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Abstract: Non-intrusive load monitoring is the main trend of green energy-saving electricity con-
sumption at present, and load identification is a core part of non-invasive load monitoring. A support
vector machine (SVM) is commonly used in load recognition, but there are still some problems in
the parameter selection, resulting in a low recognition accuracy. Therefore, an improved equilibrium
optimizer (IEO) is proposed to optimize the parameters of the SVM. Firstly, household appliance
data are collected, and load features are extracted to build a self-test dataset; and secondly, Bernoulli
chaotic mapping, adaptive factors and the Levy flight were introduced to improve the traditional
equilibrium optimizer algorithm. The performance of the IEO algorithm is validated on test functions,
and the SVM is optimized using the IEO algorithm to establish the IEO-SVM load identification
model. Finally, the recognition effect of the IEO-SVM model is verified based on the self-test dataset
and the public dataset. The results show that the IEO algorithm has good optimization accuracy and
convergence speed on the test function. The IEO-SVM load recognition model achieves an accuracy
of 99.428% on the self-test dataset and 100% accuracy on the public dataset, and the classification
performance is significantly better than other classification algorithms, which can complete the load
recognition task well.

Keywords: load identification; equilibrium optimizer algorithm; support vector machine; Bernoulli
chaotic mapping; adaptive factor; levy flight

1. Introduction

Along with the intensification of global energy consumption, energy savings and
emission reduction, green environmental protection has become the mainstream of the
current energy revolution. Under the strong impetus of the Internet of Things, the smart
grid has become one of the representatives of the energy revolution. Smart electricity
consumption is an important part of the smart grid, which is in line with the strategic goal
of “carbon neutrality” to reduce the resource waste of electricity [1]. Non-intrusive load
monitoring (NILM) technology is a key technology for intelligent electricity consumption.
By monitoring customers’ electrical energy data, accurate load information can be obtained,
such as the type of load. This load information can improve the efficiency of power
utilization on the grid side and assist in adjusting power consumption strategies on the
customer side [2–4].

Non-intrusive load monitoring is divided into four steps: data acquisition, event
monitoring, feature extraction and load identification, among which load identification
is the most important [5]. In recent years, there has been significant research conducted
by numerous scholars in the field of load identification, and the common recognition
algorithms include k-nearest neighbor (k-NN) [6], artificial neural network (ANN) [7,8],
support vector machines (SVM) [9], logistic regression (LR) [10], decision tree (DT) [11],
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etc. Ref. [12] used the energy of wavelet coefficients as load features and used decision
trees for load identification, which effectively improved the classification accuracy. Ref. [13]
proposed a V–I trajectory-based NILM method that utilizes trajectory preprocessing and
color encoding for data processing, employs the AlexNet convolutional neural network
for load classification, and validates the effectiveness of this method on the NILM dataset.
Ref. [14] used a particle swarm algorithm to optimize ANN and established a PSO-ANN
load recognition model to identify aging loads, and the recognition accuracy was improved.
Ref. [15] fused multiple features such as V-I trajectories and harmonic amplitudes into a
feature matrix and used a neural network for load identification, which is better for multi-
state loads. Ref. [16] used the k-NN classification algorithm to classify and identify seven
different household appliances in the REDD dataset, with better results for high-power
appliances such as microwave ovens and washing machines. Ref. [17] used a low sampling
rate smart meter to collect AC appliance data and built an SVM classification model, and
the model can effectively identify the state of AC appliances. Ref. [18] used SVM for load
identification of household appliance signals with a sampling frequency of 1 Hz to achieve
the accurate identification of electric heating loads such as water heaters, but performed
poorly in the identification of low-power appliances. Ref. [19] used a load identification
method combining SVM and D–S evidence theory, and the recognition accuracy reached
85.5%, and the recognition could be improved. Ref. [20] used a particle swarm optimization
(PSO) to optimize SVM and used the PSO-SVM model to identify electrical equipment, and
the method exhibited better recognition accuracy. A multi-agent reinforcement learning
framework for addressing the feature selection problem is proposed in Reference [21].
A stepwise hidden Markov model is used by [22] to decompose the active power time
series. Ref. [23] utilizes an improved hidden Markov model for decomposition, achieving
good stability but exhibiting poor classification accuracy. Ref. [24] employs a three-layer
convolutional neural network for the classification and recognition of individual loads or
combined loads, achieving good results on both self-test datasets and publicly available
datasets. Ref. [25] introduces a load identification method based on active deep learning,
which utilizes discrete wavelet transform to extract load features and establishes a three-
layer convolutional neural network for classifying appliance samples. Ref. [26] combines
multilayer perceptron, convolutional neural network, and long short-term memory to
construct a deep learning model, and verifies the accuracy of this method on a real-world
dataset. Ref. [27] introduces a binary mapping of voltage and current trajectories to classify
seven types of front-end circuit topologies. Ref. [28] presents a deep learning network
based on the CNN-LSTM framework, which performs sampling preprocessing on the real-
world dataset and feeds it into CNN-LSTM for training and validation, accomplishing the
task of load identification. Ref. [29] proposes a Bayesian optimization-based bidirectional
long short-term memory method for non-intrusive load monitoring, which demonstrates
superiority in performance. The above studies using k-NN, ANN, DT, LR and deep learning
algorithms for load recognition may be affected by overfitting, model complexity and
random initial weights, resulting in poor recognition results. In contrast, SVM adopts the
principle of structural risk minimization and can solve the dimensional disaster problem
by introducing kernel functions with strong fitting and generalization abilities, which
makes SVM more suitable for solving practical classification problems. Although SVM has
strong robustness, its recognition effect is limited when the SVM parameters are fixed. The
traditional SVM parameters are selected based on manual experience and repeated trial
and error, which result in difficulties ensuring that the optimal parameters are obtained.

