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Abstract: Multi-hop machine reading comprehension is a challenging task in natural language
processing as it requires more reasoning ability across multiple documents. Spectral models based on
graph convolutional networks have shown good inferring abilities and lead to competitive results.
However, the analysis and reasoning of some are inconsistent with those of humans. Inspired by the
concept of grandmother cells in cognitive neuroscience, we propose a heterogeneous graph attention
network model named ClueReader to imitate the grandmother cell concept. The model is designed
to assemble the semantic features in multi-level representations and automatically concentrate or
alleviate information for reasoning through the attention mechanism. The name ClueReader is a
metaphor for the pattern of the model: it regards the subjects of queries as the starting points of clues,
takes the reasoning entities as bridge points, considers the latent candidate entities as grandmother
cells, and the clues end up in candidate entities. The proposed model enables the visualization
of the reasoning graph, making it possible to analyze the importance of edges connecting entities
and the selectivity in the mention and candidate nodes, which is easier to comprehend empirically.
Evaluations on the open-domain multi-hop reading dataset WIKIHOP and drug–drug interaction
dataset MEDHOP proved the validity of ClueReader and showed the feasibility of its application of
the model in the molecular biology domain.

Keywords: machine reading comprehension; knowledge graph; graph neural networks; attention
mechanism

1. Introduction

Machine reading comprehension (MRC) is one of the most attractive and long-standing
tasks in natural language processing (NLP). Compared with single-paragraph MRC, multi-
hop MRC is more challenging since multiple confusing answer candidates are contained
in different passages [1,2]. Models designed for this task are supposed to have abilities to
reasonably traverse multiple passages and discover reasoning clues following given ques-
tions. For complex multi-hop MRC tasks, more understandable, reliable, and analyzable
methodologies are required to improve reading performance.

Better understanding of biological brains could play a vital role in building artificial
intelligent systems [3]. Previous cognitive research in reading can be of benefit to challeng-
ing multi-hop MRC tasks. The concept of grandmother cells can be traced back to a 1969
academic lecture given by the neuroscientist Jerome Lettvin [4] and was later defined by
the physiologist Horace Barlow as cells in the brain that respond specifically to a single
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familiar person or object. In experiments on primates, researchers discovered individual
neurons that responded specifically to a specific person, image, or concept after differen-
tiation [5]. A study of a patient with epilepsy found a neuron in the patient’s anterior
temporal lobe that responded specifically to the Hollywood star Jennifer Aniston [6]. Any
form of stimulation related to Aniston, whether it be a color photograph, a close-up of her
face, or a cartoon portrait, or even just seeing her name written on paper, could and would
only stimulate that neuron to produce an excited signal. As research into the concept of
grandmother cells, the underlying mechanism of their response became clearer. The signal
output from a single grandmother cell in response to specific stimuli actually stems from
the coordinated calculation of a large-scale neural network behind grandmother cells [5]. It
suggests that a single neuron can respond to only one out of thousands of stimulations,
which is somehow intuitively similar to reading and inference in multi-hop MRC:

• Selectivity. The grandmother cells concept organizes the neurons in a hierarchical
“sparse” coding scheme. It activates some specific neurons to respond to stimulation,
similar to the manner in which we store reasoning evidence maps (neurons) in our
minds during reading and recall-related evidence maps to reason the answer with a
question (stimulation) constrained.

• Specificity. The concept implies that brains contain grandmother neurons that are so
specialized and dedicated to a specific object, which is similar to a particular MRC
question resulting in a specific answer among multiple reading passages and their
complex reasoning evidence.

• Class character. Amazing selectivity is captured in grandmother cells. However, it
results from computation by much larger networks and the collective operations of
many functionally different low-level cells, similar to human multi-hop reading in
which evidence is usually gathered from different levels as much as possible and the
final answer is decided in some candidate endpoints.

To imitate grandmother cells in multi-hop MRC, the reading evidence is supposed to be
organized as level-classified neurons and the selections must be performed in response to
specific question stimulation. As for multi-hop MRC tasks, the hops between two entities
could be connected as node pairs and gradually constructed into a reasoning evidence
graph taking all related entities as nodes. This reasoning evidence graph is intuitively
represented as a graph structure, which can be empirically considered to contain the implicit
reasoning chains from the start of the question to the end of the answer nodes (entities).
We generally recall considerable related evidence as a node, whatever form it is (such as a
paragraph, a short sentence, or a phrase), to meet the class character, and we coordinate
their inter-relationship before obtaining the results.

Graph neural networks (GNNs) inspire us to posit that operating on graphs and
manipulating the structured knowledge can support relational reasoning [7,8] in a sophis-
ticated and flexible pattern, similar to the implementation of grandmother cells regarding
the cells as nodes in the graph and collecting evidence in multi-classified aspects of node
representations. Further, spatial graph attention networks (GATs) perform the selectivity in
reasoning evidence graphs in the manner of grandmother cells using attention mechanisms.
This work has the following main contributions:

1. In order to construct a more reasonable graph, ClueReader draws inspiration from the
concept of grandmother cells in the brain during information cognition, in which cells
in the brain only output specific entities. This leads to the creation of heterogeneous
graph attention networks with multiple types of nodes.

