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Abstract: Image captioning is a challenging AI problem that connects computer vision and natural
language processing. Many deep learning (DL) models have been proposed in the literature for
solving this problem. So far, the primary concern of image captioning has been focused on increasing
the accuracy of generating human-style sentences for describing given images. As a result, state-of-
the-art (SOTA) models are often too expensive to be implemented in computationally weak devices.
In contrast, the primary concern of this paper is to maintain a balance between performance and cost.
For this purpose, we propose using a DL model pre-trained for object detection to encode the given
image so that features of various objects can be extracted simultaneously. We also propose adding
a size-adjustable convolutional module (SACM) before decoding the features into sentences. The
experimental results show that the model with the properly adjusted SACM could reach a BLEU-1
score of 82.3 and a BLEU-4 score of 43.9 on the Flickr 8K dataset, and a BLEU-1 score of 83.1 and
a BLEU-4 score of 44.3 on the MS COCO dataset. With the SACM, the number of parameters is
decreased to 108M, which is about 1/4 of the original YOLOv3-LSTM model with 430M parameters.
Specifically, compared with mPLUG with 510M parameters, which is one of the SOTA methods, the
proposed method can achieve almost the same BLEU-4 scores, but the number of parameters is 78%
less than the mPLUG.

Keywords: image captioning; Darknet; feature selection; size-adjustable convolutional module

1. Introduction

There are a massive number of images appearing from different sources such as the
internet, news, and advertisements. Unlike pictures in articles and TV programs, most
images appear without captions in these sources. While most people have no difficulty
understanding images without captions, visually impaired ones could face problems.
Machine learning tools would help solve such problems by automatically interpreting
images, videos, and other media.

Image captioning is a challenging AI problem that connects computer vision and
natural language processing [1]. Many deep-learning (DL) models have been proposed for
solving problems in both computer vision and natural language processing. The encoder-
and-decoder architectures have been widely used for machine translation, transforming a
sentence from one language to the target language. Such ideas have been applied to train
a model with an image as input to generate captions based on a dictionary created from
the given captions of the images by maximizing the probability of the correct words of the
target sentence.

Besides natural language processing, image captions require object detection and
recognization, as well as location, properties, and their interactions. Furthermore, gen-
erating human-style sentences requires a syntactic and semantic understanding of the
language [2]. However, most of the proposed methods have not directly solved these
problems in image captioning [1]. So far, the primary concern of image captioning has

Electronics 2023, 12, 3187. https://doi.org/10.3390/electronics12143187 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12143187
https://doi.org/10.3390/electronics12143187
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7329-2225
https://doi.org/10.3390/electronics12143187
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12143187?type=check_update&version=1


Electronics 2023, 12, 3187 2 of 20

focused on increasing the accuracy of generating human-style sentences for describing
given images. As a result, state-of-the-art (SOTA) models are often too expensive to be
implemented in computationally weak devices.

In contrast, the primary concern of this paper is to maintain a balance between per-
formance and cost. For this purpose, we propose using a DL model pre-trained for object
detection to encode the given image so that features of various objects can be extracted
simultaneously. Particularly, the Darknet, which was originally designed for object detec-
tion, has been used as the backbone to extract features of multiple objects in the image. We
also propose adding a size-adjustable convolutional module (SACM) before decoding the
features into sentences. The decoded features from SACM have been used as input to a
decoder that is implemented by long short-term memory (LSTM). The end-to-end image
captioning system with Darknet, SACM, and LSTM is further trained simultaneously. After
training, the system can automatically present an image and generate a descriptive caption
in plain English.

The experimental results show that the system with a properly adjusted SACM could
reach a BLEU-1 score of 82.3 and a BLEU-4 score of 43.9 on the Flickr 8K dataset, and a
BLEU-1 score of 83.1 and a BLEU-4 score of 44.3 on the MS COCO dataset. The performance
of our model with SACM is better than most of the existing models and comparable with
that of the SOTA models. Our model size is much smaller than most SOTA models. With
our proposed SACM, the number of parameters decreased to 108 M, about 1/4 of the
original YOLOv3-LSTM model with 430 M parameters. At the same time, the proposed
method can achieve almost identical BLEU-4 scores compared to the mPLUG, one of the
SOTA methods, with a 78% smaller parameter size.

2. Related Work

Image captioning methods can be roughly divided into three types: template-based
image captioning, retrieval-based image captioning, and encoder–decoder-based caption
generation [3]. Fixed templates with several blanks are used to generate captions among
template-based methods. All of the objects, attributes, and actions are detected first for
filling in the blanks of the templates. Farhadi et al. [4] used a triplet of scene elements
to fill in the template slots for generating image captions. For this purpose, Li et al. [5]
extracted the phrase related to detected objects, attributes, and their relationships. A
conditional random field is adopted by Kulkarni et al. [6] to infer the objects, attributes, and
prepositions before filling in the gaps. Generally speaking, template-based methods can
generate grammatically correct captions with the given templates. However, they would
not likely generate human-like captions with different lengths.

Captions are retrieved from a set of existing captions in retrieval-based image cap-
tioning methods. They normally find visually similar images with captions as candidate
captions from the training dataset. The captions for the query image are then selected
from the pool with candidate captions [7–10]. Retrieval-based methods may only gener-
ate general and syntactically correct captions rather than image-specific and semantically
correct captions.

Captions can be generated from visual space and multimodal space, respectively, by
novel image captioning methods. A general approach is to analyze the visual content of
the image first and then generate image captions via the analysis of the visual content with
a natural language model [11–14]. Such methods can specifically generate captions with
different lengths, styles, and relationships for each image. Therefore, these generated cap-
tions are semantically more accurate than previous methods. Most novel methods generate
captions by analyzing information from visual space or multimodal space through DL.

Encoder–decoder approaches might be divided into convolutional neural networks
(CNN), recurrent neural network (RNN) models, and transformer-based models. The
CNN-RNN models use a CNN to encode images into vectorial representations. The
vectors are adopted into an RNN-based decoder to analyze and provide a descriptive
caption for the input image. For example, a special CNN used a novel method for batch
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normalization, while the output of the last hidden layer of CNN was used as an input
to the LSTM decoder [2]. This LSTM decoder could keep track of the objects that had
already been described using text. The CNN-RNN models are often trained in maximizing
likelihood estimation.