To address the above problems, this paper proposes a load identification algorithm
based on the improved equilibrium optimizer (IEO) algorithm to optimize the SVM. Sub-
sequently, the optimized IEO-SVM method is employed for the identification and classifi-
cation of household appliances, aiming to improve recognition accuracy. In the proposed
method, three improvement strategies, namely Bernoulli chaotic mapping, adaptive factor
and Levy flight, are employed to enhance the optimization capability of the EO algorithm.
By utilizing the IEO algorithm to optimize the SVM, we can construct an optimal SVM
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model, namely the IEO-SVM model. To validate the classification performance of the
IEO-SVM model, it is trained using datasets collected under laboratory conditions and
public datasets. The trained model is then used to perform load recognition tasks and
compared with existing methods. Experiments prove that the IEO-SVM model can better
complete the load identification tasks and show good classification performance.

2. Home Load Feature Extraction and Data Pre-Processing

When studying certain signals, the recognition is not effective if the information
is extracted directly from the original data. Therefore, extracting load features that can
characterize the signal waveform is essential. The load steady-state feature refers to the
feature quantity that can be extracted after the household appliances work stably. Load
features are an important basis for completing load identification. Different load features
have different abilities to distinguish loads. The current waveforms of the microwave oven
(running state) and the laptop are shown in Figure 1. The load features selected in this
paper are current peak Ipeak, absolute value of current average Iavg, current variance Ivar,
current root mean square value Irms, and current harmonic amplitude Hmc. Ipeak is the
maximum current value in one cycle; Iavg is the degree of asymmetry of the positive and
negative half-periods of the current waveform in one cycle; Ivar is the trend of the current
waveform; and Irms is the effective value of the current. As can be seen from Figure 1, Ipeak,
Iavg, Ivar and Irms are different when different appliances are in stable operation and can
therefore be used to identify the load features of electrical appliances.
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Figure 1. (a) Microwave oven (running state) current waveform and (b) laptop current waveform. Figure 1. (a) Microwave oven (running state) current waveform and (b) laptop current waveform.

The formulas of Ipeak, Iavg, Ivar and Irms are as follows.

Ipeak = max(I1, I2, · · · , IN) (1)

Iavg =

∣∣∣∣∣ 1
N

N−1

∑
i=0

Ii

∣∣∣∣∣ (2)

Ivar =
1
N

N

∑
i=1

(Ii − µ)2 (3)

Irms =

√√√√ N

∑
i=1

Ii
2/N (4)

where Ii is the current value of the i-th data point; N is the number of data points in one
cycle; and µ is the average current value in one cycle.

The current harmonic amplitude obtained by the Fourier transform contains rich load
information, is highly reliable, and can improve load differentiation. It is a commonly used
load feature. The frequency spectrum of the induction cooker (running state) is shown
in Figure 2. From Figure 2, the amplitude of even harmonics is much lower than that of
the odd harmonics, which can be neglected. As the frequency increases, the harmonic
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amplitude gradually decreases, and the higher harmonics are susceptible to noise. To
mitigate the impact of noise on the classification process, and at the same time reduce the
feature dimension and calculation, this paper selects the fundamental and the 3rd and 5th
odd harmonic amplitudes as the load features, counting as Hmc1, Hmc3 and Hmc5, and
the harmonic frequencies as 50 Hz, 150 Hz and 250 Hz, respectively.
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The above seven load features are extracted sequentially from the collected current
signal in cycles, and the original data sequence in one cycle is converted into sample
data with dimension seven to characterize a sample. Excessive differences between load
features may affect the recognition performance of the classification algorithm. To improve
the recognition accuracy of the classification model, the extracted feature quantities are
normalized by the following formula:

xi =
(xi − xmin)

(xmax − xmin)
(5)

where xi is the i-th eigenvalue; xmax and xmin are the maximum and minimum eigenvalues
of the sample features.

3. Load Identification Model
3.1. EO Algorithm

The EO algorithm is inspired by the physical phenomena of mass balance such as
mass entering, leaving and generating within a controlled volume to achieve dynamic
mass balance within the controlled volume [30]. The optimization search process of the
EO algorithm can be primarily categorized into three stages: population initialization;
Establishing an equilibrium pool; and concentration update.

