expressed as

(J f E1 − E2)Γ
f (W f )H = 0(M−N)×N , (11)

where E1 and E2 denote
[
IN0(M−N)×N

]
and

[
0(M−N)×NIM−N

]
, respectively. The update

rule for J f is

J f ← (E2Γ f (W f )H)(E1Γ f (W f )H)−1. (12)

2.5. Iterative Source Steering

In OverIVA-ISS [27], the columns of the optimized unmixing matrix W f in regular
order are updated by ISS [15]. Its updated rule is

W f ←W f − v f
k (w̃

f
k )

H , k = 1, . . . , M, (13)

J f ← (E2Γ f (W f )H)(E1Γ f (W f )H)−1, (14)

where v f
k =

[
v f

k1, . . . , v f
kN a
]T
∈ CN is calculated by

v f
kn =


(w̃ f

n)
H

V f
nw̃ f

k

(w̃ f
k )

H
V f

nw̃ f
k

i f n 6= k,

1− ((w̃ f
n)

HV f
nw̃ f

n)
−1/2 i f n = k.

(15)

2.6. Iterative Projection with Adjustment

In AuxIVA-IPA [17], the entire mixing matrix W̃ f = W f jointly performs IP-style and
ISS-style updates. It completely re-estimates the k-th unmixing filter and adjusts the values
of all other filters by taking steps consistent with the current estimate of source k. Its
updated rule is

W̃ f ← Tk(u, q)W̃ f , k = 1, . . . , M, (16)

where W f is the estimate of the separation matrix from the previous iteration, while Tk(u, q)
is the method of each vector update of the mixing matrix, with

Tk(u, q) = I + ek(u
H − ek

T) + Ēkq∗eT
k , (17)



Electronics 2023, 12, 3200 6 of 13

Update one row and one column of the mixing matrix in each iteration by definition,
where Ēk is the M× (M− 1) matrix containing all regular basis vectors except the kth vector.

Ēk = [e1 · · · ek−1 ek+1 · · · eM]. (18)

where I denotes the identity matrix and ek denotes the kth unit vector. For the update of
the column vector q has

min
q∈CM−1

(q + A−1b)HA(q + A−1b)

− log((q−C−1g)HC(q−C−1g) + o)
(19)

with

A = diag(. . . , eT
k Vmek, . . .), m = 1, . . . , M&m 6= k, (20)

b =
[
. . . , eT

k Vmek, . . .
]T

, m 6= k, (21)

C = ĒT
k (V

−1
k )∗Ēk, (22)

g = ĒT
k (V

−1
k )∗ek, (23)

o = eT
k (V

−1
k )∗ek − gHC−1g. (24)

Through the above formula, we can find the optimal solution of the column vector q
in the mixing matrix. Among them, Vk denotes the kth weighted covariance matrix, with
Vk ← ((W f Vk(W f )H)−1)∗. A and C, respectively, denote the matrix variables of the mth
and kth weighted covariance matrices Vm and Vk after corresponding transformation. b
and g denote the vector variables after the corresponding transformation of the mth and
kth weighted covariance matrices Vm and Vk. o denotes the variable value obtained by
corresponding transformation of the kth weighted covariance matrix Vk. The update of the
row vector u is

uk =
V−1

k q̃√
q̃H

k V−1
k q̃k

ejθ , (25)

where q̃k = ek− Ēkq∗, θ ∈ [0, 2π] a is any phase. The optimal solution of q can be calculated
through (19)–(24), and then we can solve the optimal solution of the row vector u in the
mixing matrix by bringing it into (25). The optimal separation matrix can be obtained by
updating the mixing matrix through the optimal solution column vector q and solution
row vector u.

3. Proposed Method
3.1. OverIVA-IPA

In the process of blind source separation, the key to the fast separation of signals is to
use fewer iterations to reduce the cost function (7) more, thereby improving the separation
efficiency. The previously proposed block coordinate descent algorithm IP, IP2 and ISS
fix part of the separation matrix and then minimize the cost function on the remaining
free variables to separate the signal. Wherein IP and ISS update one row or one column of
the unmixing matrix each time, and IP2 updates two rows of the unmixing matrix each
time. However, when the separation effect of other source vectors is not good, it may
cause poor overall separation performance. We propose an IPA-based OverIVA algorithm.
In OverIVA-IP and OverIVA-ISS, updating row-by-row or column-by-column naturally
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allows for the separation of the target sources one by one, requiring only further updating
of the background noise. In contrast, the IPA algorithm jointly performs IP-style and
ISS-style updates to achieve a more efficient BSS. We are thus inspired that the proposed
algorithm combines the convergence advantage of the IPA algorithm with the orthogonality
constraint of OverIVA. Through the following update method until the cost function can
converge to a stable point

W f ← Tk(u, q)W f , k = 1, . . . , M, (26)

J f ← (E2Γ f (W f )H)(E1Γ f (W f )H)−1, (27)

where Tk(u, q) is given by (16)–(25). Applying the IPA method only to the source part and
using the orthogonal constraint to update the remaining noise part to solve the IPA method
cannot be directly applied to the entire matrix. In the update process, the IPA method can
ensure that each iteration can ensure the proper optimization of the cost function until
the final convergence. For the initial value of the matrix W f , we find that it can be set as
the identity matrix to be satisfactory. The final algorithm OverIVA-IPA, which alternately
applies updates to W f and J f , is detailed in Algorithm 1.