2. By taking the subject of queries as the starting point, potential reasoning entities in
multiple documents as bridge points, and mention entities consistent with candidate
answers as end points, the proposed ClueReader is a heuristic way of constructing
MRC chains.

3. Before outputting predicted answers, ClueReader innovatively visualizes the internal
state of the heterogeneous graph attention network, providing intuitive quantitative
data displays for analyzing the effectiveness, rationality, and explainability.
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The remainder of the article is organized as follows. Section 2 describes the work
related to multi-hop MRC, and Section 3 proposes the ClueReader that imitates grandmother
cells for multi-hop MRC. Experimental evaluations are conducted in Section 4, and conclu-
sions are summarized in Section 5.

2. Related Work
2.1. Sequential Reading Models for Multi-Hop MRC

Sequential reading models were first used for single-passage MRC tasks, and most
of them are based on recurrent neural networks (RNNs) or their variants. When the
attention mechanism was introduced into NLP tasks, their performance significantly im-
proved [9–12]. In the initial benchmarks of the QANGAROO [13], a dataset for multi-hop
MRC, the milestone model Bi-Directional Attention Flow (BiDAF) [9] was first applied to
evaluate its performance in the multi-hop MRC task. It represented the context at different
levels and used a bi-directional attention flow mechanism to obtain query-aware context
representation and was then used for predictions.

Some studies [14–17] argued that independent attention mechanisms, i.e., Bidirectional
Encoder Representations from Transformers (BERT)-style models [14], applied on sequential
contexts can outperform former RNN-based approaches in various NLP downstream tasks,
including MRC. When the sequential approaches were applied to multi-hop MRC tasks,
however, they suffered from the challenge that the super-long contexts—to adapt the
design of the sequential requirement, multiple passages are concatenated into one passage—
resulted in dramatically increased calculation and time consumption. A long-sequence
architecture, Longformer [17], overcomes the self-attention restriction and allows the length
of sequences to be increased from 512 to 4096 and then concatenates all the passages into a
long sequential context for reading. The Longformer modified the question answering (QA)
methodology proposed in BERT [14]: the long sequential context consisted of a question,
candidates, and passages, which were separated by special tags that were applied to the
linear layers to output the predictions, while still having enough memory for first 4096
length sequence.

Although the approaches above are effective, Ref. [18] indicates that model reasoning
is not robust enough. We consider that there are still two main challenges that should
be further addressed: (1) With the expansion of the problem scale and the reasoning
complexity, the token-limited problem may appear again eventually. For instance, a full-
wiki setting task in HOTPOTQA requires models to predict answers from the scope of
the entire WIKIPEDIA, which is a dataset for diverse and explainable multi-hop question
answering. It is difficult to imagine how a huge search space is built based on a large
amount of text. (2) Some models which simply concatenate text to long contexts lack logical
relationships, which is unconvincing in terms of their reasoning. Thus, the approaches
based on GNNs were proposed to improve the scalability and explainability in multi-
hop MRC.

2.2. Graph Neural Networks for Multi-Hop MRC

Reasoning about explicitly structured data, in particular, graphs, has arisen at the
intersection of deep learning and structured approaches [7]. As the representative graph
methodology, Graph Convolutional Networks (GCNs) [19,20] are widely applied in multi-hop
MRC approaches. Cognitive Graph QA (CogQA) [21] was founded on the dual process
theory [22,23], and it divides the multi-hop reading process into two stages: the implicit
extraction (System I) based on BERT and the explicit reasoning (System II) established in
GCNs. System I extracts the answer candidates and useful next-hop entities from passages
for the cognitive graph construction, then System II updates entity representations and
predicts the final answer in the GCN message passing way. In this procedure, the selected
passages are not put in the system at once. As a result, CogQA keeps its scalability in the
face of the massive scope of reading materials.
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Entity-GCN [24] extracts all the text spans matching the candidates as nodes and
obtains their representations from the contextualized ELMo [25] word embeddings, then
passes them to the GCN module for reasoning. Based on Entity-GCN, Bi-directional Attention
Entity Graph Convolutional Network (BAG) [26] added Glove word embeddings and two
manual features, named-entity recognition and part-of-speech tags, to reflect the semantic
properties of tokens. On account of the full usage of the question contextual information, it
applies the bi-directional attention mechanism, both node2query and query2node, to obtain
query-aware node representations in the reasoning graph for better predictions. Path-based
GCN [27] introduces more related entities in the graph than the nodes merely matching the
candidates to enhance the performance of the model. The Heterogeneous Document-Entity
(HDE) model [28] introduces the heterogeneous nodes into GCNs, which contain different
granularity levels of information. Additionally, the Keywords-Aware Dynamic Graph Neural
Network (KA-DGN) [29] was proposed and designed as a dynamic graph neural network to
further tackle reading over multiple scattered text snippets. Furthermore, Zhan et al. [30]
and Song et al. [31] separately proposed knowledge-aware and evidence-aware GNN
reading models, which integrate dependency relations or multiple pieces of evidence from
multiple paragraphs.

However, the reading processes of the above-mentioned approaches are still inexplica-
ble, especially in GNNs, which stimulated our interest in the selectivity of this procedure.

3. Methodology

We introduce the design and implementation of the proposed model, ClueReader,
which is shown in Figure 1.