3.1.1. Population Initialization

Similar to most metaheuristic algorithms, such as the PSO algorithm [31], the opti-
mization process in EO begins with the utilization of an initial population. The initial
population is generated by uniformly and randomly initializing particles based on the
number of particles and dimensions within the search space. The formula is as follows:

Ci
d = Cmin

d + rand(Cmax
d − Cmin

d)
i = 1, 2, · · · , n

(6)

where Ci
d is the d-th dimensional variable of the i-th particle; Cmax

d and Cmin
d are the

upper and lower bounds of the d-th dimensional variable of the particle; rand is a random
number between [0, 1]; and n is the number of particles in the population.
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3.1.2. Establishing an Equilibrium Pool

After initialization, the fitness value of each particle is evaluated, and the four particles
with the highest fitness values are selected as candidate solutions to form an equilibrium
pool, along with their average values, as shown in Formula (7). In each iteration, the opti-
mization process is guided by randomly selecting a candidate solution from the equilibrium
pool, and the probability that each candidate solution is selected is 0.2.

Ceq,pool =
{

Ceq(1), Ceq(2), Ceq(3), Ceq(4), Ceq(a)

}
(7)

where Ceq,pool is the equilibrium pool; Ceq(1) ∼ Ceq(4) are the four candidate particles with
the best fitness; and Ceq(a) is the average of the four candidate particles, as shown in
Formula (8).

Ceq(a) =
1
4

4

∑
i=1

Ceq(i) (8)

3.1.3. Concentration Update

Exponential term F and mass generation rate G are important parameters for the
concentration update. The parameter F assists in achieving a balance between the global
exploration capability and the local exploitation capability of the EO algorithm and G is
employed to enhance the local exploitation capability even further.

The exponential term F is defined as follows:

F = e−λ(t−t0) (9)

t = (1− iter
Maxiter

)
a2

iter
Maxiter

(10)

where λ is a random number between 0 and 1; iter and Maxiter are the current iteration
number and the maximum iteration number; and a2 is a constant, usually 1, used to regulate
the local exploitation capability. To enhance convergence and reduce the search process,
the t0 parameter is introduced and defined as follows:

t0 =
1
λ

In(−a1sign(r− 0.5)[1− e−λt]) + t (11)

where a1 is a constant, usually 2, to regulate the global search capability, and the larger a1
is, the stronger the global search capability; and sign(r− 0.5) regulates the search direction,
where r is a random number between 0 and 1. Substituting Formulas (10) and (11) into
Formula (9), the F expression can be redefined as:

F = a1sign(r− 0.5)[e−λt − 1] (12)

G is defined as follows:
G = G0e−λ(t−t0) = G0F (13)

G0 = GCP(Ceq − λC) (14)

GCP =

{
0.5r1
0

, r2 ≥ GP
, r2 < GP

(15)

where r1 and r2 are both random numbers between 0 and 1; GCP is the generation rate con-
trol parameter; and GP is the generation probability, which is usually 0.5 when the global
search and local exploitation ability are maintained in a certain balance. The concentration
update formula of the EO algorithm is:

C = Ceq +
(
C− Ceq

)
F +

G
λV

(1− F) (16)
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where V usually takes the value of 1.

3.2. Improved EO Algorithm (IEO)

The traditional EO algorithm has a simpler principle and implementation process com-
pared to other heuristic algorithms and has better flexibility and stability in the optimization
search process. However, the traditional EO algorithm initializes the population in a way
that is too random, and the global search capability cannot be dynamically adjusted. The
update of individual concentration depends on the current individual concentration and
the concentration of candidate solutions in the equilibrium pool, resulting in the algorithm
easily converging in the vicinity of the local optimal solution, which makes the search
accuracy decrease and affects the search results. Aiming at the above problems, this paper
has made improvements in the following areas.

3.2.1. Bernoulli Chaotic Mapping Sequence Initializes the Population

The convergence speed and solution accuracy of the algorithm are influenced by the
quality of the initial population. Enhancing the search capability of the algorithm can
be achieved through a high-quality initial population. The chaotic mapping sequence
possesses the attributes of ergodicity and orderliness, enabling it to enhance population
distribution diversity, yield a high-quality initial population, and expedite convergence
speed. In this paper, the initialized population generated by Bernoulli chaotic mapping is
shown in Formula (17):

Zi
d =

{
Zi

d/(1− θ)(
Zi

d − 1 + θ
)

/λ

, 0 < Zi
d < 1− θ

, 1− θ < Zi
d < 1

(17)

where i is the number of particles; d is dimension; λ is a constant; and θ takes the value of
0.5 in this paper.