In recent years, a great number of encoder–decoder-based image captioning models
with image classification models as encoders have been proposed. The object detection
model based on a faster R-CNN [15] with ResNet-101 was used to extract salient objects
as regional visual features to generate image captions [15,16]. In this model, the final
output performed non-maximum suppression for each object class using an intersection
over union (IoU) threshold. All of the regions would be selected if any class-detection
probability exceeded a confidence threshold. After that, the mean-pooled convolutional
features were considered as features input into LSTM to generate captions. Certainly, it is
not likely for LSTM to receive the full information from all the predicted anchor boxes. For
example, the pot, the cooker, and some other similar items in a given image might show
the same meaning of cooking.

The attention mechanism is an approach to decide whether to attend to visual or
non-visual information at each step of the decoder part [17]. With the development of the
attention mechanism, a two-level attention network was implemented based on attributes
and the attention mechanism [18]. With the attention mechanism and the multi-head
architecture, transformers have been used in natural language processing and computer
vision processes. A dual-level collaborative transformer for image captioning was de-
veloped in 2021. This model integrated regions and grids’ appearance and geometry
features with intra-level fusion based on comprehensive relation attention and dual-way
self-attention [19]. Such grid features from transformer-based networks performed much
better than previous results.

With the development of transformers, more and more large-scale models are designed
for tasks related to computer vision, natural language processing, etc. The effectiveness of
pre-trained large-scale models on image captioning has been proved in [20–22]. Large-scale
models, however, often require a longer computation time and more memory. When the
computational resources are limited, it is necessary to develop lightweight models for
realizing the encoders and/or decoders in image captioning. The summarized literature
review is shown in Table 1.

Table 1. Literature summary of image captioning. T-B, R-B, and E&D denote template-based,
retrieval-based, and encoder–decoder methods.

Method Main Property Presented Papers

T-B Fixed templates with several blanks are used to generate captions. [4–6]

R-B The model finds a similar image from the training set, and then its corre-
sponding caption is selected as the result. [7–10]

E&D

CNN+RNN Introduced two-step approaches for image captioning of presenting im-
ages by CNNs and analyzing the presentation by RNNs. [2,11–14]

CNN+RNN+ Attention Applied attention mechanism allows the model to focus on different
regions at each step. [17,18]

CNN+RNN+ Reinforce-
ment Learning

The reinforcement model learns to optimize a reward function based on
human evaluations. [16]

Transformer-Based Applied the transformer architecture, which was originally designed for
machine translation, for image captioning. [19]

Pretrained
Vision-Language Model

Demonstrated the effectiveness of pre-trained models on large-scale
vision-language datasets. [20–22]
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2.1. Encoder–Decoder Architecture for Image Captioning

To obtain a comprehensive understanding of objects and relationships in the images
and generate fluent sentences to match the visual information, encoder–decoder models
often adopted the framework of CNN plus RNN image captioning model configuration
shown in Figure 1. Not only are they flexible but they are also effective. Generally, global
features are extracted from input images by a CNN model and then fed into an RNN model
for sequence generation by transferring the image into a full grammatically and stylistically
correct sentence. In some applications, a CNN was used for image representation, while
an LSTM was used for caption generation. For example, the NIC (neural image caption
generator) [2] and NIC V2 [23] followed such a framework. The output of the last hidden
layer of CNN was used as input for the LSTM-based decoder. In the process of image
captioning, image information was included in the initial state of LSTM. The NIC models
show that improving results by directly maximizing the probability of the correct translation
given an input sentence in an end-to-end fashion is possible. The end-to-end models use
an RNN, which encodes the variable length input into a fixed dimensional vector. They
then use the decoded vector to generate it into the desired output sentence. Therefore, it is
natural to use the same approach to image captioning rather than inputting a sentence to
translate it into a description.

Figure 1. Architecture of CNN plus RNN model. The CNN encoder extracts image features, while
the RNN decoder generates text descriptions by analyzing the features.

2.2. VGGNet

The quality of image captioning mostly depends on the performance of extracting
image features. Handcrafted (HC) features are task-specific because most real data are
very complex and have different semantic interpretations. Therefore, a huge number of
human and material resources and a significant amount of time were spent on the feature
extraction from a large set of data. It is impractical to use such traditional feature-extraction
methods in image captioning tasks that often involve large data sets. DL can learn from
training data and automatically extract useful features so that even a large and complicated
set of images and videos can be handled in a timely manner nowadays. CNNs have been
widely used for feature extraction, although they were originally built for classification or
object detection tasks.

In image captioning, CNNs are generally followed by RNNs for caption generation [2].
GoogLeNet [24] had been used as a deep image processing network in some image cap-
tioning models. Moreover, VGGNet [25] and ResNet [26] have also been used as image
feature extractors in some image caption systems [1]. VGGNet was invented by the Visual
Geometry Group from the University of Oxford, which beat the GoogLeNet and won the
localization task in the ImageNet Large Scale Recognition Challenge (ILSVRC) 2014.

In the original VGGNet, there are three fully-connected layers in front of the softmax
layer for outputting classes of objects. It consists of 16 convolutional layers and is very
appealing because of its very uniform architecture. By using 2 layers of the 3 × 3 filter,
VGGNet could cover 5 × 5 areas. By using 3 layers of the 3× 3 filter, it is able to cover 7 × 7
effective areas. Therefore, large-size filters such as 11 × 11 in AlexNet [27] and 7 × 7 in
ZFNet [28] are not needed. Currently, VGGNet is one of the most preferred choices in the
community for extraction features from images. The weight configuration of the VGGNet
is publicly available and has been used in many other applications as a baseline. Table 2
suggests that ResNet performs best among the four CNNs, including AlexNet, VGGNet,
ResNet, and Inception-X Net, based on the accuracy of both Top-1 and Top-5. Although
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ResNet also has fewer parameters than VGGNet, VGGNet remains the most popular image
feature extractor in applications and has the second-highest result in Table 2 [26].

Table 2. Comparisons among four CNN architectures [26]. #Multiply-adds and #Params denote to
the quantity of operations and the output of output of each individual neuron or node.

Convolutional Neural Networks Architectures

Architecture #Param #Multiply-Adds Top-1 Accuracy Top-5 Accuracy Year
Alexnet 61M 724M 57.1 80.2 2012

VGG 138M 15.5B 70.5 91.2 2013
Inception-V1 7M 1.43B 69.8 89.3 2013

Resnet-50 25.5M 3.9B 75.2 93 2015

In the original VGGNet, the input image is resized into 224 × 224 × 3 and sent to the
network until the first connected layer. Similar to the VGGNet used as the image presenter
in previous vision tasks, the last fully connected layer and softmax layer were removed in
our implementation so that the feature size became 4096 as input to the decoder. After that,
the feature vectors were sent to the decoder directly. For the results presented in this paper,
the weights of the VGG encoder were fine-tuned during the training of the decoder to let
the predicted captions be near the ground-truth captions.