S={S1, …, Sn}
Support documents

C={C1, …, Cz}
Candidate entities

q={q1, …, qm}

Question query

Bi-LSTM

Bi-LSTM

Bi-LSTM

(1) Encode Layer

Mention Nodes

Reasoning Nodes

Support Nodes

Subject Nodes

Candidate Nodes

(2) Heterogeneous Reasoning 
Graph Construction

GAT

GAT

GAT

…CoAttn Self
Attn

l-layer

MLPcan 
Candidate Nodes
(the grandmother cells)

MLPmen
Mention Nodes

Prediction Score 
Distribution

(3) Heterogeneous Graph Attention 
Network for Multi-hop Reading (4) Output Layer

Figure 1. Our proposed ClueReader: a heterogeneous graph attention network for multi-hop MRC.
The detailed explanations of S, C, and q are in task formalization (Section 3.1). S, C, and q are
encoded in three independent Bi-LSTMs (Section 3.2). Following the graph construction strategies in
Section 3.3, the outputs of three encoders are applied to Co-attention and Self-attention to initialize the
reasoning graph features, which is explained in Section 3.4. Then the topology information and node
features are passed into the GAT layer. A much larger network computation behind grandmother cells
is performed in the GAT layer, and n-hops message passing is calculated in n parameter shared layers,
which are represented in Section 3.4.2. Finally, grandmother cell selectivity is combined in Section 3.5,
outputting the final predicted answer.

3.1. Task Formalization

A given query q = (s, r, a∗) is in a triple form, where s is the subject entity, r is the query
relation (i.e., predication), and q can be converted into sequential form q = {q1, q2, . . . , qm},
where m is the number of tokens in the query q. Then a set of candidates Cq = {c1, c2, . . . , cz}
and a series of supporting documents Sq = {s1, s2, . . . , sn} containing the candidates are
also provided, where z is the number of the given candidates, n is the number of the given
supporting documents, and the subscript q means the two sets are constrained by the query
q. Moreover, Sq is provided in a random order, and without Sq, the answer to the query q
could be multiple. Our goal is to identify the single correct answer a∗ ∈ Cq by reading Sq.
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3.2. Encoding Layer

We utilize the pre-trained GloVe [32] model to initialize word embeddings, and then
employ Bidirectional Long Short-Term Memory (Bi-LSTM) [33,34] to encode sequence repre-
sentations as:  ft

it
ot

 = σ(Whht−1 + Wixt)

c̃t = tanh(Whht−1 + Wixt)

ct = ftct−1 + it c̃t

ht = ot tanh(ct)

(1)

where the subscripts t and t − 1 denote the indexes of the encoding time step; Wi and
Wh are the hyperparameters of the input and the hidden layer; i, f , o, c̃, h, and c respec-
tively represent the input, forget, output, content, hidden, and cell states; x represents the
word embedding; σ and tanh are sigmoid activation and hyperbolic tangent activation,
respectively.

We use
−→
h and

←−
h to denote the forward-pass (i.e., the left to right) and the backward-

pass (i.e., the right to left) sequence representations encoded by Bi-LSTM, respectively.
Then, the representation of the entire sequential context obtained from the encoding layer
can be expressed as follows:

h = [
−→
h ||
←−
h ] (2)

where the symbol || denotes the concatenation of
−→
h and

←−
h . To encode the sequence

representations of support documents S, candidates C, and query q, it is desirable to use

three independent Bi-LSTMs. Their outputs are Hi
s ∈ Rli

s×d, H j
c ∈ Rl j

c×d and Hq ∈ Rlq×d,
respectively, where i and j are the indexes of the documents and the candidates, l is the
sequence length, and d is the output dimension of the representations.

3.3. Heterogeneous Reasoning Graph

The concept of grandmother cells reveals that the brains of monkeys, like those of
humans, contain neurons that are so specialized they appear to be dedicated to a single
person, image, or concept. This amazing selectivity is uncovered in a single neuron, while
it must result from computation by a much larger network [5]. We heuristically consider
that this procedure in multi-hop reading could be summarized as three steps:

1. The query (or the question) locates the related neurons at a low level, which then
stimulates higher-level neurons to trigger computation;

2. The higher-level neurons begin to respond to increasingly broader portions of other
neurons for reasoning, and to avoid a broadcast storm, informative selectivity takes
place in this step;

3. At the top-level, some independent neurons are responsible for the computations that
occurred in step 2. We refer to these neurons as grandmother cells and expect them to
provide the appropriate results that correspond to the query.

We attempt to imitate grandmother cells in our reading procedure and present our
reasoning graph as consistent as possible with the three steps mentioned above. The
heterogeneous reasoning graph G = {V , E}, which is illustrated in Figure 2, simulates a
heuristic chain of comprehension that starts from the subject entity in query q and goes
through the reasoning entities in the supporting document set Sq, then through the mention
entities in Sq that are consistent with the candidate answer, and finally touches at the
candidates in set Cq (referred to as the grandmother cell).
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Figure 2. Heterogeneous reasoning graph in ClueReader. Different nodes are filled in different colors,
and the edges are distinguished by the types of lines. Subject nodes are gray, reasoning nodes
are orange, mention nodes are green, support nodes are red, and candidate nodes are blue. The
nodes in the light yellow square are all selected to input to the two MLP obtaining the prediction
score distribution.