Algorithm 1 OverIVA by IPA

Input: Microphones signals {x f
tm}

F,T,M
f=1,t=1,m=1

Output: Updated matrix W
for loop← 1 to max.iterations do

for n = 1 : N, t = 1 : T do

rnt ←
F
∑

f=1
|(w f

k )
H

x f
t |2,

for f = 1 : F do
A = diag(. . . , eT

k Vmek, . . .), m = 1, . . . , M&m 6= k,

b =
[
. . . , eT

k Vmek, . . .
]T , m 6= k,

C = ĒT
k (V

−1
k )∗Ēk,

g = ĒT
k (V

−1
k )∗ek,

o = eT
k (V

−1
k )∗ek − gHC−1g,

Vk = ((W f Vk(W f )H)−1)∗,
Update q using (19),
Update u using (25),
W f ← (I + ek(uH − ek

T) + Ēkq∗eT
k )W

f , k = 1, . . . , M,
J f ← (E2Γ f (W f )H)(E1Γ f (W f )H)−1.

3.2. Computational Complexity

When the number T of time frames is greater than the number M of microphones, the
running time is determined by the computation of the weighted covariance matrix V f

n. In
this case, the weighted covariance matrix V f

n of N sources is calculated in each iteration,
and the computational complexity of OverIVA-IP and OverIVA-IP2 is O(FTNM2). The
IPA algorithm does not increase the computational complexity in essence and requires
a matrix inversion, two matrix multiplications, and an eigenvalue decomposition. The
computational complexity of OverIVA-IPA is O(FTNM2). However, OverIVA with ISS
has the particularity that there is an efficient computation of (13), and the complexity
is O(FTNM).
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4. Numerical Experiment

We compare the performance of our proposed OverIVA-IPA algorithm with existing
OverIVA-IP, OverIVA-ISS, and OverIVA-IP2 when applied to convolutional blind source
separation in the frequency-domain STFT. We evaluated the performance of the algorithm
in terms of 4SI-SIR, 4SI-SDR, and separated spectrograms. And it is an experimental
comparison carried out under different numbers of sources and different values of signal-
to-interference-and-noise ratios (SINR).

4.1. Experimental Environment Settings

To synthesize the mixed signal for evaluation, we simulate the impulse reverberation
of 1000 random 3D matrix rooms by using the pyroomacoustics Python package [29]. The
three-dimensional matrix room has walls of 6 and 10 m in length and a ceiling height of 2.8
to 4.5 m. The simulated reverb time is sampled uniformly between approximately 60 ms
and 450 ms. The source and microphone arrays are randomly placed at least 50 cm away
from the wall, and the height is between 1 and 2 m. The array is circular and regular. As
shown in Figure 1.

Figure 1. Simulation 3D matrix room.

The three axes of the 3D matrix room in Figure 1 denote the length, width, and height
of the room, respectively. Where × denotes the microphone array, the � denotes the source
signal, and ◦ denotes the interferer signal. The number of sources is set to N = 2, the source
signal is selected from the CNU Arctic CORPUS speech database [30], and 5 additional
interference sources are selected to generate diffuse noise. The number of microphones is
M = 4, 6, 8, and the distance between adjacent microphones is 10 cm. All sound sources are
located farther from the array than the critical distance of the room, which is the distance at
which direct sound and reverberant energy are equal. This distance can be calculated by

d = 0.057
√

V/T60, (28)

where V is the volume of the room. SINR is defined as

SINR =
∑N

n=1 σ2
n

Qσ2
i + σ2

w
, (29)

where σ2
n , σ2

i , and σ2
w are the variances of the target source, interferer, and white noise,

respectively, for which the specified SINR can be obtained on any reference microphone.
After simulating propagation, the variance of the target source is fixed at σ2

n = 1 (at an
arbitrary reference microphone). In the comparison experiment, the first microphone is
selected as a reference, and its SINR value is fixed. The separation effects at 5 dB, 15 dB,
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and 25 dB SINR values are studied. Simulations were performed at 16 kHz, using a
4096 Hamming window with STFT overlapping 3/4.

4.2. Experimental Simulation Results

In the experimental simulation, the performance of various OverIVA algorithms is
evaluated using the multivariate Laplacian source prior model. We tested the OverIVA
algorithm optimized by IP, IP2, ISS, and IPA methods. We use scale-invariant signal-to-
distortion ratio (SI-SDR), scale-invariant signal-to-interference ratio (SI-SIR), and signal
spectrogram as our separation performance metrics. SI-SDR measures how much the
target signal is degraded, while SI-SIR indicates how much of the other sources remain.
High SI-SDR indicates both good separation and high quality. High SI-SIR indicates good
separation, but not necessarily preservation of the target source. They are defined as
follows. Let S ∈ RT×M be the matrix containing the M time-domain groundtruth reference
signals in its columns. Let ŝ ∈ RT be the estimated signal, and s one of the columns of S.
Then, the definition is as follows.

