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Abstract: Robust optimization is concerned with finding an optimal solution that is insensitive to
uncertainties and has been widely used in solving real-world optimization problems. However,
most robust optimization methods suffer from high computational costs and poor convergence. To
alleviate the above problems, an improved robust optimization algorithm is proposed. First, to reduce
the computational cost, the second-order Taylor series surrogate model is used to approximate the
robustness indices. Second, to strengthen the convergence, the state transition algorithm is studied
to explore the whole search space for candidate solutions, while sequential quadratic programming
is adopted to exploit the local area. Third, to balance the robustness and optimality of candidate
solutions, a preference-based selection mechanism is investigated which effectively determines the
promising solution. The proposed robust optimization method is applied to obtain the optimal
solutions of seven examples that are subject to decision variables and parameter uncertainties.
Comparative studies with other robust optimization algorithms (robust genetic algorithm, Kriging
metamodel-assisted robust optimization method, etc.) show that the proposed method can obtain
accurate and robust solutions with less computational cost.

Keywords: robust optimization; global optimization; surrogate model; selection mechanism

1. Introduction

Real-world optimization problems are subject to uncertainties due to, for example, the
presence of uncontrolled changes in environmental conditions [1,2], the lack of complete
knowledge of models [3,4], and the manufacturing tolerances on actual processes [5].
According to the classification of optimization problems under uncertainties [6], deriving an
optimal solution that is insensitive to uncertainties is defined as robust optimization (RO).

An optimal solution is robust if, when uncertainties exist, the values of the correspond-
ing objective functions and constraint functions fluctuate within acceptable ranges [7]. By
adjusting the decision variables to counteract the effects of uncertainties, the performance of
optimal solution can be improved and the degradations of objective or constraint function
values can also be avoided. In general, there are two methods to describe the uncertain
parameters in the optimization problem: probabilistic models and nonprobabilistic models.
Probabilistic uncertainties are customarily based on the statistic information, such as the
mean and variance, and they are usually handled by optimizing the expected value of the
solution [8]. Moreover, probabilistic uncertainties can also be modeled by other methods,
such as fitness approximation [9], multiobjective approach [10,11], and sampling-based
methods [12]. Since it is difficult to obtain the accurate probability distribution information
of uncertain parameters and the optimal solution can hardly guarantee complete robust-
ness, the applications of probabilistic robust optimization methods have been limited.
Nonprobabilistic uncertainties methods are usually based on interval uncertainty model-
ing [13,14], evidence theory [15], and possibility theory [16]. In this paper, the uncertainties
are modeled as a certain interval that can be obtained without a presumed probability
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distribution. Such interval uncertainty can be analyzed by the worst-case scenario [17], and
this method has received considerable attention in the robust optimization [18]. The main
idea of the worst-case scenario is to have the best worst-case performance in the presence
of uncertainty. In typical engineering design problems, when knowing information such as
the manufacturing tolerance specifications, operating ranges, nominal operating points,
and historical data, it is not too difficult to determine the bounds of the uncertain parame-
ters [19]. Hence, robust optimization with interval uncertainty has been applied to a range
of engineering design and systems control problems [20].

When using worst-case analysis to solve the robust optimization problem with in-
terval uncertainty, it almost always involves a min–max problem of a nested double loop
optimization structure [21,22]. Since the inner optimization is performed iteratively for
every candidate evaluation in the outer optimization, the computational efficiency is one
of the most critical concerns [23,24]. For inner optimization, the most common way to
improve computational efficiency is to find a surrogate model that approximates the orig-
inal functions. Chen et al. [25] and Zhou et al. [26] used the Taylor series expansion to
analyze the robustness of each candidate. Rehman et al. [21] proposed an efficient global
optimization method based on Kriging interpolation to reduce the function evaluations.
In [27], a modified Benders decomposition method was applied to a variety of robust
optimization problems. Note that if the approximate accuracy of the surrogate model is
low, then the robustness evaluated by inner optimization may be inaccurate, leading to
the incorrect result that the solution fails to meet the robustness requirement. In order to
reduce the computational complexity while improving the calculation accuracy for robust
optimization, it is necessary to find an efficient inner optimization method. The function of
outer optimization is to find promising candidate solutions and choose the best decision
variables. The deterministic optimization methods based on gradient information [28]
offer a fast convergence rate but the solution often converges to a locally optimal point.
Stochastic optimization methods, such as genetic algorithm (GA) [29] and particle swarm
optimization (PSO) [30], are well suited for global search [31,32], which can increase the
probability of finding the global optimum through randomly searching for candidates.
State transition algorithm (STA) [33,34] is a stochastic optimization method consisting of
four state transformation operators and each operator has a special searching function.
The STA method has been shown to be capable of both local and global search with stable
convergence rate [35,36]. It thus appears that there are merits to investigating STA for outer
optimization of the robust problem.

The issues of computational efficiency and convergence rate have been an obstacle to
a robust optimization method implementing efficient and accurate search. To overcome
these problems, a hybrid state transition algorithm for a robust optimization problem is
proposed in this paper. The novelty and contribution of this method are three-fold: (1) to
reduce the computational cost, the second-order Taylor series surrogate model is used
to simplify the calculation of objective function values in the inner optimization, and a
low-computational-cost method sequential quadratic programming is used in the outer
optimization; (2) to strengthen the convergence, the outer optimization is conducted by the
cooperation of state transition algorithm and sequential quadratic programming, which not
only avoids the premature convergence but also improves the solution precision; and (3) to
balance robustness and optimality, a selection mechanism is proposed, which evaluates
the candidates based on their feasibility, robustness, and optimality [37]. By comparing the
experimental results obtained by the hybrid state transition algorithm and other robust
optimization algorithms (robust genetic algorithm, Kriging metamodel-assisted robust
optimization method, etc.), the results denote that the method proposed in this paper has
better performance with respect to both accuracy and efficiency.

The remainder of this paper is organized as follows: Section 2 introduces the back-
ground to the optimization problems, including the formulation of the robust optimization
problem with interval uncertainty, the Taylor series surrogate model, and the state tran-
sition algorithm. The hybrid state transition algorithm is derived in Section 3. Section 4
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analyzes the robust performance of the proposed method based on a comparative study
of eight number of algorithms on seven examples. Section 5 concludes this paper and
discusses the directions of future research.

2. Background and Terminology
2.1. Robust Optimization Problem

In general, the deterministic optimization problems can be defined as follows:

min
x∈χ

f (x, p)

s.t. gi(x, p) ≤ 0, i = 1, · · · , n,

xl ≤ x ≤ xu, (1)

where f (·) is the objective function and g(·) is the constraints function, and n is the number
of constraints. The vector x is the decision variable whose lower and upper bounds are xl
and xu, respectively, and p is the parameter of the problem.

In optimization problems, uncertainties can be involved in both decision variables and
parameters. Thus, the formulation of the optimization problem under interval uncertainty
is given as

min
[x]∈χ

f ([x], [p])

s.t. gi([x], [p]) ≤ 0, i = 1, · · · , n,

xl ≤ [x] ≤ xu, (2)

where [x] and [p] are interval numbers corresponding to the uncertain decision variables
and uncertain parameters. They can be expressed as

[x] = [xc + ∆x, xc + ∆x]

[p] = [pc + ∆p, pc + ∆p], (3)

where xc and pc are the nominal value of x and p, respectively, with ∆x and ∆x being the
lower and upper bounds of decision variable (x) variation, and ∆p and ∆p being the lower
and upper bounds of parameter (p) variation. For simplicity, it is usually assumed that the
nominal value is the central value of the variation range, which implies that ∆x = −∆x
and ∆p = −∆p.