2.3. Darknet

VGGNet performs better on image classification in which there are fewer items. The
image captioning tasks require the system to be capable of the prediction of multiple items
and the background at the same time. Based on such considerations, Faster R-CNN was
used as the backbone in the image captioning model [16]. The R-CNN model used region
proposal methods to generate potential bounding boxes at first and then applied a classifier
to these predicted boxes. Finally, post-processing was used to refine the bounding boxes,
eliminate duplicate detection, and re-score the boxes based on other objects in the scene.
Such complex pipelines would be slow and hard to optimize because each individual
component would have to be processed separately.

YOLO [29,30] framed object detection as a single regression problem from image pixels
to bounding box coordinates and class probabilities. With the whole processing setting as a
single network, it can be processed end-to-end directly on detection performance so that
YOLO could learn the representations of objects well. YOLO evolved from YOLOv1 [29]
to YOLOv8 [30] and has consistently focused on balancing speed and accuracy, aiming to
deliver real-time performance without sacrificing the quality of the detection results.

The original YOLO model was designed with a single convolutional model to directly
predict object locations and classes and enable real-time processing. However, the speed-
oriented YOLOv1 cannot outperform the accuracy level for dealing with small objects or
objects with overlapping bounding boxes. The later designed YOLO models successfully
addressed these limitations while maintaining real-time detection. For instance, YOLOv2
(YOLO9000) [31] with Darknet-19 introduced anchor boxes and pass-through layers to
improve the localization of objects, resulting in higher accuracy. In addition, YOLOv3
with Darknet-53 enhanced the performance by employing a multi-scale feature extraction
architecture for better object detection across various scales. With the development of
backbones, YOLO models are able to maintain a faster speed and better performance at
the same time. Models like YOLOv4 and YOLOv5 introduced more innovations, such as
new network backbones, improved data augmentation techniques, and optimized training
strategies. These developments led to significant gains in accuracy without drastically
affecting the models’ real-time performance [32]. Darknet-53 is therefore applied as a
backbone of the encoder in our model so that captioning could focus on more points like
the background and some small-scale details.



Electronics 2023, 12, 3187 6 of 20

2.4. LSTM-Based Sentence Generator

It is difficult for conventional RNNs to access long-range context because the back-
propagated errors either inflate or decay over time due to the so-called vanishing gradient
problem [33]. LSTM overcomes this problem and allows itself to model the self-learned
context information. LSTM has a similar control flow to an RNN. It processes data passing
on information as it propagates forward. The differences are the operations within the
LSTM’s cells. The updating of the hidden layer of LSTM is replaced by purpose-built
memory cells. LSTM generates captions by making one word at a time, using a context
vector, and considering the previously received hidden states and predicted words [1].

The LSTM model consists of a cell state and several gates. The cell state is a transport
highway that transfers relative information down the sequence chain, like the memory.
The cell state can carry relevant information throughout the processing of the sequence.
Therefore, information from the earlier time steps can make its way to later time steps by
reducing the short-term memory effect. As the cell state changes, information is added or
removed to the cell state via gates. The gates decide which information is allowed in the
cell state. The gates can learn what information should be kept or forgotten by training.

LSTM is used as the decoder in our proposed model. During the pre-processing,
the captions will be filled with the “unk” for marking unknown words, the “start” for
marking the start of a new sentence, and the “end” for indicating the end of the ground
truth sentences. The one-hot encoding method is used in the experiment for training
and predicting in our implementation. A dictionary containing both words and their
corresponding IDs will be set. With these processes, a dictionary of size D is composed
by summarizing all the different words corresponding with IDs in the whole dataset. The
LSTM model is trained to predict each word of the target sentence after the presentation of
the image and preceding words. During the decoding processing, the output of the LSTM
at time t − 1 is fed to the LSTM at time t. All of the recurrent connections are transformed
into feed-forward connections in the unrolled version, specifically, if I is denoted as the
input image. S = (S0, . . . , SN) is set as the target sentence with N + 1 words. The unrolling
procedure is as follows:

x−1 = encoder(I), m−1 = None (1)

(st, mt) = LSTM(xt−1, mt−1), t = 0, 1, . . . , N

st = Linear(st) (2)

j0 = argmaxsj
t, j = 1, 2, . . . , D (3)

St = sj0
t (4)

xt = We(St), t = 0, 1, . . . , N (5)

The encoded features, x−1, of image I are only input into LSTM at time t = −1. m−1
is set as none to inform LSTM about the boundary. From t = 0 to t = N, st is the vector of
the linear likelihood at time t of all words in the collected dictionary of size D. mt is the
memory at time t. At t = 0, s0 and m0 are generated by LSTM with the encoded features
and the boundary as input. From t = 1, both st and mt are received with the information
at the last time step. The index j0 of the word that received the highest probability in st
is indicated with the argmax function. Finally, the predicted word at time t, St, is output
from the dictionary. After prediction at time t, the predicted word is embedded by the
word-embedding function We [34]. Word embeddings are a representation of the semantics
of a word through efficiently encoding semantic information that might be relevant to the
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task at hand. From t = 0, the embedded vector xt will be input into the LSTM with the
memory at time t together. With such N words, the sentence S = (S0, . . . , SN) is generated.

While accuracy is important in image captioning, speed should also be considered,
especially for mobile device-based real-time applications. By maintaining accuracy and
achieving more stability with the reduced feature dimension, the processing time will be
expected to decrease. For an image caption generator, the parameter size is related to the
parameters of both the encoder and the decoder. The parameter size of an LSTM model can
be calculated as follows:

P_S = 4 ∗ (input_size + hidden_size) ∗ hidden_size

+ 4 ∗ hidden_size ∗ hidden_size ∗ (num_layers − 1)

+ output_size ∗ (hidden_size + 1)

(6)

where input_size is the size of the input vector, hidden_size is the number of LSTM units in
the hidden state, num_layers is the number of LSTM layers, and output_size is the size of
the output vector at each time step. The factor 4 in the equation comes from the fact that
LSTM has four gates, including an input gate, a forget gate, an output gate, and a cell gate.

From Equation (6), the number of parameters in an LSTM model depends on its input,
hidden, and output sizes. If the input size is halved while the other data sizes remain the
same, the weight matrix from the input layer to the hidden layer will have half as many
rows with the same number of columns that defines the hidden size. This will result in the
weight matrix with half as many elements by reducing the parameter size by approximately
1/4 of the original size. Therefore, the parameter size of an LSTM model would be reduced
by about one-fourth of its original size if its input size were halved.