After obtaining the initial value of the Bernoulli chaotic mapping through Formula (17),
the initialized population based on the Bernoulli chaotic sequence is generated by substi-
tuting it into Formula (6), as shown in Formula (18):

Ci
d = Cmin

d + Zi
d
(

Cmax
d − Cmin

d
)

(18)

3.2.2. Segmented Adaptive Factor Dynamic Adjustment Parameters

The parameter a1 in the conventional EO algorithm is employed to control the global
search capability of the algorithm. However, it remains constant throughout the iterative
process, making the algorithm unable to dynamically adjust the search capability, which
may lead to an unstable search. To enhance both the speed and accuracy of algorithm con-
vergence, this paper uses the segment adaptive factor to dynamically adjust the parameter
a1, and the formula of parameter a1 is as follows:

a1 =

{
2
π arccos iter

Maxiter + 1.5

2e−(
iter

Maxiter )
2

, iter ≤ Maxiter
2

, iter > Maxiter
2

(19)

3.2.3. Perturbation Mechanism Based on Levy Flight

Each individual concentration update in the EO algorithm is influenced by its current
concentration and the concentration of candidate solutions in the equilibrium pool, which
makes the algorithm easily converge to the local optimum prematurely and affects the
accuracy of the algorithm in finding the best solution. The utilization of the random walk
characteristic of Levy flight [32] has found extensive application in optimization algorithms,
including the PSO algorithm [33] and the gray wolf optimization algorithm [34], which can
augment the algorithm’s capability to escape local optima, enhance the diversity of search
spaces, and ultimately boost algorithmic performance.
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In general, the step size of Levy flight is random and normally distributed, and its
step size expression is shown in Equation (20).

s =
µ

|v|
1
β

(20)

where µ = N(0, δµ
2) and v = N(0, δv

2) are normal random distributions; β takes the value
of 1.5 in this paper; and the expressions of δµ and δv are shown in Equations (21) and (22).

δµ =

Γ(1 + β) · sin
(

π · β
2

)
β · Γ

(
1+β

2

)
· 2

β−1
2


1
β

(21)

δv = 1 (22)

The flight path of Levy flight is simulated as shown in Figure 3.
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From Figure 3, the path of the Levy flight satisfies its random walk property, which can
ensure that the algorithm searches in the effective space and applies it to the concentration
update, so the concentration update formula is changed to Equation (23).

C = Ceq + (C− Ceq) · F · s · 0.01 +
G

λV
(1− F) (23)

3.3. SVM Classification Model

SVM is a classification model designed specifically to address binary classification
problems [35], which are centered on seeking a maximally spaced hyperplane that can
divide two classes of samples for classification recognition. Suppose that the two types of
sample data are S = {(xi, yi), i = 1, 2, · · · , n, yi = {−1,+1}}, where xi is the i-th sample
data and yi is the label value corresponding to the sample xi. Due to the complexity of the
actual sample data, the SVM is allowed to have some misclassification of the samples to
enhance the model’s generalization ability. The penalty parameter C and the slack variable
ξi are introduced, so the classification problem is transformed into an optimization problem,
as illustrated by Formula (24).

minϕ(ω, ξ) = 1
2‖ω‖

2 + C
n
∑

i=1
ξi

s.t yi(ωxi + b)− 1 + ξi ≥ 0
ξi > 0 i = 1, 2, · · · , n

(24)
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In real applications, the sample data are usually linearly inseparable. At this time, SVM
maps nonlinear data from low-dimensional space to high-dimensional space by introducing
a suitable kernel function to solve the linear inseparable problem of the original sample
space. The kernel function selected in this paper is the Gaussian radial basis kernel function,
and its mapping relation is shown in Formula (25), where g is the kernel parameter.

x → φ(xi, x) = exp(−g‖x− xi‖2) (25)

The final classification expression of the SVM is:

f (x) = sgn

(
n

∑
i=1

αiyiφ(xi, x) + b

)
(26)

Since SVM is a binary classification model, for the identification of multiple loads, it
needs to be generalized to a multi-class classification for the identification of multiple loads.
In this paper, we use a one-to-one method to build a multi-classification recognition model
to achieve accurate recognition of multiple classes of loads.

3.4. Load Identification Algorithm Based on IEO-SVM Model

In this paper, we propose a non-intrusive load identification method based on the
IEO-SVM model as shown in Figure 4.
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4. Dataset
4.1. Self-Test Dataset
4.1.1. Raw Data Acquisition

To conduct experimental verification, data acquisition was performed on household
appliances under laboratory conditions. The data acquisition device employed the ZDL6000
oscilloscope recorder and ZCP30 current probe, with a power supply of 200 V 50 Hz AC.
The data acquisition device and the connection diagram are shown in Figure 5.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 19 
 

 

oscilloscope

socket

current 
probe

appliance

USB port

 

Power

Oscilloscope

Current probe

Socket Appliance1

Appliance2

Appliance1

·
·
·

 

Figure 5. Experimental acquisition device and connection diagram. 

Table 1. Measured single electrical appliance and combined electrical appliance categories. 