For evaluating the solutions of the robust optimization problem in (2), three indexes
are introduced:

1. Objective robustness: This index, denoted as η f , is a measure of the sensitivity for
the objective function to uncertainties. When decision variables and/or parameters
fluctuate in their uncertain intervals, the objective function variations should still
within an acceptable range. In engineering problems, the acceptable range of objective
function is usually defined by decision makers according to design requirements.

2. Feasibility robustness: This index, denoted as ηg, is a measure of the sensitivity for
the constraints to uncertainties. When decision variables and/or parameters fluctuate
in their uncertain intervals, the constraints still should be satisfied.

3. Optimality: This index, represented as f , is the objective function value. For a
deterministic optimization problem, the optimum should be the solution with best
objective value.

Based on the above indexes, the optimization problem in (2) can be reformulated
as follows:

min
xc∈χ

f (xc, pc)

s.t. gi(xc, pc) ≤ 0, i = 1, · · · , n,

η f − ∆ f0 ≤ 0
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ηg ≤ 0

where η f = max
x∈[x],p∈[p]

| f (x, p)− f (xc, pc)|

ηg = max{ max
x∈[x],p∈[p]

gi(x, p), i = 1, · · · , n}

[x] = [xc + ∆x, xc + ∆x]

[p] = [pc + ∆p, pc + ∆p]

xl ≤ [x] ≤ xu, (4)

where ∆ f0 means the acceptable variation range of the objective function.
The above formulation about the robust optimization problem contains a nested

double-loop optimization structure. The outer optimization functions to find promising
nominal values of decision variables and the inner optimization is used to verify the ro-
bustness of candidate solutions. The nested double-loop optimization structure incurs
high computational costs. Thus, this paper proposes a robust optimization method that
solves the computationally costly optimization problem using (i) the state transition algo-
rithm with sequential quadratic programming, called the hybrid state transition algorithm
(H-STA), to solve the outer optimization problem, and (ii) the second-order Taylor series
expansion to estimate the robustness indexes for inner optimization. In the sections that
follow, the two techniques of the proposed RO method are further discussed.

2.2. Taylor Series Surrogate Model

In general, the inner optimization is performed iteratively for every candidate solution
in the outer optimization. To reduce the computational cost, the procedure for inner
optimization should be as simple as possible. In the proposed RO method, a second-order
Taylor series surrogate model is used to approximate the objective function and calculate
the extreme points for inner optimization.

Based on the Taylor’s theorem, a multivariable function f (x, p) can be expanded by
the Taylor series around (x, p) = (xc, pc)

f (x, p) = f (xc, pc)

+
∂ f (xc, pc)

∂x
(x− xc) +

∂ f (xc, pc)

∂p
(p− pc)

+
1
2!

∂2 f (xc, pc)

∂x2 (x− xc)
2

+
∂2 f (xc, pc)

∂x∂p
(x− xc)(p− pc)

+
1
2!

∂2 f (xc, pc)

∂p2 (p− pc)
2 + · · · . (5)

Let

x− xc = ∆x, p− pc = ∆p, (6)

then (5) can be written as

f (x, p) = f (xc, pc)

+
∂ f (xc, pc)

∂x
∆x +

∂ f (xc, pc)

∂p
∆p

+
1
2!

∂2 f (xc, pc)

∂x2 ∆x2

+
∂2 f (xc, pc)

∂x∂p
∆x∆p
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+
1
2!

∂2 f (xc, pc)

∂p2 ∆p2 + · · · . (7)

The remainder term of the second-order Taylor expansion of f (x, p) around point
(xc, pc) can be written as follows:

R(∆x, ∆p) =
1
3!
(∆x

∂

∂x
+ ∆p

∂

∂p
)3 f (xc + θ∆x, pc + θ∆p) (8)

where θ ∈ (0, 1).
It is worth noting that R(∆x, ∆p) is a function of a cubic polynomial with respect to

∆x and ∆p, and the values of ∆x and ∆p are usually small. Meanwhile, the higher-order
derivatives have relatively small values compared to the lower-order derivatives [38].
The above two points make R(∆x, ∆p) a tiny value and guarantee the accuracy of the
second-order Taylor expansion alternative model.

For solving the maximization problem in (4), the second-order Taylor series is adopted
and the inner optimization problem can be transformed to

η f ≈ max
∆x,∆p

| f (xc + ∆x, pc + ∆p)− f (xc, pc)|

= max
∆x,∆p

|a1∆x + b1∆p + c1∆x2 + d1∆x∆p

+e1∆p2|, (9)

where

a1 =
∂ f (xc, pc)

∂x
, b1 =

∂ f (xc, pc)

∂p

c1 =
1
2!

∂2 f (xc, pc)

∂x2 , d1 =
∂2 f (xc, pc)

∂x∂p

e1 =
1
2!

∂2 f (xc, pc)

∂p2

∆x ∈ [∆x, ∆x], ∆p ∈ [∆p, ∆p]. (10)

Similarly, the feasibility robustness index can be transformed to

ηg ≈ max{max
∆x,∆p

gi(xc + ∆x, pc + ∆p)}

= max{max
∆x,∆p

ai
2∆x + bi

2∆p + ci
2∆x2 + di

2∆x∆p

+ei
2∆p2 + hi}, (11)

where

ai
2 =

∂gi(xc, pc)

∂x
, bi

2 =
∂gi(xc, pc)

∂p

ci
2 =

1
2!

∂2gi(xc, pc)

∂x2 , di
2 =

∂2gi(xc, pc)

∂x∂p

ei
2 =

1
2!

∂2gi(xc, pc)

∂p2 , hi = gi(xc, pc))

∆x ∈ [∆x, ∆x], ∆p ∈ [∆p, ∆p]. (12)

In (9) and (11), the extreme points can be computed by the quadratic formula, and
the maximum is calculated by backsubstituting into the original function in (4). With the
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calculation of the quadratic function, the computational cost of the inner optimization
problem can be reduced.

2.3. State Transition Algorithm

For outer optimization problems, most metaheuristic methods have competitive per-
formance. The state transition algorithm (STA) [34,39] is an intelligent optimization method
based on the control theory of state space representation. The unified form of the generation
of solutions in the STA method can be described as follows:{

xk+1 = Akxk + Bkuk
yk+1 = f (xk+1)

(13)

where xk represents a state, corresponding to a candidate solution of the problem; uk is a
function of historical states; Ak and Bk stand for state transition matrices; and yk means the
fitness value of the objective function f .

In STA method, there are four state transformation operators that generate candi-
date solutions:

xk+1 = xk + α
1

n‖xk‖2
Rrxk, (14)

xk+1 = xk + βRt
xk − xk−1
‖xk − xk−1‖2

, (15)

xk+1 = xk + γRexk, (16)

xk+1 = xk + δRaxk, (17)

where (14)–(17) are the rotation transformation, translation transformation, expansion
transformation, and axesion transformation, respectively. The parameters α, β, γ, and δ
represent the transformation factors. The parameters Rr, Rt, Re, and Ra are the random
matrix with specific elements. The rotation transformation is a local search operator and
the translation transformation has a function of line search. The expansion transformation
is used for global search and the accession transformation is designed to strengthen single-
dimensional search ability.

For a given solution, the aforementioned state transformation operators are performed
alternately to generate candidate solutions. In general, these four operators in the STA
method can find promising candidate solutions and converge to the global optimum point.
However, in a robust optimization problem, the solution requires not only to be a superior
candidate in the deterministic condition but also to satisfy the robustness requirements.
Thus, it is important to strengthen the search ability and design appropriate selection
mechanism when solving a robust optimization problem. Since the STA method is a
stochastic algorithm which does not use the gradient information, the local search ability
is restricted and the precision of the solution still needs some improvements. In this
paper, a hybrid state transition algorithm that combines the improved STA operator with a
traditional local search procedure is proposed to address the robust optimization problem.