3. Darknet-53 Encoder with Size-Adjustable Convolutional Module (SACM)
3.1. Darknet-53 Encoder

Compared with the transformer-based model, traditional CNNs have much fewer
parameters. Faster R-CNN with ResNet101 was used as a feature extractor to generate
image captions [16]. It proved the effectiveness of the object detection model as the encoder
for the image captioning tasks. Most existing object detection methods, like DMP [35],
R-CNN [36], and Faster R-CNN [15], made good use of classifiers for performing detection.
To detect an object, these systems take a classifier for that object and evaluate it at various
locations and scales in a test image.

Unlike two-stage models, YOLOv2 used Darknet-19 [31] as a feature extractor. YOLOv3
uses the Darknet-53 [37] network as a backbone with 53 convolutional layers. The exper-
imental results proved that Darknet-53 was better than SOTA for having fewer floating
point operations and more speed while maintaining similar accuracy [37]. Darknet-53 is
better than ResNet-101 and 1.5 times faster than ResNet-101 as well. Darknet-53 has a
similar performance to ResNet-152 but is two times faster. Darknet-53 also achieved the
highest measured floating point operations per second. This means the network structure
could better utilize the GPU and be more efficient and faster. Because ResNets have too
many layers with less efficiency, Darknet-53 is selected as the backbone of our proposed
image captioning system.

3.2. Size-Adjustable Convolutional Module (SACM)

The final features from Darknet-53 are input to SACM for further feature extraction and
dimension reduction without losing important information. The original Darknet-53 uses a
residual network to generate residual blocks of different sizes. For corresponding blocks
of various sizes, several convolutional layers and upsampling processes are designed
to analyze the features of items in different sizes and to jump link with the residual
blocks inside Darknet-53 to alleviate the gradient disappearance problem brought about by
increasing depth in deep neural networks.
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The following convolutional layers focus on detecting and localizing targets. These
convolutional layers convert the feature maps into predicted feature maps at different scales
to obtain information indicating the presence or absence of targets in a given region and the
location and class of targets. The feature pyramid network (FPN) is applied to YOLOv3 to
fuse the features at different levels. The upsampling layer can upsample the low-resolution
feature map to the same size as the high-resolution feature map. This way, the semantic
information from the shallower layers can be fused with the detailed information from the
deeper layers by the upsampling operation. YOLOv3 designed this part for faster object
detection, and we retained this part for global and local features.

Generally speaking, a larger-size feature map can provide richer spatial contextual
information, and the model can better understand the relationship between the target and
its surroundings. Nevertheless, for a mobile-device-oriented model, real-time detection is
another important goal. According to Equation (6), the decode (i.e., the LSTM) has fewer
parameters if the feature map is smaller. In other words, the smaller the feature map is, the
lower the cost of predicting time and computational sources.

One of the main considerations in this paper is to keep the performance while reducing
the computation costs with a smaller-size feature map. For this purpose, we propose to
insert a SACM between the encoder and the decoder. SACM is a size-adjustable convo-
lutional module that consists of several convolutional layers for feature extraction and a
few additional convolutional layers for dimension reduction. By increasing and decreasing
the number of convolutional layers for dimension reduction, we can maintain the balance
of performance and cost. The structure of the Darknet-SACM-LSTM model is shown
in Figure 2.

Figure 2. Detailed architecture. The green dotted box includes the backbone, the following convolu-
tional layers construct the SACM, and the blue dotted box contains the decoder.

Convolutional layers with a 2 × 2 convolution kernel are applied in SACM for di-
mension reduction. Incorporating the convolutional layers is a way to form the original
feature through 2× 2 filters or 1× 1 with non-linearity injection. With the 2× 2 convolution
kernel, each output pixel of the layer is affected by only one pixel in a 2 × 2 region of the
input image after the convolution operation. Firstly, the parameter size will not increase
so much with the small-size convolution kernel. For example, when a 2 × 2 convolutional
stack with Ci input channels and Co output channels is set, the stack is parameterized by
22 × C_i × C_o = 4C_i × C_o weights. A convolutional layer with a 1 × 1 convolution
kernel is equivalent to a cross-channel parametric pooling layer [38]. When the output



Electronics 2023, 12, 3187 9 of 20

channel is smaller than the input channel, the convolutional layer can also be used for
dimension reduction. Being compared to the pooling layer, the 1 × 1 convolutional layer is
a way to reduce the dimension without affecting the receptive fields of the convolutional
layers. For the balance between the final output size and the performance, experiments
of SACM with different convolutional layers with 2 × 2 or 1 × 1 kernels are set in the
simulations. The settings of SACM are shown in Table 3. In addition, the parameters of
all the size-adjusting layers do not increase so much. With the settings shown in the table,
the module with three layers has the largest number of parameters, 1.05M. In other words,
the parameter size of the whole structure decreases to nearly 1/8 of the original size after
introducing these extra 1.05M parameters.

Table 3. Settings of SACM with the original 128 × 52 × 52 feature size. conv kx × ky × c is a
convolution of kernel size kx × ky with c outputs channels. The last line is the final output S f size
from SACM.

SACM-A SACM-B SACM-C SACM-D SACM-E

input (128 × 52 × 52)

conv2 × 2 × 256 conv2 × 2 × 128 conv2 × 2 × 256 conv2 × 2 × 128 conv2 × 2 × 128
conv2 × 2 × 256 conv2 × 2 × 128 conv2 × 2 × 128

conv1 × 1 × 64

S f : 256 × 26 × 26 S f : 128 × 26 × 26 S f : 256 × 13 × 13 S f : 128 × 13 × 13 S f : 64 × 13 × 13

After processing by the first five convolutional layers, the size of the feature maps
becomes 52 × 52 × 128. The following adjustable convolutional layers can reduce feature
dimension directly for sending to LSTM for caption generation. The SACM performs as a
pipeline connecting the encoder and decoder to reduce feature dimensions, saving time
and computational costs. After passing through SACM, the dimension-reduced feature
maps go through to LSTM for generating captions of the provided images.

In this paper, experiments were conducted to measure the relationship between the
feature size and balance of performance and speed. The final feature size S f is decreased
from 1/2 (S f = 256× 26× 26) to 1/32 (S f = 64× 13× 13) of the original feature maps with
the 2 × 2 and 1 × 1 convolutional layers. Our experiments also trained the SACM with the
encoder and the decoder together. With the trainable convolutional encoder of Darknet-
53, the training process can be conducted by training the encoder, SACM, and decoder
simultaneously with the data, ground truth pairs without fixing the encoder. Therefore, the
parameters of Darknet-53, SACM, and LSTM in the proposed model are updated to find
the features more useful for learning. The training processing is shown in Figure 3.