Electrical Appliance Category Electrical Appliance Category 
Smartphone Desktop computer 

Laptop Tablet PC + Desktop computer 

Induction cooker (standby) 
Induction cooker (running) + Microwave oven 

(running) 
Induction cooker (running) Induction cooker (running) + Smartphone 
Microwave oven (standby) Microwave oven (running) + Smartphone 
Microwave oven (running) Microwave oven (running) + Tablet PC 

Coffee maker Smartphone + Laptop 

4.1.2. Dataset Production 
Each appliance category is sampled for 20 s, which corresponds to 1000 cycles, with 

1000 sampling points per cycle, and the data of each cycle is the sample data. The corre-
sponding labels for each appliance are set as shown in Table 2. Seven load features such 
as peakI  , avgI  , varI  , rmsI   and the 1st, 3rd and 5th current harmonic amplitudes are ex-
tracted from the original current data of each appliance category in turn in terms of cycles. 
Then, the extracted load features data are normalized, and the self-test data acquisition 
and processing are finished. There are 14,000 sample data for 14 types of appliances, of 
which 90% are the training set and 10% are the test set. 

Table 2. The labels corresponding to the appliance categories. 

Electrical Appliance Category Label Electrical Appliance Category Label 
Smartphone 1 Desktop computer 8 

Laptop 2 Tablet PC + Desktop computer 9 
Induction cooker (standby) 3 Induction cooker (running) + Microwave oven (running) 10 
Induction cooker (running) 4 Induction cooker (running) + Smartphone 11 
Microwave oven (standby) 5 Microwave oven (running) + Smartphone 12 
Microwave oven (running) 6 Microwave oven (running) + Tablet PC 13 

Coffee maker 7 Smartphone + Laptop 14 
 

Figure 5. Experimental acquisition device and connection diagram.

Plug the appliance into the socket and energize it, then clip the current probe of the
oscilloscope to the incoming end of the socket, set the sampling frequency to 50 KHz to
quickly collect the sample high-frequency data, and at the same time, plug the U disk into
the USB port of the oscilloscope to save the data on the U disk in the .mat format, and send
the data to the computer side for data analysis through the U disk. The data of 14 household
appliance loads such as smartphones, laptops, microwave ovens (both running and standby
states) and combined appliances were collected in a laboratory environment based on the
data acquisition device. The categories are shown in Table 1. The current waveforms for
each appliance within three cycles are shown in Figure 6.

Table 1. Measured single electrical appliance and combined electrical appliance categories.

Electrical Appliance Category Electrical Appliance Category

Smartphone Desktop computer
Laptop Tablet PC + Desktop computer

Induction cooker (standby) Induction cooker (running) + Microwave oven
(running)

Induction cooker (running) Induction cooker (running) + Smartphone
Microwave oven (standby) Microwave oven (running) + Smartphone
Microwave oven (running) Microwave oven (running) + Tablet PC

Coffee maker Smartphone + Laptop

4.1.2. Dataset Production

Each appliance category is sampled for 20 s, which corresponds to 1000 cycles, with
1000 sampling points per cycle, and the data of each cycle is the sample data. The corre-
sponding labels for each appliance are set as shown in Table 2. Seven load features such
as Ipeak, Iavg, Ivar, Irms and the 1st, 3rd and 5th current harmonic amplitudes are extracted
from the original current data of each appliance category in turn in terms of cycles. Then,
the extracted load features data are normalized, and the self-test data acquisition and
processing are finished. There are 14,000 sample data for 14 types of appliances, of which
90% are the training set and 10% are the test set.
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Figure 6. Current waveforms of 14 electrical appliances: (a) Smartphone; (b) Laptop; (c) Induction
cooker (standby); (d) Induction cooker (running); (e) Microwave oven (standby); (f) Microwave oven
(running); (g) Coffee maker; (h) Desktop computer; (i) Tablet PC + Desktop computer; (j) Induc-
tion cooker (running) + Microwave oven (running); (k) Induction cooker (running) + Smartphone;
(l) Microwave oven (running) + Smartphone; (m) Microwave oven (running) + Tablet PC; and
(n) Smartphone + Laptop.

Table 2. The labels corresponding to the appliance categories.

Electrical Appliance Category Label Electrical Appliance Category Label

Smartphone 1 Desktop computer 8
Laptop 2 Tablet PC + Desktop computer 9

Induction cooker (standby) 3 Induction cooker (running) + Microwave oven (running) 10
Induction cooker (running) 4 Induction cooker (running) + Smartphone 11
Microwave oven (standby) 5 Microwave oven (running) + Smartphone 12
Microwave oven (running) 6 Microwave oven (running) + Tablet PC 13

Coffee maker 7 Smartphone + Laptop 14

4.2. Public Dataset

To increase the diversity of the data, testing was conducted not only using a self-test
dataset but also the WHITED dataset [36]. The WHITED dataset includes 47 different types
of appliance categories from 6 different regions, with a sampling frequency of 44.1KHz
and each cycle consisting of 882 data points. We selected 10 appliances from the WHITED
dataset, including appliances from different brands. The 10 appliance categories ([Cate-
gory]_[brand]) and their corresponding labels are shown in Table 3. The current waveform
is shown in Figure 7. The extraction and preprocessing of load features, as well as the
data partitioning, were carried out using the same procedures as those applied to the
self-collected dataset.
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Table 3. The appliance types and labels in the WHITED dataset.