3.3.1. Nodes Definition

To construct the graph, we define five different types of nodes which are similar to
neurons and ten kinds of edges among the nodes [15,24].

• Subject Nodes—As the form of query q, the subject entity s is given in q = (s, r, a∗).
For example, the subject entity of the query sequence context Where is the basketball
team that Mike DiNunno plays for based? is certainly Mike DiNuuno. We extract all the
named entities that match with s from documents, and regard them as the subject
nodes to open up the reading clues triggering the further computations. The subject
nodes are denoted as V sub and colored in gray in Figure 2.

• Reasoning Nodes—In light of the requirements of the multi-hop MRC, there are some
gaps between the subject entities and candidates. To build bridges between the two
and make the reasoning clues as complete as possible, we replenish those clues with
the named recognition entities and nominal phrases from the documents containing
the question subjects and answer candidates. The reasoning nodes are marked as V rea
and colored in orange in Figure 2.

• Mention Nodes—A series of candidate entities are given in Cq, they may occur in
multiple times within the document set Sq. As a result, we traverse the documents
and extract the named entities corresponding to each candidate as mention nodes,
serving as the soft endpoint of the reasoning chain. It should be noted that mention
nodes will participate in the semi-supervised learning process and will be involved in
the final answer prediction. The mention nodes are presented as V men and colored in
green in Figure 2.

• Support Nodes—As described by [5], we consider that multi-type representations
may contribute to the reading process, and thus the support documents containing
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the above nodes are introduced to G as support nodes, which are notated as V sup and
colored in red in Figure 2.

• Candidate Nodes—To imitate grandmother cells, we consider candidate nodes as hard
endpoints of the reasoning chain to gather relevant information from the heteroge-
neous reasoning graph. For the mention nodes V q

men of a candidate answer cq, when
V q

men ≥ 1, candidate nodes are established as grandmother cells to provide the final
prediction. The candidate nodes are denoted as V can and colored in blue in Figure 2.

3.3.2. Edges Definition

To learn the entity relationships between different nodes, we define 10 kinds of edges
between nodes in heterogeneous reasoning graphs inspired by the literature [24,26,35],
as shown in Table 1.

Table 1. The definition of edges in the heterogeneous graph attention network ClueReader.

Edges Definition

Esup2sub
If the support document si contains the j-th subject node v j

sub, an undirected edge denoted as e ij
sup2sub is established to

connect the support node v i
sup of si and the subject node v j

sub.

Esup2can
If the support document si contains the j-th candidate node v j

can, an undirected edge denoted as e ij
sup2can is established

to connect the support node v i
sup of si and the candidate node v j

can.

Esup2men
If the support document si contains the j-th mention node v j

men, an undirected edge denoted as e ij
sup2men is established

to connect the support node v i
sup of si and the mention node v j

men.

Ecan2men
If the j-th mention node v j

men and the i-th candidate node v i
can represent the same entity, an undirected edge denoted as

e ij
can2men is established to connect the two nodes.

Esub2rea
If the i-th subject node v i

sub and the j-th reasoning node v j
rea extracted from the same document, an undirected edge

denoted as e ij
sub2rea is established to connect the two nodes.

Erea2men
If the i-th reasoning node v i

rea and the j-th mention node v j
men extracted from the same document, an undirected edge

denoted as e ij
rea2men is established to connect the two nodes.

Ecan2can All the mention nodes are fully connected using undirected edge e ij
can2can.

Eedgesin If two mention nodes v i
men and v j

men are extracted from the same document, the two nodes will be connected as e ij
edgesin.

Eedgesout
If two mention nodes v i

men and v j
men are extracted from different documents represent the same entity, the two nodes

will be connected as e ij
edgesout.

Erea2rea
If two reasoning nodes v i

rea and v j
rea are extracted from the same document or represent the same entity, the two nodes

will be connected as e ij
rea2rea.

3.3.3. Graph Construction

In the heterogeneous reasoning graph, the clue-reading chain can be represented
by Vsub ↔ Vrea ↔ Vmen ↔ Vcan, whose edges are covered by Esub2rea, Erea2rea, Erea2men,
and Ecan2men. Eedgesout and Erea2rea give the model the ability to transfer information across
documents and edges in Esup2sub, Esup2can, and Esup2men are responsible for supplementing
the multi-angle textual information from the documents. Furthermore, the Ecan2men could
gather all the information of the mentioned nodes corresponding to the candidates and then
pass their representations to the output layer to realize the imitation of grandmother cells.

Specifically, this multi-hop MRC process of the clue-based reasoning starts with the
subject node, connecting reasoning nodes from support documents, then connecting the
mention nodes as soft endpoints of the clue chain, and finally connecting to the candidate
nodes (grandmother cells) as hard endpoints of the clue chain. For example, for the question
Which country is the location of the United Nations Headquarters? the answer candidate set
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includes China, France, UK, USA, and Russia. One correct and reasonable clue chain can
be represented as Location of United Nations Headquarters (subject node)↔Manhattan↔New
York City↔New York State↔USA (mention node)↔USA (candidate node). In practice,
multiple clue chains are included within the heterogeneous reasoning graph, and under
the constraints of the query, the selection of soft and hard endpoints is required to output
the final prediction.