Since different people may give different descriptions of the same image, in a general
image captioning dataset, each image usually has multiple captions corresponding to
it. The dataset like Flickr 8K and MS COCO used in this paper contains five different
ground truth captions for each image. Multiple annotations can provide more information
and diversity to help the model learn different description styles, have different lexical
usages, and learn diffferent semantic expressions. Such a multi-labelling approach helps
the model to better adapt to different input images and generate diverse and higher-quality
descriptions during testing. During the training process, each caption is set with the image,
which it describes as a pair of input and ground truth. In other words, every image is input
to the model five times with different captions. For example, the training set of the Flickr
8K dataset contains 6000 images, so there are 30,000 pairs of input and ground truth in the
training set.
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Figure 3. The training process of the proposed model includes encoder, SACM, and decoder. Es-
pecially the embedded target is input into the decoder only during training. This model is trained
end-to-end. It means the optimizer can update all related parameters in the encoder, SACM, and
decoder based on the loss function.

Word2Index is the word-embedding structure used in this paper to map captions to
vectors. At first, the structure collects all the unique words in the dataset to set a vocabulary.
As mentioned in Equation (6), the vocabulary scale influences the parameter size. Large-
scale vocabulary will increase storage and computational costs. Moreover, it is difficult for
the model to obtain enough information from rare words that appear only once or twice
and will also affect the model’s prediction of high-frequency words. So, we set thresholds
in our experiments at 5 to avoid the effect of rare words on the training effect of the model.
Then, the structure maps each word to its unique corresponding index, which is set from
0, to construct the vocabulary for the dataset. The vector of size (sequence_length, index)
can map the ground truth into a vector. The value of the corresponding index of the target
word is 1, and the others are 0. In addition, the words not in the vocabulary will be instead
of <unk>.

During the prediction process of image captioning, the model generates a probability
distribution at each time step. The word with the highest probability in the distribution
is selected as the current output. The prediction continues until either the termination
marker is encountered or the maximum generation length is reached. Finally, the generated
words are combined to form the final prediction result. Unlike the training process, the
model selects only one best sentence as the final generated image caption. To evaluate the
model’s performance, the evaluation metrics calculate the similarity between the generated
subtitles and each ground truth to derive a composite score, thereby mitigating the effect of
subjectivity on the evaluation results.

4. Simulation Results and Comparisons
4.1. Two Datasets

Flickr 8K dataset and MS COCO dataset are used in the experiments. Flickr 8K [8]
is a popular dataset with 8000 images collected from Flickr. The training data consist of
6000 images, while the test and evaluation data consist of 1000 images separately. Each
image in the dataset has five reference captions annotated by humans. The MS COCO
dataset is a very large dataset for image recognition, segmentation, and captioning. There
are more than 300,000 images and more than 2 million instances with 80 object categories
and five captions per image in the dataset. Many image captioning methods have been
tested on these two datasets. In order to draw comparisons of the performance of our model
on the MS COCO dataset with other results, the fixed training data used 118,287 images
while the evaluation set and testing data set included 5000 images, respectively.
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The end-to-end VGG-LSTM model was used as a baseline to compare with the end-to-
end Darknet-LSTM model on performance and speed. In the experiment of VGG-LSTM, a
pre-trained VGGNet-19 model is used as a feature extractor. To fit the pre-trained model,
input images are transformed into 224 × 224 × 3. As an end-to-end model, the model is
fine-tuned for Flickr 8K and MS COCO datasets. The Adam optimizer was used with a
base learning rate of 10−5 for both datasets’ models. The dimension of feature maps is
set to 4096, while the dimension of hidden layers of LSTM is set to 512 in the VGG-LSTM
model. The VGG-LSTM model is trained by minimizing the cross-entropy loss. The Adam
optimizer with the same learning rate was applied to the end-to-end Darknet-LSTM model.
The input of the original Darknet feature extractor is required to be 416 × 416 × 3. The
batch size is 1 for Flickr 8K and 50 for MS COCO datasets, respectively. The maximum
epoch was set to 30. The model with the highest BLEU scores on evaluation data was used
for testing.

All of the experiments were run on a computer environment under Ubuntu 20.04,
AMD Ryzen 9-3900X CPU with 32GB RAM, and GTX 3090 GPU with 24G memory. Pytorch
was used for the deep learning framework. Following the previous research, the rule of
captions with at most 20 words was set for both datasets. The specific vocabulary of words
was built by particularly removing words that occurred fewer than five times. A vocabulary
of 2550 words was created for Flickr 8K, while a vocabulary of 10,321 words was built for
MS COCO.

4.2. Setup and Evaluation Metrics

The cross-entropy loss was measured throughout the whole training process. If the
dictionary is of size D, the equation of the cross-entropy loss between the predicted word
and the target word at time t is as follows:

Losst = −
D

∑
j=1

Tt,j log(st,j) (7)

and the average loss of the sequence of length N is as follows:

Loss =
1
N

N

∑
t=1

Losst (8)

where Tt is the ground truth of the given word at time t. Tt,j indicates the probability of the
j-th word in the dictionary at the current time step. For example, if the target word at time
t is the 7th word in the dictionary, Tt,7 is 1, and others are 0. st,j denotes the probability of
the model predicting the j-th word at time t. The average loss Loss of the whole predicted
sequence length N is calculated with the average function. During the training process, the
N is the same as the target sequence, while the N will be fixed in the prediction process.
The measured losses in the experiments are the average of all of the cross-entropy losses
between the prediction and the target captions.

Some evaluation metrics from machine translation were used in evaluations, including
BLEU [39], METEOR [40], ROUGE [41], and CIDEr [42]. BLEU is used to analyze the
co-occurrence of n-grams between the predicted captions and ground truth. The n-gram is
often used to reflect the precision of the generated captions [39]. It compares a text segment
with a set of references to compute a score correlating with a human’s judgement of quality.
The semantic propositional image caption evaluation METEOR is calculated based on the
weighted harmonic average of single-word recall and precision [40], which can offset the
shortcoming of BLEU. It also adds a word-net-based measurement to address issues of
synonym matching. ROUGE [41] compares the generated word sequence and word pairs
with reference descriptions. There are several different ROUGEs, such as ROUGE-L and
ROUGE-N. The most widely used ROUGE-L, in which the longest identical fragment in
the generated and ground-truth sentences is defined as the longest common sub-sequence,
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is selected as one of the evaluation metrics in the experiments. CIDEr [42] is an automatic
caption evaluation metric based on consensus. It treats the sentence as a document and
uses TF-IDF to calculate the weight of words. The consistency of the generated caption
with the reference caption is measured by the cosine distance between the TF-IDF vector
representations of two sentences.

