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Abstract: Hyperspectral images (HSIs) have abundant spectral and spatial information, which
shows bright prospects in the application industry of urban–rural. Thus, HSI classification has
drawn much attention from researchers. However, the spectral and spatial information-extracting
method is one of the research difficulties in HSI classification tasks. To meet this tough challenge,
we propose an efficient channel attentional feature fusion dense network (CA-FFDN). Our network
has two structures. In the feature extraction structure, we utilized a novel bottleneck based on
separable convolution (SC-bottleneck) and efficient channel attention (ECA) to simultaneously fuse
spatial–spectral features from different depths, which can make full use of the dual-scale shallow
and deep spatial–spectral features of the HSI and also significantly reduce the parameters. In the
feature enhancement structure, we used 3D convolution and average pooling to further integrate
spatial–spectral features. Many experiments on Indian Pines (IP), University of Pavia (UP), and
Kennedy Space Center (KSC) datasets demonstrated that our CA-FFDN outperformed the other five
state-of-the-art networks, even with small training samples. Meanwhile, our CA-FFDN achieved
classification accuracies of 99.51%, 99.91%, and 99.89%, respectively, in the case where the ratio of the
IP, UP, and KSC datasets was 2:1:7, 1:1:8, and 2:1:7. It provided the best classification performance
with the highest accuracy, fastest convergence, and slightest training and validation loss fluctuations.

Keywords: hyperspectral image classification; dense network; separable convolution; efficient
channel attention; feature fusion

1. Introduction

Hyperspectral images (HSIs) are a particular type of remote sensing image with abun-
dant spectral and spatial information [1], which can be studied in many fields, including
urban vegetation cover monitoring [2], water detection [3], agricultural resource detec-
tion [4], and environmental protection [5], etc. [6–8]. Recently, HSI classification tasks
have been the focus of HSI research [9,10]. However, the over-redundancy of spectral
band information makes it hard to extract fine features, which has been a challenge for
feature extraction. Traditional feature extraction methods, such as support vector machine
(SVM) [11,12] and multinomial logistic regression (MLR) [13,14], have been developed to
build pixel-wise-based classifiers for analyzing the HSI. Although enough spectral features
can be extracted using these methods, the acquired classification maps are still noisy or
blurry. To this end, denoising, deblurring, super-resolution, and feature fusion strategies
were proposed to solve these issues. Recently, deep learning algorithms based on convo-
lutional neural networks (CNNs) [15] were found to have better performance in feature
fusion [16]. CNN can extract spatial information without destroying the original spatial
structure [17]. Specifically, deep learning algorithms have experienced a process from
1D-CNN [18] and 2D-CNN [19–21] to 3D-CNN [22]. In comparison, 3D-CNN can extract
spatial–spectral features by using 3D convolution, which makes full use of the 3D data
information of the HSI compared with the 1D-CNN and 2D-CNN.
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However, 3D-CNN suffers from overfitting and degradation. The residual network
(ResNet) [23] and the dense network (DenseNet) [24] were proposed to solve these prob-
lems. For example, Zhong et al. [25] proposed a spectral–spatial residual network (SSRN).
They designed a consequent spatial–spectral residual block to sequentially learn the HSI’s
discriminative features, effectively improving the classification accuracy. The disadvan-
tage, however, is an exorbitantly long training time. Inspired by SSRN, Wang et al. [26]
designed a consequent spatial–spectral dense block based on DenseNet to improve feature
reuse, which also helped to achieve better performance while reducing training time. To
combine the advantages of the dense network and the residual network, Tu et al. [27]
proposed a residual dense and dilated convolution network (RDDC-3DCNN) with both
residual and dense blocks to fuse the features hierarchically, and the accuracy was fur-
ther improved. When facing the small sample issue, unsupervised and semi-supervised
networks were proposed, such as the Conv–Deconv network [28], generative adversar-
ial networks (GANs) [29], graph convolutional networks (GCNs) [30], and robust self-
ensembling network (RSEN) [31], etc. These networks effectively improve the accuracy of
HSI classification tasks.

The above studies show that networks with residual or dense structures can realize
feature fusion from layer to layer and, thus, obtain finer features. But, as convolutional
layers increase, most fine features tend to be reduced or even lost. To solve these issues, a
lot of advanced techniques, such as feature fusion and attention mechanisms, have been
applied to HSI classification tasks. Zhang et al. [32] proposed a multi-scale dense network
(MSDN) with a dense network as the backbone. The feature maps from low scale, medium
scale, and high scale were used for feature fusion; this method ensured accuracy while
improving the convergence speed, but the network has a vast number of parameters as
well as a long training time. In addition, in the procedure of extracting spatial–spectral
features, they did not find clear semantics for these feature maps. In [33], a novel multi-scale
dense network (MSDN-SA) was proposed, and the spectral-wise attention mechanism was
employed in the field of HSI classification for the first time.