3. Hybrid State Transition Algorithm for Robust Optimization Problem

In the STA method, the expansion transformation, as the main global search operator,
still requires further improvement to enlarge the range of global search. In addition, the
local search direction of the STA method is stochastic, which may have a slow convergence
rate; thus, sequential quadratic programming (SQP) is used to exploit the local area and
improve the precision of solutions. In this paper, the hybrid state transition algorithm
(H-STA) for robust optimization is proposed and it combines the improved STA and SQP
to maximize their advantages of global optimization and minimize their disadvantages
of premature convergence. Moreover, in order to balance the feasibility, robustness, and
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optimality, an efficient selection mechanism is proposed to evaluate candidate solutions
and select the best one as the final result.

3.1. Exploration Stage-Improved STA

The first stage of the H-STA method for robust optimization problems is to explore all
search areas and find some promising candidates. In the basic state transition algorithm,
there are four different transformation operators and the expansion transformation operator
is the main global search operator. As shown in (16), the expansion transformation operator
includes a Gaussian distribution matrix Re, which means that it can generate elements
between [−∞,+∞] with probability. However, (16) also shows that the search range of
expansion transformation not only depends on the expansion factor (γ) and the mean
and standard deviation of Re, but also relates to xk. Thus, if the value of xk is small, the
search range will be small. For example, if we set the initial point as [10, 10] and [1, 1]
separately, and the lower bound and upper bound of x are set to −10 and 10, respectively,
then the parameter setting of the expansion transformation operator is the same as in
previous papers [39], which are γ = 1, and the mean and the standard deviation of Re
equal 0 and 1, respectively. In this study, we use the expansion transformation operator
to generate 500 candidates, and if the candidate value is out of the range, a random value
within the range will be selected as a substitute.

The performance of the expansion transformation is shown in Figure 1, with Figure 1a
showing the expansion transformation operator that can generate a candidate in the search
space with the initial point [10, 10]. However, when the initial point is set to [1, 1], the search
range of the expansion transformation operator becomes narrow (see Figure 1b). Thus, the
global search ability of expansion transformation still requires further improvements.

One solution is to take into account the ranges of the decision variables in the expan-
sion transformation:

xk+1 = xk + γReRx, (18)

where Rx = (xu − xl)/2 is the search radius of the decision variables, including the upper
bound and lower bound of the decision variable.

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10
a

Canditates Initial point

-4 -2 0 2 4 6
-3

-2

-1

0

1

2

3

4

5
b

Figure 1. Performance of the original expansion transformation: (a) with initial point [10, 10], and
(b) with initial point [1, 1].

The pseudocode of the new expansion transformation operator is shown in Algorithm 1.
We use the same parameter settings and initial points to perform the new expansion transforma-
tion operator, and the results are shown in Figure 2. It is shown that no matter how the initial
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point changes ([10, 10] in Figure 2a and [1, 1] in Figure 2b), the candidates generated by the new
expansion transformation can always distribute throughout the entire search space.

The structure of the improved STA method is shown in Algorithm 2. Firstly, the
parameters are predefined and the initial solution is generated randomly. The parameter SE
is the search enforcement, which means that every transformation operator will generate
SE candidate solutions. During the optimization process, the rotation factor α decreases
exponentially from a maximum value (αmax) to a minimum value (αmin) with the base fc. If
the rotation factor α is less than αmin, it will return to the maximum value αmax.

Algorithm 1 Pseudocode of improved STA method

Require:
itermax: maximum number of iterations
SE: search enforcement
Best: initial solution

Ensure:
Best∗: optimal solution

1: for k = 1 to itermax do
2: if α < αmin then
3: α← αmax
4: end if
5: newBest← new expansion(funfcn,Best, SE, · · · )
6: if Best 6= newBest then
7: newBest← translation(funfcn,Best, newBest, · · · )
8: end if
9: Best = newBest

10: newBest← rotation(funfcn,Best, SE, · · · )
11: if Best 6= newBest then
12: newBest← translation(funfcn,Best, newBest, · · · )
13: end if
14: Best = newBest
15: newBest← axesion(funfcn,Best, SE, · · · )
16: if Best 6= newBest then
17: newBest← translation(funfcn,Best, newBest, · · · )
18: end if
19: Best = newBest
20: α← α · fc−1

21: end for
22: Best∗ ← Best

Algorithm 2 Pseudocode of new expansion transformation operator

Require:
oldBest: the best solution in the last transformation

Ensure:
Best∗: optimal solution

1: State← oldBest+γReRx
2: if ∃ i, j, let State(i, j)<xl or State(i, j)>xu then
3: State(i, j)← xl+(xu − xl) ∗ rand
4: end if
5: Best∗ ← State

Using the improved STA (I-STA) method, the four transformation operators can
explore the whole space for neighborhoods that may contain the global optimal solution.
Once the STA method converges to a promising candidate and stops at this point after
several iterations, then the SQP method is used to improve the precision of the solutions.
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Figure 2. Performance of the new expansion transformation: (a) with initial point [10, 10], and
(b) with initial point [1, 1].

3.2. Exploitation Stage-SQP

The second stage of the H-STA method for robust optimization problems needs to
exploit the local area based on a promising initial point. Sequential quadratic programming
is effective for solving a nonlinearly constrained optimization problem since the goal of
SQP is to find a locally optimal solution to the problem, which means that the algorithm
will continuously optimize the local area near the current solution in order to reduce the
value of the objective function as much as possible. That ensures the accuracy of SQP.
As an iterative procedure, the SQP method transforms a nonlinear optimization problem
into a quadratic programming subproblem, and by solving that subproblem, the solution
will converge to a local minimum. Thus, with the promising candidate found by the STA
method and taking it as the initial point, the SQP method will exploit the neighborhood
around that point and can improve the accuracy of the solution. The SQP structure [40] is
shown in Algorithm 3.

Algorithm 3 Pseudocode of SQP method

Require:
k: number of iterations, and k = 0
Best0: the initial solution (final solution obtained by STA)

Ensure:
Best∗: optimal solution

1: Approximate the problem with a linearly constrained quadratic programming at Bestk
2: Solve for the optimal dk
3: if dk ≈ 0 then
4: Best∗ = Bestk
5: Break
6: else
7: Bestk+1 = Bestk + dk
8: k = k + 1
9: end if

10: Go to Step 1
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We now explain the searching process of the SQP method; based on the Lagrangian
function and quasi-Newton method, at each iteration, the outer optimization problem in (4)
can be approximated by the following quadratic programming subproblem:

min
xc∈χ

f (x(k+1)
c )

= f (x(k)c + d)

∼= f (x(k)c ) +∇ f (x(k)c )Td +
1
2

dT Hkd

s.t. gi(x(k+1)
c )

= gi(x(k)c + d)
∼= gi(x(k)c )+∇g(x(k)c )Td≤0, i = 1, · · · , n, (19)

where Hk is the Hessian matrix of f (x) and d is the step length. For a given xk
c , functions

f (x(k)c ) and gi(x(k)c ) in (19) can be calculated. In order to find a desired step length, the
subproblem can be rewritten as

min
d
∇ f (x(k)c )Td +

1
2

dT Hkd

s.t. ∇g(x(k)c )Td ≤ 0, i = 1, · · · , n, (20)

By solving (20), the optimal step length is obtained. After the iterative calculation, the
SQP method will stop when the optimal step length approaches 0.

Since the SQP method has a good exploitation ability and a low computation cost,
it can effectively improve the accuracy of the solutions obtained by the I-STA method.
Moreover, the I-STA method can generate a good initial solution for the SQP method,
avoiding the possibility of falling into a local optimum due to a poor initial solution.

3.3. Selection Mechanism

Since the robust optimization problem requires to meet not only the constraints but
also the robustness requirement, a selection mechanism is needed to balance the feasibility,
robustness, and optimality of the solutions. To quantify the performance of the candidate
solutions, two definitions are given as follows.