SI− SDR(s, ŝ)=
||αs||2
||αs− ŝ||2 , SI− SIR(s, ŝ)=

||αs||2
||Sb||2 , (30)

where

α =
ŝTs
||s||2 , and b = (STS)−1ST(αs− ŝ). (31)

Figures 2 and 3 show the separation performance of OverIVA-IP, OverIVA-IP2, OverIVA-
ISS, and OverIVA-IPA. Where, Figure 2 uses 4SI-SDR as the performance index, and
Figure 3 uses4SI-SIR as the performance index. Through the analysis of various perfor-
mance indicators, it can be seen that the proposed OverIVA-IPA method is superior to other
methods in almost all experimental environments. Among them, in the 5 dB and 15 dB
environments, the performance of the algorithm is superior. The proposed OverIVA-IPA
algorithm is superior to other algorithms in performance, and it is the fastest algorithm
to reach higher SI-SDR values and SI-SIR values, where the performance of the six micro-
phones in Figure 2 is comparable to that of OverIVA-IP2 in the 15 dB environment. Table 1
shows that the response speed of OverIVA-IPA is the fastest, and quickly reaches a stable
value of SI-SDR with the least number of iterations, and its computational efficiency is
several times higher than other algorithms. Table 2 shows the stabilized SI-SDR values of
the four methods. The results show that IPA is as effective as other methods in minimizing
the cost function, performs better, and converges faster.

Table 1. Number of iterations required for the SI-SDR value to converge within tolerance 0.1 dB.

Method
4 Mics 6 Mics 8 Mics

Iterations Iterations Iterations
5 dB 15 dB 25 dB 5 dB 15 dB 25 dB 5 dB 15 dB 25 dB

OverIVA-IP 35 20 15 27 16 13 26 16 12
OverIVA-IP2 10 8 7 9 8 8 9 9 8
OverIVA-ISS 29 17 13 28 15 13 26 14 12
OverIVA-IPA 7 5 5 6 5 5 6 6 5
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Figure 2. Variation of4SI−SDR at 5 dB, 15 dB and 25 dB for OverIVA-IP, OverIVA-IP2, OverIVA-ISS,
and OverIVA-IPA for a mixture of two sources. The number of microphones is 4, 6 and 8 from top
to bottom.

Table 2. The SI-SDR values of the four algorithms after stabilization.

Method
4 Mics 6 Mics 8 Mics

SI-SDR [dB] SI-SDR [dB] SI-SDR [dB]
5 dB 15 dB 25 dB 5 dB 15 dB 25 dB 5 dB 15 dB 25 dB

OverIVA-IP 5.56 9.32 9.57 6.44 9.11 8.96 6.77 8.83 8.09
OverIVA-IP2 5.35 9.90 11.22 6.33 10.14 11.27 6.71 9.93 10.56
OverIVA-ISS 4.85 9.34 9.77 5.93 8.95 8.45 6.45 8.66 7.86
OverIVA-IPA 5.49 11.18 12.12 7.21 10.61 11.57 7.7 10.86 11.47

At the same time, we can obtain the separated spectrum diagram of the signals obtained
by each method in the six mics 25 dB environment as follows (Figure 4):

It can be seen from the separated spectrogram that the proposed OverIVA-IPA algo-
rithm can separate the source signal from the mixed signal better than other algorithms,
and the separated signal spectrogram waveform is better than other algorithms in detail.
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Figure 3. Variation of4SI−SIR at 5 dB, 15 dB and 25 dB for OverIVA-IP, OverIVA-IP2, OverIVA-ISS,
and OverIVA-IPA for a mixture of two sources. The number of microphones is 4, 6 and 8 from top
to bottom.

(a) OverIVA-IP (b) OverIVA-IP2

(c) OverIVA-ISS (d) OverIVA-IPA

Figure 4. Signal separation spectrum diagram of 4 algorithms under 6 mics 25 dB.
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5. Summary and Prospect

We propose an overdetermined independent vector analysis (OverIVA) algorithm
optimized using the iterative projection with adjustment (IPA) algorithm. The algorithm ap-
plies efficient updates from auxiliary-function-based IVA (AuxIVA). And the complexity of
the algorithm is consistent with that of the iterative projection (IP) algorithm. In numerical
experiments, we thoroughly investigated the performance of OverIVA using the different
update rules for the separation of realistically simulated speech mixtures. Through the
analysis of experimental results, the proposed OverIVA-IPA algorithm is superior to other
algorithms in all environments. Future work will focus on applying the algorithm to real
systems and evaluating its real-time execution performance.
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