Subsequently, attention mechanisms have been successfully practiced and developed
in HSI classification over the years. Li et al. [34] proposed a 3D-SE-DenseNet based on a
Squeeze-and-Excitation network (SENet) [35], which enhanced the ability to extract spectral
features by automatically learning to construct an SENet after each dense block. In [17], a
double-branch multi-attention network (DBMA) with the convolutional block attention
module (CBAM) [36] was proposed, which will significantly reduce the interference be-
tween two different kinds of features. Based on DBMA and the adaptive self-attention
mechanism [37], Li et al. [38] proposed a double-branch dual-attention mechanism network
(DBDA). The DBDA framework uses less training time while obtaining higher accuracy than
DBAM. Qing et al. [39] employed ECANet [40] in their multi-scale residual convolutional
neural network (MRA-Net) to fully exploit the core components obtained from the principal
component analysis (PCA) [41] technology, which successfully helped improve classifi-
cation accuracy. Following that, Qing et al. [42] again proposed a 3D self-attention [43]
multi-scale feature fusion network (3DSA-MFN), which can make full use of the contextual
information of the HSI.

Very recently, the self-attention-based transformer [44] has been widely used in HSI
classification, which can better process sequential data. For example, the spatial–spectral
transformer (SST) [45] was proposed to solve the problem of gradient vanishing. In [46], the
SpectralTransformer was proposed to effectively process the sequence attributes of spectral
features. In [47], a spectral–spatial feature tokenization transformer (SSFTT) method was
proposed to capture high-level semantic features. However, a transformer is relatively
weak in discriminating local features [48]. In addition, few of the networks above can better
balance the convergence performance and classification accuracy, and these networks tend
to have large loss fluctuations in the training process.

Therefore, in this paper, inspired by the advanced MSDN network and [49], we
propose an efficient channel attentional feature fusion dense network for HSI classification
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to better fuse features of inconsistent semantics and scales. To conclude, three major
contributions have been made to this study:

• We propose an efficient channel attentional feature fusion dense network (CA-FFDN)
based on DenseNet and ECA. Our network has two main structures: feature ex-
traction structure and feature enhancement structure. Principal component analysis
(PCA) technology is applied to ensure the utilization of effective spectra and reduce
noise interference.

• We employ the latest modified DenseNet as the backbone, which outstandingly re-
duces the parameter and training time in the network compared with MSDN. Mean-
while, an efficient attention mechanism is introduced to realize attentional feature
fusion at two scales of the input and output layers, which suppresses the loss of
spatial–spectral features and accelerates the convergence speed of the network.

• The proposed network has state-of-the-art classification results in comparison exper-
iments with five advanced networks under the same experimental environment on
three open-source datasets.

The rest of the paper is organized as follows: Section 2 introduces the proposed
framework. Section 3 details the experimental results and analysis. Finally, Section 4
concludes the paper.

2. The Proposed Framework

The main framework of CA-FFDN is shown in Figure 1. First, the input HSI cube was
operated with data normalization and PCA to depress the data variability and band noise.
The HSI cube was then segmented into small cubes centered on labeled pixels and sent
to the CA-FFDN. On the one hand, considering the problems that the increasing layers of
the network will likely cause overfitting and gradient vanishing, we employed a densely
connected network as the backbone of CA-FFDN. On the other hand, the CA-FFDN aims
to extract more discriminative features while achieving the attentional feature of the HSI
small cubes. Following that, CA-FFDN is divided into two structures: feature extraction
structure and feature enhancement structure. The feature extraction structure consists of
an input layer and output layer, which applies SC-bottleneck-based dense connections
to extract more discriminate spatial and spectral features with the increasing depth of
CA-FFDN while effectively reducing the network parameters. In addition, CA-FFDN
concentrates channel information twice and performs attentional feature fusion with the
ECA mechanism in the ECA-FF module. The number of channels of HSI also equals the
number of the convolution kernel. As the depth of the feature extraction structure increases,
the feature extraction structure will extract finer features owing to the skip connection and
ECA mechanism. The feature enhancement structure is designed with two convolution
operations and one averaging-pooling operation to further extract and integrate the spatial–
spectral features. The kernel size is set at 3× 3× 3, and the features after pooling are
flattened. Finally, we obtain the classification maps through a fully connected layer that
uses the softmax activation function.

2.1. Dense Network Based on SC-Bottleneck

In a recent paper, Wang et al. [50] applied separable convolution [51] to improve
the bottleneck structure of dense networks, which is named SC-bottleneck in this paper.
As shown in Figure 2, the number of channels of the input layer feature map is l × k,
and k is the growth rate. We use 1× 1× 1 convolution to compress the channels to 4k.
After batch normalization (BN) and ReLU activation function, the traditional 3× 3× 3
convolution operation was divided into two steps: 3× 3× 1 and 1× 1× 3 convolutions
were used in depthwise convolution and pointwise convolution, respectively, to extract
the spatial features and the spectral features of HSI. The number of the output feature map
is k. The SC-bottleneck used separable convolution to further reduce the parameters and
ensure the effective extraction of spatial and spectral features of HSI, leading to significant
improvements in network performance.
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HSI maintains abundant information on the land cover. The general method of
extracting finer features is to deepen the network’s depth or increase its width, but it tends
to show the phenomenon of overfitting. However, dense networks are an excellent solution
to overfitting. The principle of the dense network is to reduce the loss in the process of
input to output. Through layer-by-layer connection, the output features of all previous
layers are superimposed before the information of each layer to realize feature reuse, which
reduces the negative impact of gradient vanishing and overfitting and dramatically reduces
the parameters. The process is expressed as Equation (1):