3.4. Heterogeneous Graph Attention Network for Multi-Hop Reading
3.4.1. Query-Aware Contextual Information

Following HDE [28], we use the co-attention and self-attention mechanisms [36] to
combine the query contextual information and documents. Moreover, it is applied to
the other semantic representations that require reasoning consistent with the query. To
represent the query-aware support documents, it can be calculated as follows:

A i
qs = Hi

s
(

Hq
)> ∈ Rli

s×lq (3)

where A i
qs is the similarity matrix for two sequences, between the i-th support document

Hi
s ∈ Rli

s×d and query Hq ∈ Rlq×d, and d is the dimension of the context. Then, the query-
aware representation of support documents Sca is computed as follows:

K q = softmax
(

A>qs

)
Hs ∈ Rlq×d (4)

K s = softmax
(

Aqs
)

Hq ∈ Rls×d (5)

Ds = BiLSTM
(
softmax

(
Aqs
)

K q
)
∈ Rls×d (6)

S ca = [K s||Ds] ∈ Rls×2d (7)

To project the sequence into a fixed dimension and output the representation N sup
of Vsup for graph optimization, a self-attention is utilized to summarize the contextual
information:

j s = softmax(MLP(S ca)) ∈ Rls×1 (8)

N sup = j>s S ca ∈ R1×2d (9)

In addition to the query-aware support documents, the co-attention and self-attention are
used to generate query-aware node representations from other sequential representations.

3.4.2. Message Passing in the Heterogeneous Graph Attention Network

We present messaging passing in the heterogeneous graph attention network for
reading within multiple relations in diverse nodes. The input of this module is a graph
G = {V , E} and node representations N = {n1, n2, . . . , nr} ∈ R1×2d, where r is the number
of nodes. Initially, a shared weight matrix Wn is applied to N , then the attention coefficients
and nodes attention coefficients are computed as

eij = MLP
(
Wnni||Wnnj

)
(10)

αij = softmaxj(eij) =
exp(eij)

∑k∈N i
exp(eik)

(11)

where eij are the attention coefficients indicating the importance of the features of the node
nj to the node ni, and αij is normalized across all structure neighbors Ni of the node ni.
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The attention mechanism is responsible for selectivity with node interdependence, which
enables us to show how the nodes take effect during the reasoning.

Considering the 10 different types of edges defined in Section 3.3.2, we model the
relational edges basing on the vanilla GAT [37]:

nl+1
i =

1
K
‖K

k =1 σ

 ∑
j∈N i

∑
r∈R ij

1
|N r

i |
αk,l

rij
Wk,l

rij
nl

j

 (12)

where nl
i ∈ R1×2d is the hidden state of the node ni in the l-th layer, all the GAT layers are

parameter-shared, k is the k -th head following [15,37], R is the set of all types of edges in
E , and αk,l

rij are normalized attention coefficients computed by the k-th attention mechanism
with relation r, which is presented in [37].

Message passing is a key component of our model. To echo the selectivity of grand-
mother cells, we use the attention mechanism to select (i.e., activate or deactivate) key
node pairs in our reasoning graph, and we empirically regard this process as the reading
reasoning in the graph.

3.4.3. Gating Mechanism

A previous study [19] showed that GNNs are suffer from the smoothing problem
when calculated by stacking many layers, and, thus, we overcome this issue by applying
question-aware [27] and general gating mechanisms [38] to optimize the procedure.

H q = BiLSTM(Hq) (13)

wij = σ
(

W>q [n
l
i ‖ H qj ]

)
(14)

α
gate
ij =

exp(wij)

∑m
k=1 exp(wik)

(15)

ql
i =

m

∑
j=1

α
gate
ij Hqj (16)

βl
i = σ(W>s [q

l
i ||nl

i ]) (17)

ñl
i = βl

i� tanh
(

pj
i

)
+
(

1− βl
i

)
� nl

i (18)

where Hq is the query representation given by a dedicated Bi-LSTM encoder to keep
consistency with the dimension of node features N , j indicates the order of query words, m
is the query length, σ is a sigmoid function, and � indicates element-wise multiplication.
Then the general gating mechanism is introduced as follows:

xl
i = σ(MLP[ñl

i ||nl
i ]) (19)

nl+1
i = xl

i � tanh
(

ñl
i

)
+
(

1− xl
i

)
� nl

i (20)

3.5. Output Layer

After updating the node representation, we use two multilayer perceptrons, MLPcan
and MLPmen, to transform the node features to prediction scores. All the candidate nodes
(grandmother cells) Ncan and mention nodes Nmen from G are employed to output the predic-
tion score distribution a as

a = γ×MLPcan(N can) + (1− γ)×max(MLPmen(N men)) (21)
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where max(·) takes the maximum mention node score over MLPmen, then the two parts
are summed with the effect of a harmonic γ as the final prediction score distribution.

4. Experiments

We present the performance of our model on the QANGAROO [13] dataset and evaluate
the performance in detail. Then, the ablation study and the visualization will demonstrate
the benefit of the model. Finally, a case study shows the relationship between the output of
the answer from the models and human reading results.

4.1. Dataset for Experiments

QANGAROO is a multi-hop MRC dataset containing two independent datasets, WIKI-
HOP and MEDHOP, from the open-domain field and molecular biology field, respectively.
Both WIKIHOP and MEDHOP were divided into three subsets: the training set, develop-
ment set, and undisclosed test set, which is used for official evaluation. The dataset sizes
are shown in Table 2.