Electrical Appliance Category Label

WaterHeater_Daalderop 1
WashingMachine_Privileg 2

VacuumCleaner_Vento 3
VacuumCleaner_Nilfisk 4

RiceCooker_PanasonicSRG06 5
Fan_VOV-50W 6

LightBulb_Vintage-40W 7
KitchenHood_AmicaUH17051 8

Kettle_TCM 9
Hairdryer_Valera54206 10
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Figure 7. Current waveforms of 10 electrical appliances: (a) WaterHeater; (b) WashingMachine;
(c) VacuumCleaner_Vento; (d) VacuumCleaner_Nilfisk; (e) RiceCooker; (f) Fan; (g) LightBulb;
(h) KitchenHood; (i) Kettle; and (j) Hairdryer.

5. Experimental Analysis and Discussion

The data analysis in this paper is all based on Asus FX50VX PC with i7-6700HQ CPU,
2.60 GHz, 12G RAM, 512 GB hard disk, OS: Windows 10, and the compiled environment
used is Python 3.7.

5.1. Experimental Design and Evaluation Metrics

To validate the effectiveness of the proposed method, we compared the follow-
ing 11 approaches, including machine learning algorithms and existing deep learning
algorithms.

(1) IEO-SVM: the proposed method in this paper.
(2) EO-SVM: the SVM method is optimized by the original EO algorithm.
(3) SVM: support vector machine
(4) LR: logistic regression
(5) ANN: artificial neural network
(6) DT: decision tree
(7) k-NN: k-nearest neighbor
(8) PSO-SVM: the method based on PSO-SVM used in reference [20].
(9) AlexNet: the method based on the AlexNet deep learning model used in reference [13].
(10) CNN: the novel structural convolutional neural network method used in reference [23].
(11) CNN-LSTM: the method based on the CNN-LSTM deep learning model used in

reference [27].
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Due to the differences in the datasets and processing methods used in existing ap-
proaches, these disparities can lead to abnormal result comparisons. Therefore, we only
utilize their core methods while keeping other experimental settings unchanged. We de-
signed three experiments as follows. The experimental procedure is based on the load
identification process outlined in Section 3.4, where different methods only differ in the
recognition method used during the training of the model, while the remaining steps
remain the same. It is worth noting that the first experiment is only conducted to validate
the optimization capability of the proposed improved equilibrium optimizer algorithm and
does not involve a comparison with the above load identification methods.

(1) Experiment 1: The proposed IEO algorithm is compared and analyzed with EO and
PSO algorithms based on benchmark functions. The superiority of the proposed IEO
algorithm is validated using the average of five optimization values and convergence
curves of the algorithm.

(2) Experiment 2: The proposed IEO-SVM method is compared with other load identi-
fication algorithms using a self-test dataset. The experimental results are analyzed
using a confusion matrix and four evaluation metrics (accuracy, precision, recall and
F1_score).

(3) Experiment 3: The IEO-SVM method is compared with other methods using a publicly
available dataset. The results are analyzed using four evaluation metrics (accuracy,
precision, recall and F1_score).

Accuracy, precision, recall and F1_score are commonly used to indicate the classifi-
cation performance of load identification methods. The calculation formulas for the four
metrics are shown as follows.

Accuracy =
1
n

n

∑
i=1

TPi + TNi
TPi + TNi + FPi + FNi

(27)

Precision =
1
n

n

∑
i=1

TPi
TPi + FPi

(28)

Recall =
1
n

n

∑
i=1

TPi
TPi + FNi

(29)

F1_value =
1
n

n

∑
i=1

2TPi
2TPi + FPi + FNi

(30)

5.2. IEO Algorithm Performance Test

To test the effectiveness and the performance of the IEO algorithm, this paper selects
seven benchmark test functions for validation purposes, of which f1 ∼ f4 refer to high-
dimensional single-peak test functions used to evaluate the algorithm’s local exploitation
capability and f5 ∼ f7 represent high-dimensional multi-peak test functions utilized to
assess the algorithm’s global search ability and its capacity to escape local optima. The IEO
algorithm is compared with the EO and PSO [16] by calculating seven test functions. To
maintain fairness in comparing the algorithms, the parameters are set uniformly as follows:
the population size is fixed at 30, the maximum number of iterations is set to 500, and
the dimension is set to 30. The average of five search results is selected as the evaluation
index, and the search results of the IEO algorithm are bolded. The results are shown in
Table 4. From Table 4, the search accuracy of the IEO algorithm is significantly higher
than that of the EO algorithm and the PSO algorithm, and it is higher by a certain order of
magnitude, while for f5 and f7, the IEO algorithm can search for the optimal value within
the search space, and the search effect is outstanding. As a result, the IEO algorithm with
the improved strategy exhibits a superior search performance.
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Table 4. Comparison of the results of the test functions.