xi = Hi(x0 + x1 + · · ·+ xi−1) (1)

where xi is the output result of the i-th layer, Hi represents the convolution operation of the
i-th layer, including Convolution, BN, and Nonlinear activation, and we use ReLU as the
activation function in this paper.

2.2. ECA Mechanism

Numerous experimental studies have shown that adding an attention mechanism into
the networks will improve efficiency. An efficient channel attention network (ECANet) [40]
is a kind of channel attention network, which is a further improvement in the Squeeze and
Excitation network (SENet). As shown in Figure 3, the SENet contains two fully connected
layers. The channels will have an operation of dimensionality reduction between the
fully connected layers by setting the compression ratio, which affects the efficiency of the
network, while the fully connected layers integrate the dependencies between all channels,
which also affects the efficiency of the network.
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Instead, ECANet considers the information of each channel within its k fields to
capture the cross-channel interaction information. In Figure 4, it is assumed that the
input of ECANet is X ∈ RW×H×C. First, the Global Average Pooling (GAP) is applied to
compress the global information into one channel 1× 1× C, amplifying the receptive field.
Equation (2) yields the results after GAP:

g(X) =
1

W × H

W

∑
i=1

H

∑
j=1

Xij (2)

where g(X) represents the Global Average-Pooling operation.
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The cross-channel information interaction is performed using one-dimensional (1D)
convolution with a convolution kernel size of k, where k represents the coverage of the
channel information interaction. The larger the channel dimension C, the larger the cover-
age. Then, an adaptive function is introduced to avoid man-made errors by automatically
selecting the size of the one-dimensional convolutional kernel to determine the value of k.
There is a mapping relationship between k and the channel dimension C, as follows:

C = ϕ(k) (3)

Then, approximate the mapping function in ECANet using the exponential function
ϕ, as follows:

ϕ(k) = exp(γk− b) (4)

Since the number of channels is usually set to an integer power of 2, the mapping
relation can be further computed as:

ϕ(k) = 2(γk−b) (5)

Given a channel number C, the size of the 1D convolution kernel can be determined
using Equation (6):

k = ψ(C) =
∣∣∣∣ log2(C)

γ
+

b
γ

∣∣∣∣
odd

(6)
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where γ and b are set to 2 and 1, respectively; odd indicates that the convolution kernel
size only takes odd values.

Assuming that yi is the compressed feature of ci channels after GAP, yj
i denotes the

i-th output value of the channel adjacent to the j-th channel. Qj
i denotes the set of k domain

channels and P denotes yi, the set of feature map channels for weighting. Then, the locally
weighted weights wi of yi are computed as:

yi = g(ci) ci ∈ P

wi = σ

(
k
∑

j=1
ω jyj

i

)
yj

i ∈ Qj
i

(7)

where σ denotes the Sigmoid activation function.
Finally, the channel attention weight w is computed as:

w = σ(C1Dk(y)) (8)

where C1D denotes 1D convolution, and y is the compressed feature.
To summarize, ECANet adaptively selects 1D convolutional kernels via Equations (3)–(6),

achieves weight sharing through Equation (7), and obtains the channel attention to com-
pressed features via Equation (8).

2.3. Feature Extraction Structure

The feature extraction structure is divided into an input layer and an output layer, and
the main part of the feature extraction structure is shown in Figure 5. x[i] represents the
feature map of the input layer with a growth rate of 6. y[i] represents the feature map of
the output layer with a growth rate of 12.
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First, x[1] is convolved (Conv) by 64 convolution kernels of size 3× 3× 3 to obtain
y[1]. Then, two feature maps are obtained from x[1] and y[1]. The second feature map is
computed through the SC-bottleneck using x[1] as the input feature map with a convolution
stride size 2. Following that, they are sent to the efficient channel attentional feature fusion
(ECA-FF) module shown in Figure 6. As the depth of the feature extraction structure
increases, the number of ECA-FF modules increases, and the finer the extracted features
of HSI, significantly reducing the influence of useless channel information. Equation (9)
shows the general procedure:

y[i + 1] = E[C1(y[i])] + E[C2(x[i])] (9)

where C1(·) and C2(·) denote the SC-bottleneck convolution processes using convolution
stride size 1 and 2, respectively. E[·] denotes the ECA operation, and + denotes concatenat-
ing the channel dimension.
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Since the parameters inevitably increase gradually as the depth of CA-FFDN increases,
a transition layer was added at the back of the feature maps of the input and output layers.
The number of feature channels was reduced using a 1× 1× 1 3D convolutional kernel.
Experiments proved that the transition layer greatly reduced the parameters and accelerated
the convergence speed of the network. Moreover, we proposed concatenating the convolved
feature map in the last layer of the input layer with the feature map in the output layer of
the same layer for the course of improving the HSI channel information utilization.