Definition 1 (Constraint violation). For the constraints gi(x, p) ≤ 0, the value
G(x, p) = ∑n

i=1 max{0, gi(x, p)} indicates the relative constraint violation of solution x on
all constraints.

For a solution x, if G(x, p) = 0, then x is a feasible solution; otherwise, x is an infeasible
solution, and the larger the value, the stronger the constraint violation.

Definition 2 (Robustness violation). For the robustness indexes (η f (x, p) and ηg(x, p)), the
value R(x, p) = max{0, η f (x, p)− ∆ f0}+ max{0, ηg(x, p)} provides a reference showing the
relative robustness violation of solution x against the robustness indexes. For a solution x, if
R(x, p) = 0, then x is a robust solution; otherwise, x is a nonrobust solution, and the larger the
value, the stronger the robustness violation.

The selection steps for two solutions of the robust optimization problem are as follows:

1. The feasible solution is always preferred to the infeasible solution;
2. If two solutions are both infeasible, then the one having a smaller constraint violation

value is preferred;
3. If two solutions are both feasible, then the robustness indexes will be calculated by

inner optimization, and the following criteria will be considered:

(a) The robust solution is always preferred to the nonrobust solution;
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(b) If two solutions are both nonrobust, then the one having a smaller robustness
violation value is preferred;

(c) If two solutions are both robust, then the one having better objective function
value is preferred.

The code structure of the selection mechanism is shown in Algorithm 4. After gen-
erating candidate solutions in the outer optimization process, the inner optimization is
performed only when the feasible solution exists. Note that the infeasible solution can
never satisfy the requirement of feasible robustness.

Algorithm 4 Pseudocode of the selection mechanism

Require:
State: candidate solutions generated by improved STA or SQP (outer optimization)
G(State): constraint violation of the State
R(State): robustness violation of the State
f (State): objective function value of the State

Ensure:
Best∗: optimal solution

1: numg = f ind(G(State) = 0)
2: if length(numg) ≥ 1 then
3: Calculate the robustness indexes (inner optimization)
4: numr = f ind(R(State) = 0)
5: if length(numr) ≥ 1 then
6: Best∗ ← min f (State)
7: else
8: Best∗ ← min R(State)
9: end if

10: else
11: Best∗ ← min G(State)
12: end if

3.4. Framework of the H-STA for Solving Robust Optimization Problem

The framework of the H-STA method for robust optimization problem with interval
uncertainty is shown in Figure 3.

Step 1 (Initialization): The first step includes the generation of the initial solution and
initialization of the parameters.

Step 2 (Outer optimization - I-STA): Based on the initial solution, the I-STA method gener-
ates candidates using four transformation operators.

Step 3 (Selection mechanism): The proposed selection mechanism is used to select the best
solution among many candidates. If there is a feasible solution in the candidate so-
lutions, the inner optimization is conducted based on Taylor series surrogate model.

Step 4 (Switching criterion): The switching criterion is used to determine whether the I-STA
method should be replaced by the SQP method. The I-STA method is a stochastic
optimization algorithm, and in the later iterations, the rate of convergence is slow.
Nevertheless, the SQP method offers fast convergence rate leading to the optimal
solution based on a good initial solution. Thus, if the objective value in the improved
STA method changes very slowly, the SQP method will be performed to improve
the rate of convergence. In this paper, the switching index is defined as follows:

λk =

∣∣∣∣ fk − fk−1
fk

∣∣∣∣ (21)

where fk and fk−1 are the objective function values of xk and xk−1. If λk is less than
a threshold value (λ), the rate of convergence for the I-STA method is considered
slow and the SQP method is carried out.



Electronics 2023, 12, 3035 12 of 28

Step 5 (Outer optimization—SQP): Considering the final solution of the I-STA method as an
initial point, the SQP method is performed to improve the precision of the solution.

Step 6 (Selection mechanism): The proposed selection mechanism is used to compare the
final solution and the initial solution of the SQP method.

Step 7 (Stopping criterion): We use the maximum number of iteration as the stopping
criterion. It is worth noting that the number of iterations in the SQP method is also
taken into account when calculating the total number of iterations.

Improved 

STA

Current feasibility -

robustness preference 

mechanism

SQP

Start

End

Rotation;  Translation

New Expansion;  Axesion

Taylor series 

surrogate model

Taylor series 

surrogate model

Satisfy the 

stopping criterion

Yes

No

Yes

No

Outer optimization

Inner optimization

Selection mechanism

STA operator

Switching rule between STA and SQPg

Stopping criterion

Current feasibility -

robustness preference 

mechanism

Satisfy the 

switching criterion

Figure 3. Framework of the hybrid state transition algorithm for robust optimization problem with
interval uncertainty.

4. Verification Examples

In this section, the proposed method is applied to seven optimization examples with
interval uncertainty. Table 1 gives the uncertainty occurrences in each example. To demon-
strate the effectiveness of the H-STA method for robust optimization (H-STA-RO), the
following methods are used for comparison: the I-STA method for robust optimization
problems (I-STA-RO), the basic STA method for robust optimization problems (STA-RO),
the SQP method for robust optimization problems (SQP-RO), and five well-known robust
optimizers (the robust optimization method with Chebyshev surrogate models (I-RO) [22],
the robust genetic algorithm (GA-RO), the Kriging metamodel-assisted robust optimization
method (IK-GA-RO) [41], the robust optimization method based on Benders decomposi-
tion (BD-RO) [27], and the robust optimization method using differential evolution and
sequential quadratic programming (DE-SQP-RO) [42]).
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Table 1. Uncertainty occurrences in each example.

Uncertainty Examples 1, 2, and 3 Example 4 Examples 5 and 6 Examples 7Occurrences

Decision √ √ √
variables x

Parameters p
√ √

The complexity of H-STA-RO can be represented by the value of function evaluations
(FE), which is calculated as

FE = SE×iterSTA×NSTA+FESQP+NR×(R f + Rg), (22)

where SE is the search enforcement; iterSTA and NSTA are the number of generations and
transformation operators used in the I-STA method, respectively; the parameter FESQP
is the total function evaluation value in the SQP method. Since the inner optimization
is only performed when the feasible solution is found, NR means the number of times
that inner optimization performed, and R f and Rg present the average value of function
evaluations for candidates to obtained their objective robustness index and feasibility
robustness index, respectively.

In order to evaluate the performance of different methods, all results are obtained
after 20 runs under MATLAB R2016a, Windows 10 machine with 2.40 GHz Intel core i5
and 16.0 GB RAM. The SQP method and the genetic algorithm method are performed
by using “fmincon” and “ga” function, respectively, and all the parameters are set by the
default values. The parameters included in the H-STA-RO method are selected empirically
based on numerous experiments and application cases. In the standard continuous STA,
the parameter settings are given as follows: αmin = 10−4, β = 1, γ = 1, δ = 1, SE = 30,
and fc = 2. Many numerical experiments and engineering applications have shown the
effectiveness of the above parameter settings [34,35,39]. In this paper, to obtain better
results for different problems, the parameters of αmax, λ, and itermax are fine-tuned based
on the following guidelines:

• The rotation factor α, which controls the search range of the rotation transformation,
is bounded as αmin ≤ α ≤ αmax. A larger value of α allows more explorations of
the local search space, and a smaller value of α can refine the quality of solutions.
The value of αmax is typically set as 1 based on the previous study. However, for the
problem in which the ranges of decision variables are less than 1, it is useless to search
in a hypersphere with a radius equal to 1. Thus, the parameter αmax in Example 4
(0 ≤ x1, x2, x3, x4 ≤ 1) is adjusted according to the statistical analysis. As shown in
Figure 4, by performing 20 trails in each test, we compare the average iterative results
with different αmax value. Given the same initial solution, the iterative curve with
αmax = 0.1 has fastest rate of convergence to search better solutions. Therefore, αmax
in Example 4 is set to 0.1.