Function Name and Expression Dimension Algorithm Search Space Theoretical
Optimal Value

The Average of
Five Results

Sphere: f1 =
n
∑

i=1
xi

2 30
EO

[−100, 100]
0 3.2835 × 10−39

PSO 0 3.0278 × 10−2

IEO 0 4.8112 × 10−54

Schwefel2.22:
f2 =

n
∑

i=1
|xi|+

n
∏
i=1
|xi| 30

EO
[−10, 10]

0 2.7620 × 10−23

PSO 0 1.3831 × 10−1

IEO 0 2.9701 × 10−32

Schwefel1.2: f3 =
n
∑

i=1
(

i
∑

j−1
xj)

2
30

EO

[−100, 100]

0 6.1848 × 10−8

PSO 0 6.6840 × 101

IEO 0 9.3542 × 10−21

Schwefel2.21:
f4 = maxi{|xi|, 1 ≤ i ≤ n} 30

EO

[−10, 10]

0 4.1181 × 10−10

PSO 0 1.2619 × 10−2

IEO 0 1.1893 × 10−18

Rastrigin:

f5 =
n
∑

i=1
(xi

2 − 10 cos(2πxi) + 10)
30

EO

[−5.12, 5.12]

0 0

PSO 0 3.4332 × 10−3

IEO 0 0

Ackley:

f6 = −20 exp(−0.2

√
1
n

n
∑

i=1
xi

2)

− exp( 1
n

n
∑

i=1
cos(2πxi)) + 20 + e

30

EO

[−32, 32]

0 7.5495 × 10−15

PSO 0 1.3490 × 10−1

IEO 0 3.9968 × 10−15

Griewank:
f7 = 1

4000

n
∑

i=1
xi

2 −
n
∏
i=1

cos( xi√
i
) + 1

30
EO

[−600, 600]

0 0

PSO 0 5.0186 × 10−2

IEO 0 0

To visually observe the optimization accuracy and convergence speed of the IEO
algorithm, this paper plots the convergence curves of several test functions using the
number of iterations and corresponding fitness values. The results are shown in Figure 8.
By observing the convergence curves of some test functions, the IEO algorithm converges
late, overcoming the problem of premature convergence of other algorithms, and also
shows a greater advantage in search accuracy and convergence speed. Therefore, the IEO
algorithm can effectively improve the population quality and quickly jump out of the local
optimum with high adaptability.
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5.3. Analysis of the Results on the Self-Test Dataset

This section conducts experiments based on the self-test dataset. There are a total
of 14 appliances with 14,000 samples, including 12,600 training samples and 1400 testing
samples. The classification results are visually analyzed by drawing the confusion matrix
to facilitate the observation of the recognition effect of each algorithm.

The confusion matrix is plotted as shown in Figure 9, where the horizontal axis is the
predicted labels of appliance categories, and the vertical axis is the actual labels of appliance
categories. Each element in the confusion matrix represents the number of vertical-axis
appliance categories predicted to be horizontal-axis appliance categories. Analyzing the
confusion matrix, it is found that the traditional SVM algorithm and the LR algorithm are
less effective in recognition and have too many recognition errors for most of the appliances.
The problem with the traditional SVM algorithm is mainly that its parameter selection
depends on experience and there is no guarantee that the selected parameters are optimal.
The LR algorithm mainly solves the linear problem, and the poor recognition effect indicates
that the sample data are nonlinear and therefore cannot be recognized effectively. For the
ANN and DT algorithms, the main focus is on the misidentification between three groups
of appliance categories, category 4 (induction cooker (running)) and category 11 (induction
cooker (running) + smartphone), category 12 (microwave oven (running) + smartphone)
and category 13 (microwave oven (running) + tablet PC), and category 6 (microwave oven
(running)) and category 12, which are all high-current appliances covering small-current
appliances (the stable operating current of an induction cooker and microwave oven is
greater than the current of a smartphone and tablet PC). So, the ANN and LR algorithms
cannot accurately identify such appliances. The error recognition of the CNN and CNN-
LSTM algorithms is mainly concentrated in categories 6 and 12, and they are also unable to
effectively identify loads of this type. The AlexNet algorithm exhibits low classification
performance due to severe overfitting. Although the EO-SVM, PSO-SVM, and k-NN
algorithms have a better recognition effect for the two groups of appliances, categories 4
and 11, and categories 6 and 12, they still cannot effectively recognize for categories 12 and
13, which is because the EO and PSO algorithms very easily fall into the local optimum in
the process of optimizing the SVM and cannot seek the optimal SVM, resulting in slightly
poor recognition, while the k-NN algorithm needs to be built based on sample balance for
recognition. The IEO-SVM algorithm proposed in this paper improves the recognition effect
of high-current covering small-current appliances compared with other algorithms and
maintains good load recognition for other appliances. The IEO-SVM algorithm surpasses
other methods and overcomes the issue of local optimization encountered by the EO and
PSO algorithms during the SVM optimization process. It ensures the optimality of the SVM
model and effectively improves the performance of the model. Furthermore, the IEO-SVM
model achieves higher recognition accuracy.