2.4. Feature Enhancement Structure

As shown in Figure 7, the output of the feature extraction structure is the input of the
feature enhancement structure. The input feature map size is 7× 7× 15, and the number
of channels C varies with the depth of the feature extraction structure. We employed two
times 3× 3× 3 convolution. However, the number of convolution kernels n significantly
impacts the network performance of CA-FFDN. Too few convolution kernels will reduce
the classification accuracy of the network, while too many will substantially increase the
training time and, thus, reduce the network’s performance. Therefore, we tested 80, 96, 100,
and 128 convolution kernels. The results showed that 128 convolution kernels would lead
to the highest accuracy. Moreover, BN and ReLU activation functions were added after
each convolution operation to ensure the convergence speed of the CA-FFDN and prevent
overfitting. Finally, the spatial–spectral features were integrated using the average-pooling
layer, and the classification maps were obtained using the softmax-based fully connected
layer after the Flatten operation.
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3. Experimental Results and Analysis

The hardware environment for all experiments utilizes an Intel(R) Core(TM) i7-9700K
CPU @ 3.60 GHz processor with 64 GB of RAM and NVIDIA GeForce RTX 2080Ti GPU.
The software environment is based on the deep learning framework of Tensorflow-gpu for
Windows 10, utilizing the Pycharm2020 platform with Python 3.6 compiler.

3.1. Experimental Dataset

Three open-source hyperspectral datasets, Indian Pines (IP), Pavia of University (UP),
and Kennedy Space Center (KSC) [52], were selected as experimental subjects. We divided
the datasets into the training set, validation set, and testing set after random shuffling, and
it is worth mentioning that we followed [34] to set the ratio of the samples. 20%:10%:70%
for the IP and KSC datasets and 10%:10%:80% for the UP dataset. Last, but not least, overall
accuracy (OA), average accuracy (AA), and kappa coefficient (K) are used for quantitative
analysis of the experimental results. Higher metric values indicate that the network is more
capable of classifying [53]. Table 1 shows the specific parameter settings of the datasets,
and the false color maps of the IP, UP, and KSC datasets and their ground-truth maps are
shown in Figures 8–10, respectively.

Table 1. Parameter setup of the datasets.

Parameter
Dataset

IP UP KSC

Sensor AVIRIS ROSIS AVIRIS
Year of data acquisition 1992 2001 1996

Spectrum range/nm 400~2500 430~860 400~2500
Spatial resolution/m 20 1.3 18

Pixel resolution 145 × 145 610 × 340 512 × 614
Band 200 103 176

Land-cover 16 9 13
Total sample 10,249 42,776 5211
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3.2. Experimental Setting

In our experiment, the batch size was set to 16, the RMSprop optimizer [54] was
selected to optimize the training loss, and the number of training iterations was set to 100,
saving the best model for each iteration. We employed the grid search [55,56] method to
choose the best learning rate, and the learning rate was set to 0.01, 0.001, 0.003, 0.0003,
0.0005, and 0.00005, respectively. The results showed that the optimal learning rate was
0.0003 on the three datasets.

3.2.1. Effect of Principal Components

In the PCA test, the number of principal components significantly impacts the classifi-
cation results, and the components were set to 20 to 60; the spectral dimensions after PCA
were selected at intervals of 10 to conduct five sets of experiments on the three datasets.
Experimental results without PCA were used as control experiments.

We can see from Figure 11 that as the number of principal components increases,
the values of three metrics on the three datasets continue to rise, reaching the highest
values when the number of principal components was 30 and then decreasing. On the IP
dataset, when the number of principal components was 60, the OA reached 99.12%, which
was 0.11% higher than the number of principal components at 30. However, the number
and amount of parameters, training, and testing time increased along with the principal
components. Additionally, more principal components will cause noise and reduce the
classification accuracy of low-resolution hyperspectral images. The experimental accuracy
without PCA was the lowest on the IP and UP datasets, and the training time was the
longest. Considering the above, we set the number of principal components to 30.
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3.2.2. Effect of Different Spatial Size Inputs

The spatial size of the input sample influences the classification accuracy of the HSI
greatly. In order to choose the best spatial size of CA-FFDN, five sets of experiments
were conducted with spatial sizes of 9× 9, 11× 11, 13× 13, 15× 15, and 17× 17. The
classification results are shown in Figure 12. For the IP dataset, Figure 12a shows that it
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reached the highest AA of 99.47% at a spatial size of 13× 13 and the highest OA of 99.42%
at a spatial size of 15× 15, and then all values of the three metrics started to decrease. For
the UP dataset, as shown in Figure 12b, the accuracy reached close to 99% at a spatial size
of 13× 13. It reached the highest OA, AA, and K values at 15× 15, but its running time
also significantly increased. For the KSC dataset, Figure 12c shows that the classification
accuracy started to fall after 13× 13. Considering the above, we chose the spatial size of
13× 13 as the input for CA-FFDN.
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3.2.3. Effect of the Feature Extraction Structure Depth