• The threshold value of switching index λ controls the frequency of the switching
between two search operators. If one operator is trapped in a slow convergence,
another search operator is taken into consideration. As shown in Figure 5, a larger
value of λ can increase the switching frequency but it may give a low-quality solution
under the SQP method (e.g., λ = 10−2). A smaller value of λ may cause slow
convergence (e.g., λ = 10−5). In this paper, λ, as the threshold value of the relative
difference between two objective values, is adjusted between [10−4, 10−3].

• The maximum number of iterations itermax depends on the complexity of the problem.
For the two engineering optimization problems considered in this section, a choice
of 80 to 100 iterations may be sufficient. For the four numerical problems, itermax
is set to 40 to 60. Take Example 4 for example (Figure 5), the red dotted line nearly
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has no update from 45 generation, thus itermax is set to 60 so that the convergence
performance of the H-STA method is guaranteed.
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Figure 4. Iterative curve with different αmax of Example 4.
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Figure 5. Iterative curve with different λ of Example 4.

Table 2 summarizes the parameter settings of the H-STA method used in the study.

Table 2. Parameter settings of the H-STA method used in the examples.

Parameters Examples 1, 2, 3 Example 4 Examples 5, 6, and 8

αmax 1 0.1 1

λ 10−3 10−4 10−3

itermax 60 60 80

4.1. Example 1

This unconstrained optimization problem is used to verify the accuracy of the inner
optimization method. The uncertain problem is given by as follows:

min
x1c ,x2c

f (x1c, x2c)

= −x2c − (x1c + 0.25)2 + (x1c + 0.25)3

+(x1c + 0.25)4 + 4

s.t. −3 ≤ [x1], [x2] ≤ 3

with [x1] = [x1c − 0.1, x1c + 0.1]

[x2] = [x2c − 0.1, x2c + 0.1]. (23)
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With uncertainties existing in the decision variables, the optimal solution should be
the minimum of its objective upper bound, which can be represented as

min
x1c ,x2c

fu(x1c, x2c)

where fu = max
x1∈[x1],x2∈[x2]

f (x1, x2). (24)

The upper bound of the objective function fu is calculated by inner optimization.
Table 3 shows the best results obtained by three different robust optimization methods from
20 trails. The interval robust optimization (I-RO) method [22] uses the multi-island genetic
algorithm (MIGA) as the outer optimization method, and its inner optimization is based
on the second-order Chebyshev surrogate model. The linearization robust optimization
(L-RO) process [22] replaces the inner optimization method of I-RO with the first-order
Taylor series surrogate model. In the H-STA-RO method, the inner optimization method is
based on the second-order Taylor series surrogate model.

Table 3. Performance comparison of Example 1.

I-RO (Second-Order Chebyshev) [22] L-RO (First-Order Taylor Series) [22] H-STA-RO (Second-Order Taylor Series)

x1 −1.42108 −1.42542 −1.42046

x2 2.9000 2.9000 2.9000

fu 0.1410 0.1030 0.1405

R 0.1410 0.1447 0.1405

Note: R is the reference value of objective upper bound obtained from the Monte Carlo simulation run.

To obtain the accurate value of the objective upper bound, we used the Monte Carlo
method in the uncertain range around the design point (using 2× 108 samples), which can
be used as the reference value (R) for assessing the accuracy of inner optimization method.

The results show that the values of fu based on the second-order Taylor series model
and the second-order Chebyshev model are closer to the reference value (R). Figure 6
illustrates the optimization results of these three methods. Figure 6a shows the contour
lines of the objective function values, and Figure 6b is the results of the Monte Carlo test
with 200 samples. We observe that the H-STA-RO method can find the global optimum and
its inner optimization method provides sufficient accuracy to evaluate the robustness index.

0

0.5

1

1

2

2

2

3

3

3

3

4

4

4

4

4

5

5

5

5

5

5
1
0

1
0

1
0

1
0

1
0

1
0

5
0

5
0

5
0

1
0
0

1
0
0

1
0
0

-3 -2 -1 0 1 2 3

x
1

-3

-2

-1

0

1

2

3

x
2

f(x)

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

 x
1

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

f(
x
)

I-RO L-RO H-STA-RO Upper bound of I-RO Upper bound of L-RO Upper bound of H-STA-RO

-0.1 -0.095 -0.09 -0.085 -0.08 -0.075 -0.07

0.14

0.145

a b

Figure 6. Robust optimization results of three methods for Example 1: (a) contour lines of the
objective function values; (b) Monte Carlo test results of I-RO, L-RO, and H-STA-RO.
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4.2. Example 2

This example is a nonlinear numerical problem with uncertainty in decision vari-
ables [42]. The deterministic version of this example is a classical multimodal function called
“peaks function”. In the deterministic problem, the optimal solution is x = [0.2283,−1.6255]
and the objective function value is f = −6.5511. When the decision variable x1 is subject to
interval uncertainty, the robust optimization problem takes the form:

min
x1c ,x2

f (x1c, x2)

= 3(1− x1c)
2e(−x2

1c−(x2+1)2)

−10(
x1c
5
− x3

1c − x5
2)e
−x2

1c−x2
2 − 1

3
e(−(x1c+1)2−x2

2)

s.t. g1 = 2x2
1c − x2

2 ≤ 0

g2 = 8.5x1c + 1.2x2 − 0.1 ≤ 0

−3 ≤ [x1], x2 ≤ 3

with ∆ f0 = 0.02

[x1] = [x1c − 0.05, x1c + 0.05]. (25)

Based on the proposed selection mechanism, shown in Table 4 are the optimal re-
sults obtained by the DE-SQP-RO method, the GA-RO method, the STA-RO method, the
I-STA-RO method, and the H-STA-RO method. Since this example is a classical multi-
modal function, it has a known local optimum and global optimum. To verify the global
search ability of the I-STA method, the success rate ps of removing the local optimum (the
percentage of successful runs in total runs) is analyzed.

In Table 4, the decision variable, the constraint function value, and the robustness
violation value all correspond to the results with the best objective function value in 20 runs.
The values for the success rate ps and the robust rate pr (the percentage of robust runs
in total runs) are obtained by statistical analysis. The value for FE is the average value
of the function evaluations and the standard deviation is also presented. The value of T
represents the average runtime (in seconds). From Table 4, we observe the following:

(1) The success rate of removing the local optimum in the STA-RO method is 60%, and
there are five results that fall into the local optimum [−0.2606, 0.4667] with the objective
function value 0.7881. In the I-STA-RO method, however, all the tests can find the results
that are close to the global optimum. Thus, the new expansion transformation operator
offers a better global search ability.

(2) The robust rates of the STA-RO method, the I-STA-RO method, and the H-STA-
RO method are all 100% (with the proposed selection mechanism), whereas only 95%
and 75% of the results in the GA-RO method and the SQP-RO method (without the
proposed selection mechanism) are robust, which demonstrates that the proposed selection
mechanism can obtain a robust solution with higher probability.

(3) In the DE-SQP-RO method [42], although its objective function value is better than
that of the H-STA-RO method, the result cannot satisfy the requirements of the robustness
according to the value of R.

(4) The average function evaluations and runtime of the H-STA-RO method are smaller
than that of others (except the SQP-RO method); this is because on the one hand, the
proposed selection mechanism can avoid useless calculations in inner optimization, and
on the other hand, the SQP method can improve the efficiency of the search process.
The proposed selection mechanism may also cause the variation of inner optimization
computational cost, leading to a high standard deviation of FE.

To verify the robustness of the obtained solution in the H-STA-RO method, the Monte
Carlo simulation is conducted. By using 200 samples around the nominal value within the
uncertainty interval, the objective robustness index and the feasibility robustness index
are calculated. In Figure 7, when decision variable x1 is perturbed, the variations of
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the objective function (shown in Figure 7a) and the constraints (shown in Figure 7b) for
the solution obtained by the H-STA-RO method are always within the acceptance range,
whereas the deterministic solution cannot satisfy the robustness requirements.