The evaluation metric results for each method are shown in Table 5. From Table 5, it
can be observed that the IEO-SVM method exhibits the highest recognition accuracy, which
is 99.43%. Compared to SVM, LR, ANN, DT, EO-SVM, PSO-SVM, k-NN, CNN, AlexNet
and CNN-LSTM, the recognition accuracy of our proposed method has been improved by
20.29%, 15.64%, 10.86%, 4.36%, 2.5%, 1.72%, 1.14%, 7.29%, 28.93% and 6.22%, respectively.
The IEO-SM model improves the precision, recall, and F1_ value on all three evaluation
metrics. The results indicate that the IEO-SVM method is capable of handling recognition
tasks on self-evaluation datasets, demonstrating a high level of recognition accuracy and
classification performance.

5.4. Analysis of the Results on the Public Dataset

Experiments in this section were conducted based on the WHITED dataset. There are a
total of 10 appliances with 10,000 samples, including 9000 training samples and 1000 testing
samples. The classification results are analyzed using evaluation metrics, using accuracy to
assess the overall classification performance of the methods.
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Table 5. Experimental results of self-test dataset.

Evaluation
Metrics Accuracy Precision Recall F1_Value

SVM 79.14% 81.22% 79.14% 78.67%
LR 83.79% 82.28% 83.78% 81.49%

ANN 88.57% 88.7% 88.57% 88.49%
DT 95.07% 95.81% 95.07% 95.16%

EO-SVM 96.93% 97.58% 96.93% 96.91%
PSO-SVM [20] 97.71% 98.1% 97.71% 97.73%

k-NN 98.29% 98.48% 98.28% 98.3%
CNN [23] 92.14% 93.25% 92.14% 91.88%

AlexNet [13] 70.5% 64.95% 70.5% 68.86%
CNN-LSTM [27] 93.21% 94.1% 93.2% 93.15%

IEO-SVM 99.43% 99.44% 99.42% 99.43%

From Table 6, it can be seen that the IEO-SVM method exhibits superior classification
performance. It is worth noting that the accuracy on the WHITED dataset reached 100%.
Among other machine learning algorithms, the DT and k-NN methods also exhibit a good
recognition performance. Among the existing deep learning algorithms, the CNN and
AlexNet methods suffer from a poor recognition performance due to overfitting issues. The
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CNN-LSTM method shows better overall classification performance, but compared to the
IEO-SVM method, there is still room for improvement in terms of accuracy. The results
indicate that the overall classification performance of the IEO-SVM method is superior to
other methods on the WHITED dataset.

Table 6. Experimental results of WHITED dataset.

Evaluation
Metrics Accuracy Precision Recall F1_Value

SVM 89% 93.95% 89% 85.9%
LR 70.9% 66.15% 70.8% 65.7%

ANN 69.7% 77.18% 69.7% 66.16%
DT 100% 100% 100% 100%

EO-SVM 94.9% 96.62% 94.9% 94.54%
PSO-SVM [20] 95.8% 97.04% 95.8% 95.6%

k-NN 100% 100% 100% 100%
CNN [23] 81.5% 75.97% 81.5% 77.63%

AlexNet [13] 74.7% 70.37% 74.7% 71%
CNN-LSTM [27] 98.3% 98.44% 98.3% 98.29%

IEO-SVM 100% 100% 100% 100%

5.5. Feasibility Analysis of the IEO-SVM Method

Based on the above results and discussions, the IEO-SVM method performs well on
both the self-test dataset and the WHITED dataset. Although the DT, k-NN and CNN-LSTM
methods perform well on the WHITED dataset, there is still a gap compared to the IEO-
SVM method on the self-test dataset. This indicates that the IEO-SVM method can not only
handle appliance recognition tasks in public datasets but also handle specialized appliance
recognition tasks in the self-test dataset, such as identifying high-current appliances that
overlap with low-current appliances. Due to its excellent classification performance, the
IEO-SVM method can achieve more accurate identification of appliances and can be better
applied in practical scenarios.

6. Conclusions

In this paper, we propose an improved EO algorithm to optimize the load identifica-
tion algorithm of the SVM for the problem of difficult parameter selection when the SVM is
performing load identification tasks. When performing load identification tasks based on
the IEO-SVM model, the standard EO algorithm is improved by using Bernoulli chaotic
sequences to initialize the population, dynamic adjustment parameters, and Levy flight
perturbation concentration update strategy. Based on the testing functions, the IEO algo-
rithm demonstrates good optimization performance with fast convergence speed and high
convergence accuracy, establishing an IEO-SVM load identification model and validating it
based on both a self-test dataset and a public dataset (WHITED). The results demonstrate
that the IEO-SVM method significantly improves the recognition accuracy in both datasets.
It can better address the challenge of distinguishing between appliances with a high current
and those with a low current in the self-test dataset.

In the future, we need to consider the application in complex environments, as well
as the deployment of the algorithm, while ensuring recognition accuracy, simplifying the
model and reducing time costs.
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