The depth of the feature extraction structure also dramatically impacts the accuracy.
As shown in Figure 13, the classification results improved with the increasing depth of the
feature extraction structure. OA reached the highest on three datasets when the depth was
4, which was 99.51%, 99.91%, and 99.89%, respectively. For all the datasets, the accuracies
began to fall after depth 4. As shown in Figure 12b,c, the classification accuracies on UP
and KSC datasets are unstable. When the depth was 5, the OA decreased by 0.39% and
0.11% but improved by 0.14% and 0.04% when the depth was 6. Thus, we chose the optimal
depth of the feature extraction structure of CA-FFDN to be 4.
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3.2.4. Ratios of Training Dataset

The bigger the division ratio of the training dataset, the higher the classification
accuracy. Different ratios of the training dataset are discussed in Table 2 to select the
optimal one. For all datasets, OA and training time increased along with the ratio of the
training set, validation set, and testing set. For the IP, UP, and KSC datasets, OA reached
99% when the ratio was at 2:1:7, 1:1:8, and 2:1:7, respectively, which already met with the
expected results of the experiment. In addition, OA reached 99.9% when the ratio was 5:1:4
for the IP dataset and 3:1:6 for the UP dataset. However, then came the increase in training
time cost. Training the network took almost double the time when the training samples
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rose by 10%. Finally, we selected a ratio of 2:1:7 for the IP and KSC datasets and 1:1:8 for
the UP dataset.

Table 2. OA, training time, and test time under different training dataset ratios.

IP (13 × 13 × 30; Depth = 4) UP (13 × 13 × 30; Depth = 4) KSC (13 × 13 × 30; Depth = 4)

OA Train (s) Test (s) OA Train (s) Test (s) OA Train (s) Test (s)

1:1:8 95.80 428.3 6.4 99.91 1868.4 25.6 98.84 253.8 3.2
2:1:7 99.51 908.5 4.8 99.96 3642.5 22.8 99.89 438.3 2.8
3:1:6 99.74 1446.7 2.6 99.98 5298.7 19.7 99.93 629.3 2.4
4:1:5 99.82 1781.5 1.4 100 6824.6 16.4 100 833.8 2.0
5:1:4 99.94 2275.2 0.8 100 8541.8 13.9 100 996.9 1.5

3.3. Ablation Experiment

To verify the effectiveness of SC-bottleneck (S), ECA-FF (E), and transition layer (T),
we performed six groups of ablation experiments. As shown in Table 3, the ECA was
removed from the ECA-FF module in Group 1; the SC-bottleneck was not used in Group
2; the transition layer was not applied in Group 3; both the ECA mechanism and the SC-
bottleneck were removed in Group 4, but the transition layer was retained; the transition
layer was removed in Group 5 based on Group 4; and the sixth group of experiments is
the proposed network in this paper. Each experiment was carried out ten times, and the
average value was taken.

Table 3. Classification results under six different groups of methods.

Method
Dataset

IP (20%) UP (10%) KSC (20%)

Group S E T OA (%) AA (%) K (%) OA (%) AA (%) K (%) OA (%) AA (%) K (%)

1
√ √

99.36 99.36 99.27 99.89 99.89 99.85 99.45 99.33 99.38
2

√ √
99.25 99.22 99.14 99.90 99.89 99.87 99.72 99.40 99.69

3
√ √

99.33 99.28 99.23 99.79 99.80 99.73 99.53 99.01 99.47
4

√
99.33 99.17 99.23 99.87 99.85 99.82 99.67 99.37 99.63

5 99.21 98.99 99.10 99.89 99.88 99.88 99.67 99.50 99.63
6

√ √ √
99.51 99.45 99.44 99.91 99.91 99.88 99.89 99.76 99.87

The experimental results on three datasets of Groups 1, 2, and 3 were compared with
the results of Group 6, respectively, showing that the SC-bottleneck, ECA-FF module, and
transition layers can improve the classification results. And the comparison of the results
between the fourth and sixth groups shows that networks without transition layers decrease
in accuracy, which verifies the applicability of adding transition layers in CA-FFDN. For
the IP dataset, the fifth group of experiments achieved the worst classification accuracy,
with a 0.3% decrease from the best result. For the UP dataset, Group 3 achieved the worst
classification result. Still, in terms of the high spatial resolution of the UP dataset and the
small number of mixed pixels, the classification accuracy reached more than 99.7%. Beyond
that, the effectiveness of the ECA-FF module and the SC-bottleneck can be illustrated
based on the comparison with Group 5. For the KSC dataset, the network lacking the ECA
mechanism achieved the worst classification accuracy, and the OA was reduced by 0.44%
compared with the best setting, and the ECA mechanism will significantly improve the
classification accuracy of the KSC dataset.