Table 2. Dataset size of WIKIHOP and MEDHOP.

Training Development Test Total

WikiHop 43,738 5129 2451 51,318
MedHop 1620 342 546 2508

WIKIHOP was created from WIKIPEDIA (as the document corpus) and WIKIDATA (as
structured knowledge triples). A sample from the dataset is shown in Figure 3a. In this sam-
ple, the query (located_in_the_administrative_territorial_entity, hampton_wick_war_memorial, ?)
requires us to answer the administrative territory of the Hampton Wick War Memorial. To
predict it, a named recognition entity Hampton Wick is extracted from the seventh support
document, and it links to the same tokens in the zeroth support document where the correct
candidate answer appears as well. The reasonable clue chain Hampton Wick War Memorial
↔ Hampton Wick # 1 ↔ Hampton Wick # 2 ↔ London Borough of Richmond upon Thames
presents the procedure of our model for the multi-hop MRC task.

To validate whether the dataset can be consistent with the formalization of the multi-
hop MRC, the dataset founder asked human annotators to evaluate the samples in the
WIKIHOP development and test sets. For each sample in the two sets, at least three
annotators participated in the evaluation, and they were required to answer three questions:

• Whether they knew the fact before;
• Whether the fact follows from the texts (with options follows, likely, and not follows);
• Whether multiple documents are required to answer the question.

All the samples in the test set were human-selected and were labeled by the majority
of annotators with follows and multiple documents required. Annotators merely noted the
samples in the development set without the selection.

The MEDHOP dataset was constructed using the DRUGBANK as certain knowledge.
Then the creators extracted the research paper abstracts from MEDLINE—the online
medical literature search and analysis system and the bibliographic database of the National
Library of Medicine of the USA—as a corpus, and the aim is to predict the drug–drug
interaction (DDI) after reading the texts. The purpose of applying multi-hop methods in
this prediction is to find and combine individual observations that can suggest previously
unobserved DDI from inferring and reasoning the prior public knowledge in contents
rather than some costly experiments. The only query type is interacts_with. A sample
given in [13] is illustrated in Figure 3b and note that accession numbers replace the medical
proper nouns (e.g., DB00007, DB06825, DB00316) rather than the names of drugs and
human proteins (e.g., leuprolide, triptorelin, acetaminophen) in practice.
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(a) (b)

Figure 3. Samples of WIKIHOP and MEDHOP. Subject entities, reasoning entities, mention entities,
and candidate entities are shown in gray, orange, green, and blue colors, respectively. The occurrence
of the correct answer is shown by a square frame outside. (a) A sample from the WIKIHOP. (b) A
sample from the MEDHOP.

4.2. Experiments Settings

We exploited the NLTK [39] toolkit to tokenize the support documents and candi-
dates, then split the query q = {s, r, a∗} into relation r and subject entity s. All the named
entities matching with candidates Cq were extracted as mention nodes V men, and the
SPACY (https://spacy.io (accessed on 21 June 2023)) was used to extract the named entities
and noun phrases from texts as reasoning nodes V rea. We concatenated GloVe [32] and
n-gram character embeddings [40] to obtain 400-dimensional word embeddings, which
were input to the encoder layer. The out-of-vocabulary words were presented with ran-
dom vectors. The word embedding was fixed in WIKIHOP experiment and trainable on
MEDHOP. We implemented the ClueReader model with PyTorch and PyTorch Geometric [41].
NetworkX [42] was utilized to visualize the reading graph, the weights of node pair weights,
and node selections.

4.3. Results and Analyses

In Table 3, we present the performance of ClueReader in the development and test sets
of WIKIHOP and MEDHOP and compare it with the performance of published models
mainly based on GNNs. Our model improved the accuracy of GCN-based models HDE [28]
in the test set from 70.9% to 72.0% and Path-based GCN in the development set from 64.5%
to 66.9%, while Path-based GCN using GloVe and ELMo word embeddings surpassed our
model by 0.5% in the test set, which confirms that the initial representations of nodes are
extremely critical [27]. However, limited by the architecture and computing resources, we
did not use powerful contextual word embeddings like ELMo and BERT in our model,
which can be further addressed. Compared to the other GNN-based models [24,26,31] and
the sequential models [13,43], our model achieved higher accuracy. We are the first to apply
the GNN-based model to MEDHOP, although the accuracy was 1.8% lower than BiDAF,
we believe that the possible reason was the failure in extracting the reasoning nodes of the
SPACY toolkit, which means the bridge entities were incomplete.

https://spacy.io
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To analyze the scalability of our model, we divided the development set into six
groups according to the number of support documents and then determined the accuracy
in each group. The grouped accuracies on WIKIHOP are shown in Figure 4. ClueReader
achieved competitive results: 73.59% and 63.57% in the groups of (1–10) and (11–20), with a
total of 4039 samples accounting for 95% of the development set. The lowest accuracy of
55.74% was for the group (41–50). However, it increased to 62.5% in the group (51–62),
which shows the scalability of our model is effective. The grouped accuracies on MEDHOP

are shown in Figure 5, and they are quite competitive. The highest and second-highest
accuracies of 60.00% and 51.85% are in (31–40) and (21–30) groups, respectively, and the
lowest and second-lowest accuracies of 0% and 35.59% are in (1–10) and (51–62) groups,
respectively. In particular, the result in the (51–64) group on MEDHOP is against the group
(51–62) on WIKIHOP, which implies that we must concentrate on the difference between
the open-domain and molecular textual contexts. The results in the different number of
support documents show the contribution of our model to the scalability of the multi-hop
MRC tasks.