4.3. Experimental Results on Flickr 8K

VGGNet is used as an encoder of the baseline model in this paper. After removing the
classifier, softmax, and last fully-connected layer, the size of the feature maps is 4096. The
changes of both loss values and BLEU scores from 1-gram to 4-gram on both training data
(left) and evaluation data (right) are shown in Figure 4. In each figure, the horizontal (x)
axis represents the number of learning epochs. The left vertical (y) axis represents the loss
values, while the right vertical axis shows the values of BLEU scores. Although the training
loss dropped throughout the training process, the evaluation loss slightly increased after
20 learning epochs. As expected, the BLEU scores were lower on the evaluation data than
those obtained on the training data.

Training on VGG16-LSTM Evaluation on VGG16-LSTM

Figure 4. Loss values and four BLEU scores on training (left) and evaluation (right) by the end-to-end
model with VGGNet as the encoder and LSTM as the decoder on the Flickr 8K dataset. The size of the
final feature map is set as S f = 4096 after removing the softmax and the last fully-connected layer.

Because of the limited memory in our computer environment, the experiments on
SACM feature selection are set from 1/2 (S f = 256 × 26 × 26) of the original size to 1/32
(S f = 64 × 13 × 13) of the original size. The training and predicting time cost of SACM
with different feature sizes are shown in Table 4. For performance comparison, BLEU-1
and BLEU-4 scores and the cross-entropy loss by SACM on the testing set are also given
in Table 4. The results suggest that SACM with S f = 128 × 13 × 13 features received the
highest BLEU scores with a similar prediction speed to the baseline model of VGG-LSTM.

Table 4. The cost and performance of SACM with different feature sizes on the testing set for Flickr
8K. B@1 and B@4 denote BLEU-1 and BLEU-4 scores. “No.” denotes the number of learning epochs
when the models received the best BLEU-4 score on the evaluation data.

Final Feature Size Training Time Predicting Time B@1 B@4 Loss No.
S f (/epoch) (/1000 Images)

VGG-LSTM (baseline) 15 min 3.75 min 0.798 0.342 2.66 10

128 × 52 × 52 out of memory out of memory - - - -
256 × 26 × 26 69 min 18 min 0.822 0.439 2.61 19
128 × 26 × 26 44 min 10.3 min 0.817 0.428 2.65 19
256 × 13 × 13 32 min 5.9 min 0.790 0.419 2.68 17
128 × 13 × 13 28 min 3.9 min 0.823 0.439 2.63 17
64 × 13 × 13 25 min 2.8 min 0.809 0.431 2.64 19

The results show that the model with the highest BLEU-1 score of 82.3% used
S f = 128 × 13 × 13 features. Its BLEU-4 score is 0.439, which is the same as that of
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the model using S f = 256 × 26 × 26 features but higher than those of others. On testing
1000 images, the model with S f = 128 × 13 × 13 features used 3.9 min, which ran 15 min
faster than the model with S f = 256 × 26 × 26 features but 1 min slower than the one using
S f = 64 × 13 × 13 features. The baseline model could neither match the performance of the
implemented models nor run faster than the model using S f = 64 × 13 × 13 features.

By comparing Figures 4 and 5, it could be seen that SACM with S f = 64 × 13 × 13
reached a training loss of 1.7 lower than the training loss of 2.1 by VGG16-LSTM. However,
SACM could lead to overfitting on small data sets such as Flickr 8K. It would be important
to use the evaluation loss to decide on the final learned model for solving the problems
with fewer samples. On Flickr 8K, all the models reached their highest BLEU-4 scores
around the 20th training epoch.

Training on Darknet-LSTM Evaluation on Darknet-LSTM

Figure 5. Loss values and four BLEU scores on training (left) and evaluation (right) by Darknet-LSTM
with S f = 128 × 13 × 13 = 21, 632 on Flickr 8K dataset.

4.4. Experimental Results on MS COCO

The results of the baseline encoder VGGNet on the MS COCO dataset were given in
Figure 6. It can be seen that both the training loss and the evaluation loss were decreasing
from the first epoch until the end. The loss values and BLEU scores changed more in the
first 20 epochs. Unlike the results on the Flickr 8K dataset, the best SACMs of different
feature sizes on the MS COCO dataset were all received on the 30th epoch. That is, no
overfitting appeared on the MS COCO dataset. Because the dictionary size for the MS
COCO dataset is nearly 5 times larger than the one for Flickr 8K dataset, only the models
using fewer features were tested.

Training on VGG16-LSTM Evaluation on VGG16-LSTM

Figure 6. Loss values and four BLEU scores on training (left) and evaluation (right) by the end-to-end
model with VGGNet as encoder and LSTM as the decoder on the MS COCO dataset. The size of the
final feature map is set as S f = 4096 after removing the softmax and the last fully-connected layer.

For comparison, the performance of different SACMs on the MS COCO dataset is
shown in Table 5. The B@1, B@4 and No. are the BLEU-1 and BLEU-4 scores and the
epoch number of the model that received the best BLEU-4 score on the evaluation data.
Similar results were obtained on MS COCO. SACM with features of S f = 128 × 13 × 13
outperformed on both BLEU-1 and BLEU-4 scores. Its BLEU-4 score is 0.443, which is



Electronics 2023, 12, 3187 14 of 20

higher than those of the others. The baseline model had the lowest BLUE scores. As for the
running time, the time rose from 14.5 min to 31.2 min when the final feature size increased
from S f = 64 × 13 × 13 to S f = 256 × 13 × 13 in SACM.

Table 5. The cost and performance of SACM with different feature sizes on the testing set for MS
COCO. B@1 and B@4 denote BLEU-1 and BLEU-4 scores. “No.” denotes the number of learning
epochs when the models received the best BLEU-4 score on the evaluation data.

Final Feature Size Training Time Predicting Time B@1 B@4 Loss No.
S f (/epoch) (/5000 Images)

VGG-LSTM(baseline) 202 min 18.8 min 0.778 0.376 2.51 10

128 × 52 × 52 out of memory out of memory - - - -
256 × 26 × 26 out of memory out of memory - - - -
128 × 26 × 26 out of memory out of memory - - - -
256 × 13 × 13 250 min 31.2 min 0.828 0.434 2.63 30
128 × 13 × 13 240 min 19.5 min 0.831 0.443 2.65 30
64 × 13 × 13 230 min 14.5 min 0.820 0.438 2.63 30

The changes in the loss and BLEU scores on Darknet-SACMs with features of
S f = 128 × 13 × 13 on both the training and evaluation sets for MS COCO are shown
in Figure 7. It is interesting to see that although the learned Darknet-SACMs had higher
loss values on both the training and the evaluation set than the learned VGG-LSTM, the
learned Darknet-SACMs were able to have higher BLEU scores. This indicates that the
lower entropy-loss values might not necessarily lead to better captions.