To further prove that our attentional feature fusion strategy is more robust than other
attention mechanisms. We employed channel attention mechanism (CAM), spatial attention
mechanism (SAM), CBAM, and SENet to replace the ECANet in the ECA-FF module,
respectively. It is observed from Table 4 that SENet obtained the worst results among all
attention mechanisms, and the reason was that the process of dimensionality reduction in
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the fully connected layers brought side effects to the extraction of channel information. All
attentional feature fusion methods’ OA reached 99%, reflecting our network’s robustness.
Meanwhile, attentional feature fusion based on ECANet outperformed other attention
methods because ECANet can capture the cross-channel information to make full use of
the semantic information.

Table 4. Classification results under different attention mechanisms.

Method

Dataset

IP (20%) UP (10%) KSC (20%)

OA (%) AA (%) K (%) OA (%) AA (%) K (%) OA (%) AA (%) K (%)

CAM [36] 99.20 99.28 98.98 99.78 99.78 99.71 99.61 99.26 99.57
SAM [36] 99.27 98.99 99.17 99.83 99.83 99.79 99.47 99.04 99.41

CBAM [36] 99.10 99.02 98.98 99.84 99.81 99.77 99.56 99.06 99.51
SENet [35] 99.00 99.09 98.87 99.66 99.62 99.60 99.46 99.11 99.41

ECANet [40] 99.51 99.45 99.44 99.91 99.91 99.88 99.89 99.76 99.87

3.4. Comparative Analysis of Classification Results

Five advanced networks were selected for comparative analysis, including 3D-CNN [57],
HybridSN [58], 3D-SE-DenseNet [34], MDSSAN [50], and MSDN [32]. The 3D-CNN contains
three 3D convolutional layers and two global-pooling layers. Meanwhile, the dropout
strategy is added to prevent overfitting. HybridSN is a 3D and 2D convolution combined
network, which is more efficient than simple 3D-CNN networks. In the 3D-SE-DenseNet,
each dense block is followed by an SENet structure, and both the dense blocks and dense
layers were set to 3 in this paper. MDSSAN applies separable convolution in the bottleneck to
reduce the training parameters. The depth of MSDN remained the same as ours. In order to
ensure the fairness of the experiments, all experimental data were measured under the same
environment, and the sample division ratio of different datasets, as well as input size for
each network, were the same as ours. Furthermore, the optimal parameter settings of each
network are consistent with those of the references. Tables 5–7 show the classification results
of the experiments, and Figures 14–16 present the classification maps on three datasets.

Table 5. Classification results of each method for IP dataset with 20% training samples.

No. 3D-CNN HybridSN 3D-SE-DenseNet MDSSAN MSDN Proposed

1 85.71 100.00 83.33 94.59 94.44 97.22
2 99.59 99.41 96.47 98.40 99.29 98.43
3 92.39 99.15 98.44 97.91 98.28 100.00
4 99.36 100.00 94.90 99.31 90.76 100.00
5 95.27 99.31 97.71 98.27 100.00 100.00
6 98.81 98.03 99.80 99.61 99.80 100.00
7 100.00 100.00 100.00 100.00 100.00 100.00
8 99.09 100.00 98.49 100.00 100.00 100.00
9 100.00 100.00 100.00 100.00 100.00 100.00
10 99.54 98.96 99.39 99.10 99.40 100.00
11 98.07 99.65 98.89 99.11 99.58 99.64
12 94.30 92.87 97.53 94.57 98.30 99.28
13 100.00 100.00 99.28 94.52 99.28 100.00
14 98.64 95.17 99.43 99.54 99.88 99.54
15 99.26 98.61 97.50 96.81 97.16 98.56
16 98.48 98.30 91.89 100.00 97.01 98.55

OA(%) 97.78 ± 0.24 98.37 ± 0.57 98.25 ± 0.74 98.53 ± 0.46 99.06 ± 0.67 99.51 ± 0.12
AA(%) 97.41 ± 0.31 98.71 ± 0.61 97.06 ± 0.62 98.23 ± 0.23 98.32 ± 0.72 99.47 ± 0.25
K × 100 97.47 ± 0.68 98.14 ± 0.32 98.01 ± 0.75 98.33 ± 0.25 98.93 ± 0.34 99.44 ± 0.14
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Table 6. Classification results of each method for UP dataset with 10% training samples.