Table 3. Performance of the proposed ClueReader in the development and test sets of WIKIHOP and
MEDHOP, and comparisons with other published approaches on the leaderboard.

Single Models
WikiHop Accuracy (%) MedHop Accuracy (%)

Dev Test Dev Test

Coref-GRU [43] 56.0 59.3 - -
MHQA-GRN [31] 62.8 65.4 - -
Entity-GCN [24] 64.8 67.6 - -
HDE [28] 68.1 70.9 - -
BAG [26] 66.5 69.0 - -
Path-based GCN [27] 64.5 - - -
Document-cue [13] - 36.7 - 44.9
FastQA [13] - 25.7 - 23.1
TF-IDF [13] - 25.6 - 9.0
BiDAF [13] - 42.9 - 47.8
ClueReader 66.5 72.0 48.2 46.0

1530 

1246 

442 

143 
34 15 

549

714

315 
105 

27 9 

73.6 

63.6 
58.4 57.7 55.7 

62.5 

0

10

20

30

40

50

60

70

80

90

100

0

200

400

600

800

1000

1200

1400

1600

1800

1-10 11-20 21-30 31-40 41-50 51-62

num of right samples num of wrong samples accuracy

nu
m

be
r o

f s
am

pl
es accuracy (%

)

number of support documents in the development set of the WikiHop
Figure 4. Statistics of the model performance with different numbers of support documents on the
WIKIHOP development set.
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Figure 5. Statistics of the model performance with different numbers of support documents on the
MEDHOP development set.

As mentioned above, the WIKIHOP development set had the consistency between
facts and documents annotated. To determine whether multiple documents are required to
reason the question, we split our models into five categories as follows. In each category, all
three annotators annotated: (1) requires multiple documents and follows fact; (2) requires single
document and follows fact; (3) requires multiple documents and likely follows fact; (4) requires
single document and likely follows fact; (5) not follows is not given. The performance of our
model is presented in Table 4. We observe that ClueReader had the best performance of 74.9%
in the samples which follow the facts and require multiple passages. This phenomenon
proves the effectiveness of the model in pure multi-hop MRC tasks. It achieved the
second-best result of 74.0% in samples following the facts and requiring a single document,
which supports that ClueReader is also effective in single-passage MRC tasks. Further, we
believe that authenticity can seriously impact the accuracy of our prediction. The categories
associated with may not follow the fact achieved the worse results, of 71.4%, 71.4%, and 71.5%,
respectively, in the groups of likely follows the fact (single document and multiple documents)
and “not follows” is not given. The same analysis is infeasible in the development set of
MEDHOP since the document complexity and the number of documents per sample are
significantly larger.

Table 4. Performance on the WIKIHOP development set.

Annotation Accuracy (%)

follows fact
requires multiple documents 74.9

requires single document 74.0

likely follows fact
requires multiple documents 71.4

requires single document 71.4

not follows is not given 71.5
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4.4. Ablation Study

We proposed five types of nodes in G , and to analyze how they reasoned, we removed
the edges with specific connections and isolated the noded to evaluate the performance
in the subset of the WIKIHOP development set; that is, not follows was not annotated.
Moreover, we tested the model without the message passing in G . The ablated performance
is shown in Table 5.

Table 5. Ablation performance on the QANGAROO development set.

Model
Accuracy (%)

WIKIHOP ∆ MEDHOP ∆

Full Model 71.45 - 48.25 -
w/o GAT 52.69 18.76 37.72 10.53
w/o Nsub 70.95 0.5 47.37 0.88
w/o Nmen 63.34 8.11 4.97 43.28
w/o Nrea 70.77 0.68 47.37 0.88
w/o Nsup 62.02 9.43 48.54 −0.29
w/o Ncan 65.87 5.58 44.77 3.48

On WIKIHOP, the proposed heterogeneous graph attention network was the most
effective component of ClueReader. Without its contribution, the accuracy decreased by
18.76%. After blocking the nodes by groups, we observed that the support nodes con-
tributed 9.43% absolutely, the mention nodes dedicated 8.11%, and the candidate nodes
contributed 5.58%. Regarding the reasoning and subject nodes, we considered the small
quantities contained in the graph leading to low status in contributions. However, we
observed considerably different performances between WIKIHOP and MEDHOP. As the
results show in Table 5, the most effective part of the model is mention nodes. When we
blocked the mention nodes in the graph, the accuracy decreased significantly, by 43.28%,
and the graph reasoning contributed 10.53% to accuracy. Meanwhile, support nodes had
negative effects on the prediction, a decrease of 0.29%, which is diametrically opposite the
performance on the WIKIHOP development subset.

In Table 6, we present the model performances with different hyperparameters, espe-
cially the number of stacked GAT layers (the number of hops) and the weight of grandmother
cells. The number of GAT layers controls how many parameter-sharing GAT layers should
be involved in the reasoning graph. On WIKIHOP, we obtained the highest accuracy (66.5%)
when we stacked the graph with five layers, and the model with three or four GAT layers
had poorer performance (57.8% or 58.5%, respectively). With six GAT layers, the accuracy
dropped 2.3% compared with the best performance.