Training on Darknet-LSTM Evaluation on Darknet-LSTM

Figure 7. Loss values and four BLEU scores on training (left) and evaluation (right) by Darknet-LSTM
with S f = 128 × 13 × 13 = 21, 632 on the MS COCO dataset.

4.5. Comparison with SOTA

The experiments in this paper proved the effectiveness of our proposed model and
succeeded in dimension optimization. The encoder of the best model is set with Darknet
as the backbone, and its output feature is 128 × 13× 13. To showcase our superiority,
we provide a comparison with state-of-the-art results on both the Flickr and MS COCO
datasets in Tables 6 and 7, respectively. The best scores for each metric are highlighted
in bold, and we also include the number of parameters used for prediction to compare
prediction speeds.

As we can see from the table, our model shows competitive performance. Specifically,
it outperforms the original CNN+RNN-based methods, indicating that our critical designs
are effective for image captioning tasks. In addition, our model’s performance is better
than many large-scale models. This suggests that further research on the encoder–decoder
architecture could inspire new efforts in this area.



Electronics 2023, 12, 3187 15 of 20

Table 6. Comparisons of our proposed Darknet-LSTM with SACM and some SOTA methods on
Flickr 8K dataset. B@1, B@4, M, R, C, and P denote BLEU@1, BLEU@4, METEOR, ROUGE-L, CIDEr,
and the model sizes.

Method B@1 B@4 M R C P

Neuraltalk2 [43] 57.9 16.0 - - - 31 M
D-CNN [44] 49.5 20.1 42.5 - - -

VGG16-LSTM [45] 62.6 28.7 - - - 138 M
Hard-attention [12] 66.0 31.4 24.8 50.3 68.9 149 M

Neural Baby Talk [46] 66.4 32.6 26.2 52.5 84.5 37.7 M
m-RNN [47] 66.9 32.8 25.5 51.1 75.8 180 M

SCST [48] 67.5 33.8 25.8 51.6 76.0 -
Vis-to-Lang [18] 72.9 30.7 27.9 - 54.3 157 M

ResNet with Attention [49] 55.6 33.5 - - - -
AoANet [50] 67.4 33.5 26.7 52.7 84.7 115 M

CNN-Bi-GRU [51] 65.6 39.4 - - - -
Darknet-LSTM (ours) 82.3 43.9 27.3 65.1 104.7 97.7 M

CATANIC [52] 78.8 46.7 - 63.8 136.5 300 M

Hybrid attention-based CNN-Bi-GRU [52] proposed a hybridized attention-based
deep neural network (DNN) model. The model consists of an Inception-v3 convolutional
neural network (CNN) encoder to extract image features, a visual attention mechanism
to capture significant features, and a bidirectional gated recurrent unit (Bi-GRU) with an
attention decoder to generate the image captions. CATANIC [52] applied the AoANet
with DenseNet169 as the encoder to extract the initial features of the images and the
modified transformer model as the decoder to transform the image feature vector into an
image caption.

Table 7. Comparisons among our proposed Darknet-LSTM with SACM and some SOTA methods on
MS COCO dataset. B@1, B@4, M, R, C, and P denote BLEU@1, BLEU@4, METEOR, ROUGE-L, CIDEr,
and the model sizes.

Method B@1 B@4 M R C P

Hard Attention [12] 71.7 25.0 23.04 - - 149 M
Adaptive Attention [17] 74.2 33.2 26.6 - 108.5 -

Actor–Critic Sequence [53] 77.8 33.7 26.4 55.4 110.2 -
Convolutional Image Captioning [54] 71.1 28.7 24.4 52.2 175 189.3 M

CNN Language Model [55] 72.6 30.3 24.6 - 96.1 -
SCST [48] 78.1 35.2 27.0 56.3 114.7 -

Up-Down [16] 80.2 36.9 27.6 57.1 117.9 108 M
GCN-LSTM [56] 77.4 37.1 28.1 57.2 117.1 -

SGAE [57] 81.0 38.5 28.2 58.6 123.8 -
AoANet (ResNeXt-101 Grid) [50] 81.0 39.4 29.1 58.9 126.9 115 M

X-Transformer [58] 81.9 40.3 29.6 59.5 131.1 11 B
RSTNet [59] 82.1 40.0 29.6 59.5 131.9 54 M/70 M

GET [60] 81.6 39.7 29.4 59.1 130.3 110 M
DLCT [19] 82.4 40.6 29.8 58.8 133.3 -
PureT [61] 82.8 41.4 30.1 60.4 136.0 -

ExpansionNet V2 [62] 83.3 42.1 30.4 60.8 138.5 129.6 M
BLIP-2 ViT-G OPT [63] - 42.4 - - 144.5 2700 M
Darknet-LSTM (ours) 83.1 44.3 32.8 65.7 148.0 108.2 M

OFA [64] - 44.9 32.5 - 154.9 -
mPLUG [65] - 46.5 32.0 - 155.1 510 M

Our model outperforms most of the previous models on the Flickr 8K dataset across all
metrics in both single and ensemble configurations. Our model outperforms other models
by BLEU-1 and ROUGE-L. However, the CATANIC model has a slightly higher score in
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BLEU-4 and CIDER-D despite having a parameter size almost twice as large as ours, with
differences of only 0.03 and 0.3, respectively.

More and more large-scale models are appearing and performing better and better.
ExpansionNet V2 [62] applied block static expansion, which distributes and processes the
input over a heterogeneous and arbitrarily big collection of sequences characterized by
a different length compared to the input one. OFA [64] follows the previous research to
adopt the encoder–decoder framework as the unified architecture. Especially, both the
encoder and the decoder are stacks of transformer layers. A transformer-based encoder
layer consists of a self-attention and a feed-forward network (FFN), while a transformer-
based decoder layer has a cross-attention network more than the encoder for building the
connection between the decoder and the encoder output representations. The mPLUG [65]
introduces a new asymmetric vision-language architecture with novel cross-modal skip-
connections; it consists of N skip-connected fusion blocks to address two fundamental
problems of information asymmetry and computation efficiency in cross-modal alignment.
This model adapts the connected attention layer to each S asymmetric co-attention layer.