No. 3D-CNN HybridSN 3D-SE-DenseNet MDSSAN MSDN Proposed

1 99.31 99.58 97.75 99.26 99.37 99.84
2 99.60 99.59 99.97 99.96 99.98 99.95
3 97.30 97.88 97.83 99.87 98.05 100.00
4 99.40 98.13 99.79 99.08 100.00 100.00
5 99.72 100.00 98.44 99.71 100.00 100.00
6 99.82 99.92 99.92 99.97 99.90 100.00
7 100.00 100.00 99.39 99.81 98.66 100.00
8 95.30 94.72 98.74 97.92 98.48 99.52
9 95.72 100.00 99.20 100.00 99.86 99.86

OA(%) 99.00 ± 0.82 99.04 ± 0.19 99.31 ± 0.15 99.60 ± 0.18 99.61 ± 0.17 99.91 ± 0.03
AA(%) 98.46 ± 0.54 98.87 ± 0.26 99.00 ± 0.37 99.51 ± 0.27 99.37 ± 0.24 99.91 ± 0.02
K × 100 98.67 ± 0.64 98.73 ± 0.11 99.09 ± 0.28 99.47 ± 0.16 99.49 ± 0.14 99.88 ± 0.07

Table 7. Classification results of each method for KSC dataset with 20% training samples.

No. 3D-CNN HybridSN 3D-SE-DenseNet MDSSAN MSDN Proposed

1 100.00 100.00 100.00 97.24 100.00 100.00
2 94.79 100.00 99.29 99.37 100.00 100.00
3 82.62 93.61 96.70 100.00 96.70 100.00
4 97.93 92.61 93.25 95.45 100.00 98.82
5 100.00 96.15 100.00 100.00 98.18 98.18
6 100.00 100.00 100.00 98.65 100.00 100.00
7 96.38 95.23 100.00 100.00 100.00 100.00
8 92.54 97.70 100.00 99.33 99.28 100.00
9 100.00 100.00 93.06 97.91 94.94 100.00
10 100.00 98.95 96.25 100.00 99.64 100.00
11 100.00 100.00 99.32 100.00 100.00 100.00
12 99.70 100.00 99.41 99.12 100.00 100.00
13 100.00 100.00 99.69 100.00 100.00 100.00

OA(%) 97.88 ± 0.76 98.81 ± 0.13 98.24 ± 0.75 98.92 ± 0.75 99.14 ± 0.47 99.89 ± 0.09
AA(%) 97.23 ± 0.64 98.02 ± 0.81 98.23 ± 0.62 99.00 ± 0.63 99.13 ± 0.54 99.76 ± 0.12
K × 100 97.64 ± 0.66 98.68 ± 0.23 98.04 ± 0.48 99.00 ± 0.67 99.05 ± 0.46 99.87 ± 0.08
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Figure 14. Classification maps for the IP dataset: (a) 3D-CNN; (b) HybridSN; (c) 3D-SE-DenseNet;
(d) MDSSAN; (e) MSDN; (f) Proposed.

The proposed CA-FFDN provides the best average results along with the highest
OA, AA, and K values on all three datasets. For the IP dataset, compared with the five
types of networks, 3D-CNN, HybridSN, 3D-SE-DenseNet, MDSSAN, and MSDN, the
OA of CA-FFDN increased by 1.73%, 1.14%, 1.26%, 0.98%, and 0.45%, respectively; for
the UP dataset, the OA of CA-FFDN increased by 0.91%, 0.87%, 0.60%, 0.31%, and 0.3%,
respectively. For the KSC dataset, the OA of CA-FFDN increased by 2.01%, 1.08%, 1.65%,
0.97%, and 0.75%, respectively. We can note that 3D-CNN has the lowest classification
accuracy compared to other networks on the three datasets. The reason is that the network
structure of 3D-CNN is too simple to extract fine spatial–spectral features in most cases.
The HybridSN combined comprehensive spatial and spectral information in the form of 3D
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and 2D convolution. Thus, it performed well in specific land cover, such as alfalfa and corn,
on the IP dataset. 3D-SE-DenseNet and MDSSAN gradually refined the extraction of HSI
features due to the consecutive dense block structure. Compared with 3D-CNN, the OA
improved by 0.47% and 0.75% on the IP dataset, 0.31% and 0.60% on the UP dataset, and
0.36% and 1.04% on the KSC dataset, which indicated the effectiveness of dense networks,
but they achieved lower accuracy in the classification of small sample categories, such as
grass-pasture-mowed and sheets. The OA of MSDN was reduced by 0.45%, 0.30%, and
0.75% compared to ours on three datasets, respectively. By observing the experimental
results, our network outperformed other networks, achieved the highest accuracy, and
could quickly converge in fewer training iterations because introducing an efficient channel
attention mechanism makes up for the underfitting of the network and preserves as much
of the original semantics as possible by compensating for feature loss.
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Figures 14–16 present the classification maps on three datasets. The completeness
of the classification maps remained broadly consistent with the classification results. In
particular, 3D-CNN, HybridSN, 3D-SE-DenseNet, and MDSSAN had more noise and
misclassification situations on the IP and KSC datasets. The MSDN achieved the fine
classification of ground objects, while noise was also significantly reduced compared with
the rest of the networks. CA-FFDN was the best regarding ground object classification,
generating smoother results with few misclassified samples in classification maps. Due to
the large sample size of the UP dataset, the obtained classification maps were relatively
good, and there were few noticeable differences between the classification maps.
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3.5. Comparative Analysis of Convergence Performance