Table 6. Ablation studies of hyperparameters of GAT layers and weights of grandmother cells in
reasoning graph predictions.

Hyperparameters Value Acc. of WIKIHOP Acc. of MEDHOP

l

3 57.8 42.4
4 58.5 43.3
5 66.5 48.2
6 64.2 45.0

γ

0 59.7 42.7
0.5 66.1 44.2
1.0 66.5 48.2
1.5 59.1 43.3
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Furthermore, as the final prediction illustrated in Equation (21), γ coordinates the men-
tion nodes and the candidate nodes grandmother cells; we present the model performances
with different γ settings in Table 6. The best performance was with γ set to 1. However,
if we gave it too much weight, that is, γ = 1.5, the accuracy decreased by 7.4%, which
is even worse than when we set γ to 0 (59.7%), which convinces us that we should not
ignore the effect of much larger networks behind grandmother cells. We observed similar
phenomena with different hyperparameter settings on MEDHOP. When the number of
hops was five, and γ was 1, the model performed best at approximately 48.2%. We suspect
that when a few GAT layers are stacked, the messages of nodes cannot pass sufficiently
among the reasoning graph. When too many GAT layers are stacked, the graph over-
smoothing problem leads to a drop in accuracy. We also empirically observed that models
with higher γ may lose semantic information from context resulting in reduced prediction
accuracy, which also fits the concept of grandmother cells in that before the final predicting
determination, a huge background network calculation should be performed implicitly.

4.5. Visualization

Compared to spectral GNN-based reading approaches, our proposed heterogeneous
reasoning graph ClueReader is a non-spectral approach, which allows us to analyze how
the nodes interact with each other in various relations and how the connections take effect
between nodes. We visualize the predictions in our heterogeneous reasoning graph on
WIKIHOP and MEDHOP in Figures 6 and 7, respectively. Different types of nodes are
shown in different colors (subject nodes are gray, reasoning nodes are orange, mention
nodes are green, candidate nodes are blue, and support nodes are red), and their edges,
which reflect selections of node pairs, are shown in different thickness lines. The thicker
the edges, the more important they learn from training. Considering that the answer
determination should not only be inferred by the weight edges but also from the output
layer projected from the representations of the nodes to R1×2d and accumulated score from
N can and N men, we use the transparency of the nodes to respond to the outputs: the darker
the nodes, the higher the values output from the output layer. Owing to the output values
being quite different, some mention and candidate nodes are almost transparent. The
weight graph provides the evidence during reading and the analysis of DDI. It passes the
messages according to the concept of grandmother cells that not only one node becomes
effective, but the cluster behind it plays a synergistic effect. We learn more about our model
through visualization. For instance, the node transparency differentiation on MEDHOP is
significantly lower than WIKIHOP, which indicates that the drug features are not sufficiently
learned, leading to the convergence of node features and increased classification prediction
difficulty. This issue can be further addressed.

To better understand the model predictions and contribute to further study, we gener-
ate HTML files of samples as shown in Figure 8 and analyze whether the named entities con-
tained in the max-score nodes can make sense from the perspective of human answering af-
ter reading. Please refer to our project website (https://github.com/cluereader/cluereader.
github.io (accessed on 21 June 2023)) for more visualization samples in HTML files.

https://github.com/cluereader/cluereader.github.io
https://github.com/cluereader/cluereader.github.io
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Visualizations of reasoning graphs on the WIKIHOP development set that are correctly
answered. A thicker edge corresponds to a higher attention weight, and darker green nodes or darker
blue nodes represent higher output values among the same type of nodes. (a–f) Visualized samples
from the WIKIHOP development set.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Visualizations of reasoning graphs on the MEDHOP development set that are correctly
answered. A thicker edge corresponds to a higher attention weight, and darker green nodes or darker
blue nodes represent higher output values among the same type of nodes. (a–f) Visualized samples
from the MEDHOP development set.
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ID WH_dev_543

Query located_in_the_administrative_territorial_entity queensville

Candidates alberta, alpine, calgary, canada, capital region, etc.,

Answer regional municipality of york

Documents

Figure 8. Generated HTML file of sample # 543 in WIKIHOP development set. The mark MENMAX
means the final output of MLPmen. For more details, please refer to https://cluereader.github.io/
WH_dev_543.html (accessed on 21 June 2023).

5. Conclusions

We present ClueReader, a heterogeneous graph attention network for multi-hop MRC,
which is inspired by the concept of grandmother cells from cognitive neuroscience. The
network contains several clue-reading paths from the subject of the question and ends with
candidate entities. We use reasoning and mention nodes to complete the process and use
support nodes to add supernumerary semantic information. We apply our methodology
on QANGAROO, a multi-hop MRC dataset, and the official evaluation supports the effec-
tiveness of our model in open-domain QA and the molecular biology domain. Several
potential issues could be further addressed, such as introducing intermediate supervision
signals during the semi-supervised graph learning, the enhancement of using external
knowledge, and dedicated word-embedding methodology in the medical context, which
are possible to improve the model performance in multi-hop MRC tasks.
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