Our model achieved better results than the previous ExpansionNet V2 on the MSCOCO
dataset, with improvements of 1.1 BLEU-4, 2.4 METEOR, 4.9 ROUGE-L, and 10.0 CIDEr-D.
Compared to other models, our proposed model outperformed them by 0.3 METEOR
and 0.57 ROUGE-L. However, our model was less efficient with the OFA and mPLUG
on BLEU-4 and CIDER scores. Despite this, our experiments have shown that the perfor-
mance of approaches can be improved with larger datasets. Additionally, our best model
could speed up predictions with a smaller size than attention-based and transformer-based
large-scale models.

To balance the performance and the cost, Ref. [12] introduced an attention-based
image captioning model focusing on generating informative captions while considering
computational efficiency. The method received a 71.8 BLEU-1 score and a 25.0 BLEU-4 score
on the MS COCO dataset. In [17], the authors presented an adaptive attention mechanism
that learns to attend to image regions for caption generation selectively, and this method
received a 74.8 BLEU-1 score and 33.6 BLEU-4 score. The method proposed in [53] was an
actor–critic framework for training image captioning models. It tried to establish a balance
via a trade-off between computational cost and captioning performance and received a
33.7 BLEU-4 score. Ref. [55] explored the use of language convolutional neural networks
(CNNs) for image captioning, discussed the trade-off between computational cost and
captioning performance, and received a 72.6 BLEU-1 score and 30.3 BLEU-4 score. Ref. [54]
introduced a convolutional approach to image captioning that focused on reducing the
computational cost while maintaining competitive performance. With the help of linear
units, this model received a 71.1 BLEU-1 score and a 28.7 BLEU-4 score.

With several convolutional layers, our model performs better than most existing
CNN+RNN models and transformer-based models and received comparable results to
those of the SOTA models with much smaller model sizes than the SOTA models.

4.6. Qualitative Analysis

Figure 8 shows prediction examples by our models with encoders with different
output sizes on the Flickr 8K validation set, which shows reasonable prediction results.
The wrong parts of a caption are marked. The GT caption is one of the five targets for
evaluating the predicted sentence in the dataset. Compared with the ground truth captions,
our best model with the encoded feature of size S f = 128× 13× 13 has obvious advantages
in recognizing objects and some relative details. This advantage maybe comes from the
suitable feature with less loss of important information for the decoder.
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10816: a dog is laying on a hind of a grass, a stick in his mouth

21632: a dog is laying on a grass, a ball in its mouth

43264; a dog is laying on a grass, a tennis in his mouth

86528: a dog is running on a grass, a ball in its mouth

GT: a dog lays on his back with a favorite tennis ball in his

mouth

10816: a woman is sitting on a ground with <unk> <unk> the head

21632: a man is sitting on a edge in front of building

43264: a man is sitting on a edge surrounded of building

<unk><unk> arm.

86528: a man is sitting on the edge in of building

GT: a man is sitting on the groundnext to the door of a building

10816: two dogs on a sand.

21632: two dogs on a sand, a brown dog in a red collar.

43264: two dogs running through a grass

86528: two dogs jumping in a grass

GT: two dogs running on a beach.

10816: a dog is running a purple collar

21632: a dog is running in a collar

43264: a dog is running a purple collar

86528: a dog is runnning in a purple collar

GT: a dog with a purple collar is running

10816: a brown dog is in the beach

21632: a brown dog is through a beach with a <unk> in its

mouth

43264: a brown dog is through a grass with a <unk> in the

mouth

86528: a dog brown is through a grass with a in of its mouth

GT: a large dog runs on the beach with something hanging out

of its mouth

10816: a person is riding in the forest

21632: a man biker is riding in in the forest

43264: a man biker is riding in a forest

86528: a man rider riding in the forest

GT: a dirt biker rides through some trees

10816: two people stands in the street

21632: a man and a woman are for cross the street

43264: a man and a woman are for cross the street

86528: a man and a woman with a <unk> are in the street

GT: a man and a woman wait to cross the street

10816: a girl jumps with a swing ball

21632: a boy in a red shorts is playing a soccer ball on a beach

43264: a boy is jumping into a ball

86528: a boy in a red shorts is jumping for a soccer ball

GT: a boy wearing a red bathing suit reaches for a soccer ball

while running in sand

10816: a boy is jumping over the air

21632: a boy in a blue shorts jumps a flip

43264: a boy in a jeans jumpiung a flip into the ocean

86528: a boy in a howts jumping a flip in the water

GT: man with blue pants flipping in the air

10816: a person on a red background

21632: a man in a black shirt is down a street

43264: a man in a black shirt is walking along a path

86528: a man in a shirt is walking to a beach

GT: an older man in a long black shiet is walking down a

cobblestone street alone

Figure 8. Visualization of our models with different encoders on validation images of Flickr 8K
dataset. The wrong parts of a caption are marked. The GT caption is one of the five targets for
evaluating the predicted sentence in the dataset.

5. Conclusions

The detection of object classes and positions and their relationships should be consid-
ered in solving image captioning tasks. Therefore, the Darknet for object detection is the
backbone of our proposed image captioning model. SACM, the size-adjustable convolu-
tional module, is designed for feature extraction and dimension reduction in this paper.
With the SACM, convolutional layers are applied for feature dimension reduction while
losing less important information on global and local features. With feature dimension re-
duction, the parameters of the whole model are smaller. With the convolutional layers, the
feature size is reduced while expanding the depth of the network for receiving high-level
semantic and contextual information. Faster implementation and better performance could
be achieved simultaneously in our end-to-end image captioning system with a pre-trained
Darknet, SACM, and LSTM.

The end-to-end neural network system proposed in this paper, Darknet-SACM-LSTM,
is trained to maximize the likelihood of the correct words in the final sentence describing the
given image. After training, our proposed systems can automatically generate a descriptive
caption in plain English for a given image. Experiments on the Flickr 8K and MS COCO
datasets show the robustness of our Darknet-SACM-LSTM system in terms of speed and
several metrics of BLEU scores, METEOR, ROUGE, and CIDEr. By using one or more
convolutional layers, SACM could reduce the number of features, speed up the predicting
process, and maintain the performance of sentence quality measured by using both the
cross-entropy loss and BLEU score.

The experimental results also indicate that neither the best training loss nor the
best evaluating loss could let the learned systems with the highest metrics engage in
image captioning. By modifying the cross-entropy loss function, it would be necessary to
explicitly consider the relationships between items and their positions in the images. The
modified loss functions might help the image captioning system to achieve better metrics.
Meanwhile, all the parameters in our proposed Darknet-SACM-LSTM are trainable. It
would be interesting to know which parts should be adaptive and which parts could be
fixed. Even a faster system could be implemented by fixing some parameters besides the
feature reductions.
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