To further evaluate the convergence performance of the proposed network, more
experiments were conducted on each network on three datasets to obtain the accuracy
and loss variation between the training and validation sets during the training process.
Figures 17–19 portray that CA-FFDN had the slightest loss fluctuation in training and
validation sets, and the network converged the fastest. In contrast, 3D-CNN had the
slowest convergence speed during the training process because it generally lost important
and detailed semantic information, which made it hard to converge fast. In particular,
HybridSN was set with the largest batch size of 256 among all networks. Thus, more original
data can be trained within a shorter time, which will lead to a fast convergence process.
Both 3D-SE-DenseNet and MDSSAN adopt dense connection and attention mechanisms,
and the accuracy and loss convergence speed of the training set were greatly improved
compared with 3D-CNN.
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Figure 17. Accuracy loss variation in the training and validation sets on IP dataset: (a) 3D-CNN;
(b) HybridSN; (c) 3D-SE-DenseNet; (d) MDSSAN; (e) MSDN; (f) Proposed.
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Many factors can lead to loss fluctuations. The convergence speed of the MSDN was
second only to CA-FFDN. Still, there were inevitable fluctuations in the validation set due
to its complex network structure with a large number of parameters, so the network’s
stability was not good enough. The reason why 3D-SE-DenseNet and MDSSN fluctuated
severely on the IP and KSC datasets, compared with other networks, was unbalanced data
division as well as small batch size. In other words, insufficient validation set samples and
small batch size will lead to loss fluctuations. We also recorded each network’s parameters
and training time in the training process, as shown in Table 8. Compared with MSDN
before improvement, CA-FFDN reduced the network parameters by more than half, and the
training time was greatly reduced. At the same time, the accuracy and convergence speed
of the network was guaranteed, which showed the effectiveness of the proposed network.

Table 8. Training time, test time, and parameters of each network.

Dataset Time/Parameter 3D-CNN HybridSN 3D-SE-
DenseNet MDSSAN MSDN CA-FFDN

IP
Training time (s) 561.71 36.74 1248.63 454.11 2234.05 807.66

Test time (s) 4.86 0.32 11.32 2.72 20.94 5.34
Parameter 27,863,448 796,800 1,171,280 565,167 1,662,134 771,902

UP
Training time (s) 1126.90 173.91 1848.60 999.60 3042.95 1806.45

Test time (s) 11.33 3.77 31.95 13.36 54.84 25.42
Parameter 27,862,041 519,417 1,169,985 563,872 1,652,399 770,103

KSC
Training time (s) 299.01 22.41 571.37 241.06 1007.59 459.25

Test time (s) 2.46 0.18 5.13 1.42 9.05 2.96
Parameter 27,862,845 796,413 1,170,725 564,612 1,657,779 771,131

3.6. Comparative Analysis of Different Percentages of Training Samples

To further evaluate the generalizability of the proposed CA-FFDN, different percent-
ages of the training samples were tested, 5%, 7%, 9%, 15%, and 20% for the IP and KSC
datasets, and 0.5%, 1%, 3%, 5%, and 10% for the UP datasets. It can be observed from
Figure 20 that as the percentage of training samples increases, the overall accuracy of
each network improves. In detail, MSDN performed worst when training samples were
less than 15% on the IP dataset. 3D-SE-DenseNet also had the worst classification results
in the case of small samples on UP and KSC datasets. Nevertheless, different networks
performed differently on three datasets. But, in general, our CA-FFDN had the most robust
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performance under small training samples, which achieved the highest OA among all
networks on three datasets.
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4. Conclusions

In this paper, we propose a novel dual-scale dense network, CA-FFDN, to deal with the
problems of slow convergence and low classification accuracy caused by insufficient spatial–
spectral feature extraction in HSI classification tasks. Our CA-FFDN significantly reduces
the interference of data noise by using PCA technology, which can be used to manage large
hyperspectral data cubes. Numerous experimental results demonstrate that the CA-FFDN
realizes the best classification results by providing a state-of-the-art SC-bottleneck-based
dense network and ECA-based feature fusion strategy. Finer spatial–spectral features
can be extracted by applying efficient attentional feature fusion between the dual-scale
layers, and the highest classification metrics can be obtained by using ECANet rather
than employing the compared attention mechanisms in this paper. The results of multiple
comparison experiments with five advanced networks show that the overall accuracies of
the proposed network under a ratio of 2:1:7 on the IP, 1:1:8 on the UP dataset, and 2:1:7 on
the KSC dataset reached 99.51%, 99.91%, and 99.89%, respectively, achieving the highest
classification accuracy as well as obtaining the smoothest classification maps with the least
noise. Furthermore, our CA-FFDN converged the fastest in the training process, and the
loss fluctuated minimally on the training and validation sets. Also worthy of mention
is that our CA-FFDN outperformed the other five advanced networks, even with small
training samples. In the future, we intend to conduct further research on unsupervised
learning algorithms in HSI classification tasks with small samples.
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