Table 4. Performance comparison of Example 2.

DE-SQP-RO [42] GA-RO SQP-RO STA-RO I-STA-RO H-STA-RO

x1 0.1944 0.1945 0.1947 0.1942 0.1943 0.1945

x2 −1.8414 −1.8410 −1.8395 −1.8438 −1.8427 −1.8414

f −5.9559 −5.9579 −5.9655 −5.9435 −5.9491 −5.9557

g1 −3.3152 −3.3137 −3.3080 −3.3242 −3.3202 −3.3153

g2 −0.6573 −0.6559 −0.6526 −0.6616 −0.6596 −0.6568

R 5.00× 10−5 9.87× 10−6 5.00× 10−6 0 0 0

ps − 90% 35% 75% 100% 100%

pr − 95% 75% 100% 100% 100%

FE 1,941,630 ± − 27,974 ± 59.00 139.9000 ± 62.27 38,053 ± 3.44× 103 36,650 ± 1.28× 103 17,456 ± 3.53× 103

T − 0.106 0.026 0.149 0.153 0.145

Note: R is the reference value of robustness violation obtained from the Monte Carlo simulation, and − denotes
data not available.
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Figure 7. Robustness verification of the deterministic and robust solution for Example 2: (a) objective
robustness verification, and (b) feasibility robustness verification.

4.3. Example 3

This constrained nonlinear problem originated from [41]. The problem formulation is:

min
x1c ,x2c

f (x1c, x2c)

= x3
1c sin(x1c + 4) + 10x2

1c + 22x1c + 5x1cx2c

+2x2
2c + 3x2c + 12

s.t. g1 = x2
1c + 3x1c − x1c sin x1c + x2c − 2.75 ≤ 0

g2 = − log(0.1x1c + 0.41) + x2ce−x1c+3x2c−4

+x2c − 3 ≤ 0

−4 ≤ [x1] ≤ 1,−1 ≤ [x2] ≤ 1.5

with ∆ f0 = 2.5

[x1] = [x1c − 0.4, x1c + 0.4]
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[x2] = [x2c − 0.4, x2c + 0.4], (26)

where the decision variables x1 and x2 have uncertainty [−0.4, 0.4] around x1c and x2c.
Without incurring uncertainties, the optimal solution of the deterministic problem is
x = [−1.8256, 0.7411] with f = −3.2871. The robust results of the STA-RO method,
the I-STA-RO method, the SQP-RO method, the H-STA-RO method, the GA-RO method,
and the IK-GA-RO method are shown in Table 5.

Table 5. Performance comparison of Example 3.

IK-GA-RO [41] GA-RO SQP-RO STA-RO I-STA-RO H-STA-RO

x1 −1.447 −1.4409 −1.4404 −1.4394 −1.4399 −1.4405

x2 0.267 0.3368 0.3370 0.3372 0.3371 0.3369

f −1.567 −1.772776 −1.772834 −1.772766 −1.772770 −1.772771

g1 −6.166 −6.0885 −6.0876 −6.0861 −6.0869 −6.0878

g2 −1.360 −1.2670 −1.2670 −1.2671 −1.2671 −1.2670

R 0.1481 9.25× 10−6 9.58× 10−5 0 0 0

pr − 60% 65% 100% 100% 100%

FE 18,558 ± − 97,211 ± 1.46× 103 46.65 ± 19.0740 38,685 ± 7.44× 102 37,823 ± 1.05× 103 18,896 ± 1.26× 103

T − 0.220 0.025 0.348 0.339 0.084

Note: R is the reference value of robustness violation obtained from the Monte Carlo simulation, and − denotes
data not available.

From Table 5, it is observed that the H-STA-RO method can find the optimal solution
with 100% robustness, and its function evaluations and runtime are less than that of the
GA-RO method, the STA-RO method, and the I-STA-RO method. Although the function
calls of the IK-GA-RO method is smaller, the optimality and robustness of the optimum
obtained by the IK-GA-RO method are inferior to that of the H-STA-RO method. Figure 8
shows the robustness indexes of the deterministic optimum and robust optimum obtained
by the H-STA-RO method. The deterministic optimum violates the robust requirement at
some points, but the robust optimum of the H-STA-RO method can remain stable within
the uncertain range.
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Figure 8. Robustness verification of the deterministic and robust solution for Example 3: (a) objective
robustness verification; (b) feasibility robustness verification.
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4.4. Example 4

This example [27,43] illustrates the solving of the robust optimization problem with
uncertainty in both decision variables and parameters. The formulation of this problem is

min
x1,x2,x3c ,x4

f (x1, x2, x3c, x4)

= (x1 − 0.6)2 + (x2 − 0.6)2 − x3cx4 + 10

s.t. g1 = p1c + x1 + x2 ≤ 0

g2 = p2c + x3c + x4 ≤ 0

0 ≤ x1, x2, [x3], x4 ≤ 1

with p1c = −1, p2c = −1

[x3] = [x3c − 0.1, x3c + 0.1]

[p1] = [p1c − 0.1, p1c + 0.1]

[p2] = [p2c − 0.1, p2c + 0.1]. (27)

Without incurring the uncertainties, the deterministic optimal solution is
x = [0.5, 0.5, 0.5, 0.5] with f = 9.770. Table 6 shows the results for this example using
robust optimization methods. These methods are the BD-RO method, the GA-RO method,
the SQP-RO method, the STA-RO method, the I-STA-RO method, and the H-STA-RO
method. Figure 9 shows the results of the Monte Carlo tests.

Table 6. Performance comparison of Example 4.

BD-RO [27] GA-RO SQP-RO STA-RO I-STA-RO H-STA-RO

x1 0.45 0.4500 0.4275 0.4499 0.4550 0.4500

x2 0.45 0.4500 0.4725 0.4496 0.4449 0.4500

x3 0.4 0.4005 0.5181 0.3905 0.4000 0.4000

x4 0.4 0.4004 0.3531 0.4093 0.3999 0.4000

f 9.8850 9.8846 9.8631 9.8853 9.8852 9.8850

g1 −0.1000 −0.1000 −0.1000 −0.1005 −0.1002 −0.1000

g2 −0.1000 −0.1990 −0.1288 −0.2002 −0.2001 −0.2000

R 0 9.9988× 10−4 0.0712 0 0 0

pr − 50% 40% 100% 100% 100%

FE 21 ± − 76,541 ± 17.07 178 ± 67.97 55,573 ± 1.94× 103 54,658 ± 1.05× 103 23,644 ± 3.75× 103

T − 0.153 0.0252 0.183 0.177 0.071

Note: R is the reference value of robustness violation obtained from the Monte Carlo simulation, and − denotes
data not available.

From Table 6, it is observed that the objective function values of the I-STA-RO method
and the STA-RO method are close to the optimal value, but it is hard to improve the
precision. The SQP-RO method has a good rate of convergence but it cannot ensure the
robustness of the solutions. Thus, the H-STA-RO method takes advantage of I-STA and
SQP to obtain the robust solution and search the global optimum with less computational
cost. For the GA-RO method, it has better objective function value but the computational
efficiency and the robustness of the solution need to be improved. The BD-RO method
can find the optimum with fewer function calls but its outer optimization approach is
based on the gradient information; thus, its results are highly influenced by the initial point.
Figure 9 also demonstrates that when there are uncertainties in both decision variable and
parameters, the solution obtained by the H-STA-RO method can still satisfy the constraints.
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Figure 9. Robustness verification of the the deterministic and robust solution for Example 4.

4.5. Example 5: Welded Beam Design

The welded beam design (Figure 10) is a classical constrained optimization problem
in engineering applications [36,44]. The design objective is to minimize the total cost of the
welded beam f . The decision variables are the thickness of the weld x1, the length of the
welded joint x2, the width of the beam x3, and the thickness of the beam x4. The decision
variables must satisfy the constraints about the shear stress (τ), the bending stress (σ), the
buckling load on the bar (Pc), the end deflection of the beam (δ), and the side constraints.
The deterministic optimal result is x = [0.2053, 3.2604, 9.0366, 0.2057] and f = 1.6956. When
the decision variables are subject to uncertainties, the problem is modified as follows:

min
x1,x2,x3c ,x4c

f (x1, x2, x3c, x4c)

= 1.10471x2
1x2 + 0.04811x3cx4c(14 + x2)

s.t. g1 = τ − τmax ≤ 0

g2 = σ− σmax ≤ 0

g3 = x1 − x4c ≤ 0

g4 = 0.125− x1 ≤ 0

g5 = δ− δmax ≤ 0

g6 = P− Pc ≤ 0

g7 = ξ1x2
1 + ξ2x3cx4c(14 + x2)− 5 ≤ 0

0.125 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10

0.1 ≤ [x3] ≤ 10, 0.1 ≤ [x4] ≤ 2

where ξ1 = 0.10471, ξ2 = 0.04811

τ =

√
τ2

1 + 2τ1τ2(
x2

2R
) + τ2

2 ,

τ1 =
P√

2x1x2
, τ2 =

MR
J

M=P(L+
x2

2
), R=

√
x2

2
4

+ (
x1 + x3c

2
)2
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J = 2{
√

2x1x2[
x2

2
4

+ (
x1 + x3c

2
)2]}

σ =
6PL

x4cx2
3c

, δ =
6PL3

Ex3
3cx4c

Pc =
4.013E

√
(x2

3cx6
4c)/36

L2 (1− x3c

2L

√
E
4G

)

G = 12× 106 psi, E = 30× 106 psi,

P = 6000 lb, L = 14 in, τmax = 13600 psi

σmax = 30000 psi, δmax = 0.25 in

with ∆ f0 = 0.1

[x3] = [x3c − 0.05, x3c + 0.05]

[x4] = [x4c − 0.01, x4c + 0.01]. (28)

Table 7 shows the results obtained by the DE-SQP-RO method [42], the GA-RO
method, the SQP-RO method, the STA-RO method, the I-STA-RO method, and the H-
STA-RO method.

Table 7. Performance comparison of Example 5.

DE-SQP-RO GA-RO SQP-RO STA-RO I-STA-RO H-STA-RO

x1 0.2057 0.2064 0.2157 0.1849 0.1986 0.2050

x2 7.0924 3.2452 3.0836 3.6657 3.3634 3.2686

x3 9.0866 9.0751 9.0867 9.1159 9.1623 9.0774

x4 0.2157 0.2163 0.2157 0.2157 0.2154 0.2162

f 2.3208 1.7809 1.7696 1.8096 1.7948 1.7818

g1 −7.05× 103 −51.0749 −51.2823 −69.9634 −50.2844 −51.1169

g2 −1.70× 103 −1.70× 103 −1.70× 103 −1.88× 103 −2.12× 103 −1.70× 103

g3 −0.0100 −0.0099 −4.35× 10−9 −0.0309 −0.0167 −0.0111

g4 −3.0067 −3.3673 −3.3840 −3.3252 −3.3476 −3.3655

g5 −0.0807 −0.0814 −0.0907 −0.0599 −0.0736 −0.0800

g6 −0.2364 −0.2364 −0.2364 −0.2366 −0.2367 −0.2364

g7 −940.3744 −988.3397 −943.0863 955.7257 −944.6512 −979.3933

R 0 9.99× 10−4 0.0712 0 0 0

pr − 50% 55% 100% 100% 100%

FE 225,700 ± − 139,081 ± 1.20× 104 202.5 ± 71.0534 91,493 ± 1.02× 104 77,743 ± 1.11× 103 48,522 ± 7.26× 102

T − 1.371 0.085 0.721 0.721 0.227

Note: R is the reference value of robustness violation obtained from the Monte Carlo simulation, and − denotes
data not available.

From Table 7, the H-STA-RO method can generate competitive solutions when com-
pared with other solutions. This is because (1) based on the I-STA method, the H-STA
method can search the whole space and choose promising candidates, and (2) the SQP
method can search the local area and improve the precision of the solution. The selection
strategy and the inner optimization method proposed in this paper can guarantee the
robustness of the best solutions. The findings presented in Figure 11 verify the robustness
of the final solutions with respect to their objective function (Figure 11a) and constraints
(Figure 11b).
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Figure 10. The welded beam.
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Figure 11. Robustness verification of the deterministic and robust solution for Example 5: (a) objective
robustness verification; (b) feasibility robustness verification.

4.6. Example 6: Pressure Vessel Design

The optimal design of pressure vessel (see Figure 12) is a typical application example
to illustrate the min–max problem. To minimize the total cost of the vessel f , there are four
decision variables to optimize: x1 (the thickness of the shell), x2 (the thickness of the head),
x3 (the inner radius), and x4 (the length of the vessel without the head). The best deter-
ministic result is f = 5886.4544, corresponding to x = [0.7785, 0.3848, 40.3389, 199.7753].
With the uncertainties in the decision variables taking into account, the pressure vessel
optimization problem is formulated as follows:

min
x1c ,x2,x3,x4c

f (x1c, x2, x3, x4c)

= 0.6224x1cx3x4c + 1.7781x2x2
3 +

+3.1661x2
1cx4c + 19.84x2

1cx3

s.t. g1 = −x1c + 0.0193x3 ≤ 0

g2 = −x2 + 0.00954x3 ≤ 0

g3 = −πx2
3x4c −

4
3

πx3
3 + 1296000 ≤ 0

g4 = x4c − 240 ≤ 0

0 ≤ [x1] ≤ 1.5, 0 ≤ x2 ≤ 1.5

30 ≤ x3 ≤ 50, 160 ≤ [x4] ≤ 200
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with ∆ f0 = 100

[x1] = [x1c − 0.01, x1c + 0.01]

[x4] = [x4c − 0.05, x4c + 0.05]. (29)

where x1c and x4c are the nominal value of x1 and x4, respectively.

Figure 12. The pressure vessel.

The results obtained by seven interval robust optimization methods are shown in
Table 8. It is observed that (1) for feasibility, all the methods can find feasible solutions and
satisfy the constraints, (2) for robustness, the methods using IK-GA-RO, STA-RO, I-STA-RO,
and H-STA-RO can obtain robust solutions since their robustness violation values (R) equal
to 0, and (3) for optimality, although the result of the SQP-RO method has smaller objective
function value, it violates the robustness requirements; within the robust solutions, the
result of the H-STA-RO method is superior to others because of its lower f value. Moreover,
the results of pr, FE, and T demonstrate the efficiency of the H-STA-RO method. Figure 13
shows the Monte Carlo test results of the deterministic solution and the robust solution of
the H-STA-RO method. The deterministic optimum become infeasible in some cases, but
the robust optimum of the H-STA-RO method is always feasible even when the decision
variables are subject to interval variations.

Table 8. Performance comparison of Example 6.

IK-GA-RO GA-RO SQP-RO STA-RO I-STA-RO H-STA-RO

x1 0.845 0.7897 0.7804 0.7973 0.7948 0.78831

x2 0.412 0.3854 0.3847 0.3892 0.3879 0.38472

x3 43.008 40.3998 40.3268 40.7876 40.6570 40.32681

x4 165.758 198.9669 199.9500 193.7079 195.5939 199.9500

f 6.09× 103 5.96× 103 5.90× 103 5.97× 10−3 5.97× 103 5.95× 103

g1 −0.015 −0.0100 −0.0021 −0.0101 −0.0102 −0.0100

g2 −0.02 −5.91× 10−8 −3.00× 10−6 −9.66× 10−5 −91.98× 10−6 0

g3 −463.936 −256.4015 −255.7847 −631.8675 −1.23× 103 −964.9065

g4 −74.242 −41.0631 −40.00500 −46.2921 −44.4061 −40.0500

R 0 1.61× 10−5 0.0079 0 0 0

pr − 60% 15% 100% 100% 100%

FE 14,139 ± − 127,390 ± 1.16× 10−6 129.7500 ± 58.92 57,564 ± 5.85× 103 54,275 ± 6.57× 103 34,575 ± 5.88× 103

T − 0.221 0.023 0.156 0.159 0.073

Note: R is the reference value of robustness violation obtained from the Monte Carlo simulation, and − denotes
data not available.
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Figure 13. Robustness verification of the deterministic and robust solution for Example 6: (a) objective
robustness verification; (b) feasibility robustness verification.

4.7. Example 7: Power Scheduling Design

Power scheduling optimization is an important issue for energy consumption in the
process industry. Take the zinc electrowinning process as an example: it accounts for 80%
of the total energy consumption of zinc hydrometallurgy. Based on the power time-of-use
pricing policy, the aim of power scheduling optimization is to minimize the electricity
charge (y) by adjusting the current density (x1), the concentration of Zn2+ (x2), and H+ (x3)
in different periods.

A zinc electrowinning process shown in Figure 14 contains seven series potrooms and
each potroom has several parallel electrolytic cells. With an appropriate current and zinc
acid ratio, zinc ions are deposited on the cathode surface. The electricity use is charged at
different prices during three different time periods (peak, shoulder, and off-peak); it is a
practice to produce more with lower electricity price. To analyze the power scheduling
system, the zinc electrowinning process model is established based on electrochemical
reaction mechanism and historical data. With the deterministic parameter, the best result is
y = 1.5922 × 106, corresponding to x1 = [261, 317, 650], x2 = [60, 45, 60], x3 = [200, 200, 200].
With incomplete knowledge of the process model, it is more accurate to estimate some
parameters as interval values. The uncertain power scheduling optimization problem is
formulated as follows:

min
x1,x2,x3

f (x1, x2, x3)

= J0 +
3

∑
i=1

7

∑
j=1

PiTiVijLij

s.t. g =
3

∑
i=1

7

∑
j=1

qEiTiLij = g0c

100 ≤ x1,i ≤ 650, 45 ≤ x2,i ≤ 60

160 ≤ x3,i ≤ 200

where Vij = V(x1,i, x2,i, x3,i)

= Nj(p1 − p2 ln(p3cx−1
3,i )− p4c ln(p5x2,i)

+ p6cx1,i(p7c + p8cx3,i − p9cx2,i)
−1

+ p10c lg x1,i + p11cx1,i)

Lij = L(x1,i) = BjSx1,i

Ei = E(x1,i, x2,i, x3,i)
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= p12c exp(p13 + p14 lg x1,i)x1.6
2,i x−0.2

3,i

+ (p15c exp(−p16c + p17 lg x1,i)x2,ix−0.2
3,i

+ p18c + p19cx0.6
2,i )
−1x−1

1,i

q = 1.2202 g/Ah, S = 1.13 m2, T = [11, 5, 8] h

P = 0.5627× [1.6, 1.0, 0.7] U/kWh

N = [240, 240, 246, 192, 208, 208, 208]

B = [34, 46, 54, 56, 56, 57, 57], g0c = 960 tons

p = [1.588, 0.027, 1.1025× 10−12, 0.0135, 8.15,

6.2× 10−4, 0.5931, 0.0181, 0.0313, 0.0793,

5× 10−4, 1091.46,−4.06, 2.8, 0.0813,−1.8,

3.5, 0.35, 2172.45]

with ∆ f0 = 80000

[pn] = [0.95× pnc, 1.05× pnc], n = 3, 4, 6, . . . , 11

[pn] = [0.99× pnc, 1.01× pnc], n = 12, 13, 16, 17, 19

[g0] = [g0c − 20, g0c + 20]. (30)

2ZnSO4+2H2O ==== 2Zn↓ +2H2SO4+O2↑  

electrolysis

Cathode
Anode

H+

SO4
2-

Zn2+

Oxygen (O2) Metallic Zinc (Zn)

e-

Leaching 

solution

Spent 

electrolyte

Further 

treatment
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Electrolytic cell

Rectifier 

control system

DC

Figure 14. Zinc electrowinning process.

The parameters in the above problem are as follows: J0 is the capacity electricity
charges; Pi is the electricity price in the ith period; Ti is the duration of the ith period; Vij
is the cell voltage of the jth plant in the ith period; Lij is the magnitude of the current of
the electrolysis process of the jth plant in the ith period; g0 is the zinc daily output; q is the
electrochemical equivalent of zinc; Ei is the current efficiency in the ith period; Nj is the
number of cells in the jth plant; Bj is the number of plates in a cell in the jth plant; and S is
the area of the cathode plate.

The results obtained by five interval robust optimization methods are shown in Table 9.
Compared to GA-RO and SQP-RO, the methods based on STA obtain smaller function
values corresponding to a more accurate solution. Meanwhile, methods based on STA
could obtain a more robust result. Compared to STA-RO and I-STA-RO, H-STA-RO obtains
an accurate solution with less function evaluation and runtime, which denotes the efficiency
of the proposed method. Figure 15 shows the Monte Carlo test results of the deterministic
solution and the robust solution of the H-STA-RO method. The deterministic optimum
becomes infeasible in some cases, but the robust optimum of the H-STA-RO method is
always feasible.
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Figure 15. Robustness verification of the deterministic and robust solution for Example 7: (a) objective
robustness verification; (b) feasibility robustness verification.

Table 9. Performance comparison of Example 7.

GA-RO SQP-RO STA-RO I-STA-RO H-STA-RO

x1 [255, 324, 600] [406, 265, 593] [100, 598, 50] [189, 404, 650] [159, 489, 646]

x2 [60, 60, 60] [45, 45, 60] [60, 60, 60] [60, 59, 60] [59, 58, 60]

x3 [184, 184, 200] [200, 160, 200] [185, 200, 200] [160, 200, 179] [188, 161, 200]

f 1.53× 106 1.89× 106 1.48× 106 1.47× 106 1.47× 106

g1 945.04 951.10 947.64 956.00 954.15

R 0 1.20× 104 0 0 0

pr 90% 0% 100% 100% 100%

FE 110,082 ± 2.84× 104 3392 ± 830.46 45,529 ± 5.46× 103 45,334 ± 4.25× 103 31,470 ± 5.13× 103

T 0.434 0.086 0.487 0.498 0.394

Note: R is the reference value of robustness violation obtained from the Monte Carlo simulation.

5. Conclusions

A hybrid state transition algorithm is proposed to alleviate the problems of robust
optimization, including high computational costs and poor convergence. Based on the
worst-case analysis, the robust optimization problem can be transformed into a min–
max problem. In the outer optimization process (minimization problem), the hybrid
state transition algorithm is used to improve the rate of convergence and avoid the local
optimum distraction. Meanwhile, the method of sequential quadratic programming is used
to strengthen local search ability and reduce computational costs. In the inner optimization
process (maximization problem), the second-order Taylor series surrogate model is used to
approximate the nonlinear functions and decrease the computational cost. Moreover, to
balance the robustness and optimality of candidate solutions, a novel feasibility-checking
mechanism is proposed to operate the inner optimization only when a feasible solution is
found. Verifying the robustness of the proposed method is conducted using seven examples.
The results show that the proposed method offers competitive performance compared with
existing robust optimization methods in convergence and efficiency.

In our future work, the robust optimization method for other forms of uncertainties
(such as fuzzy uncertainty and interval fuzzy uncertainty) and the applicability enhance-
ment of the surrogate model will be investigated.
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