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Abstract: Diffusion magnetic resonance imaging (dMRI) is an indispensable technique in today’s
neurological research, but its signal acquisition time is extremely long due to the need to acquire
signals in multiple diffusion gradient directions. Supervised deep learning methods often require
large amounts of complete data to support training, whereas dMRI data are difficult to obtain. We
propose a deep learning model for the fast reconstruction of high angular resolution diffusion imaging
in data-unpaired scenarios. Firstly, two convolutional neural networks were designed for the recovery
of k-space and q-space signals, while training with unpaired data was achieved by reducing the
uncertainty of the prediction results of different reconstruction orders. Then, we enabled the model
to handle noisy data by using graph framelet transform. To evaluate the performance of our model,
we conducted detailed comparative experiments using the public dataset from human connectome
projects and compared it with various state-of-the-art methods. To demonstrate the effectiveness of
each module of our model, we also conducted reasonable ablation experiments. The final results
showed that our model has high efficiency and superior reconstruction performance.

Keywords: diffusion magnetic resonance imaging; high angular resolution diffusion imaging; deep
learning; compressed sensing; brain imaging

1. Introduction

Currently, diffusion magnetic resonance imaging (dMRI) is one of the noninvasive and
radiation-free technique for detecting changes in human tissues. By collecting at least six
diffusion-weighted images (DWIs) from different directions and using a least-squares fitting
method to estimate the diffusion tensor image (DTI), dMRI can measure water molecule
diffusion in tissues and reconstruct tissue fiber orientation, reflecting the microstructure of
tissues. In recent years, DTI has been widely used as an auxiliary diagnostic tool for diseases
such as Parkinson’s disease, depression, and Alzheimer’s disease. However, because DTI
assumes that water molecule displacement in tissues follows a Gaussian distribution, it
cannot accurately reflect complex fiber structures such as fiber crossings.

To accurately estimate complex fiber structures from data, high angular resolution
diffusion imaging (HARDI) utilizes techniques such as spherical harmonic transformation
to estimate multiple crossing fiber directions. Although HARDI provides an effective
means of detecting complex fiber structures, this is achieved by collecting a minimum of
50 diffusion-weighted images in various directions and results in long acquisition times
that limit clinical applications. Therefore, shortening the HARDI acquisition time while
maintaining image quality is crucial for the accurate estimation of complex tissue fiber
structures and assisting clinical diagnosis.

Currently, there are two main strategies for shortening the HARDI acquisition time.
The first strategy involves improving hardware efficiency through parallel imaging tech-
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niques such as simultaneous acquisition of spatial harmonics (SMASH) [1] and sensitivity
encoding (SENSE) [2]. These methods use multiple coils to acquire signals in parallel, which
are then combined to reconstruct the complete signal. However, these hardware-based
methods have limitations in terms of the acceleration level and can introduce more noise
and overlapping artifacts.

The second strategy involves reducing the number of acquired signals and using
algorithms to recover the complete signal from a small amount of data. One representative
method is based on compressed sensing (CS) [3,4], which exploits the sparsity or low-rank
properties of signals to reconstruct k-space data efficiently. Here, k-space refers to the fre-
quency domain in which magnetic resonance imaging (MRI) data are collected. Traditional
CS reconstruction often uses iterative optimization algorithms that are slow [5,6]. With
convolutional neural networks (CNN) [7] impressing in the field of computer vision [8–10],
ADMM-net [11] used a cascaded network structure based on the alternating direction
method of multipliers (ADMM) [12], which incorporates convex optimization problem
decomposition and subproblem parallelization into deep learning models to improve speed.
Similarly, the ISTA-net and ISTA-net+ [13] models use the iterative shrinkage threshold algo-
rithm [14], along with the soft-thresholding iteration structure and sparse prior, to enhance
signal reconstruction efficiency in convolutional neural networks. The CRNN [15] model
integrates convolutional recurrent neural networks with traditional iterative algorithms
to accelerate the reconstruction process. Instead of relying on the iterative approach of
conventional algorithms, CRNN employs forward propagation of convolutional recurrent
neural networks for faster and more efficient reconstruction.

However, these methods still rely on traditional priors that may limit their performance
in texture detail enhancement tasks. The DAGAN [16] model combines U-Net [17] with
generative adversarial networks to remove artifacts and refine the details of MRI images
effectively. RefineGAN [18] utilizes deeper generators and discriminators with cycle
consistency loss for better artifact removal and detail recovery. KIKI-net [19] performs
convolution operations alternately between the k-space domain and spatial domain while
exchanging information between them iteratively. MdRecon-Net [20] extracts and fuses
k-space and image features separately using two shared network branches for improved
signal recovery results. Overall, these studies demonstrate how deep learning techniques
can significantly accelerate the computation speed of traditional iterative optimization
algorithms while enhancing MRI image quality by exploiting both frequency-domain
information from k-space data and spatial-domain information from DWIs simultaneously.

Compared to MRI data, dMRI data are sparse not only in k-space but also in q-space,
which is a term used in dMRI to describe the domain in which the diffusion data are
represented. Therefore, some researchers have undersampled signals in q-space and re-
constructed the original q-space data using compressed sensing algorithms. For instance,
Koppers et al. developed a fully connected network model that utilized single-shell HARDI
data to generate multishell HARDI data, thereby improving the acquisition speed of
HARDI [21]. However, their approach did not consider the spatial relationship between
voxels leading to suboptimal reconstruction results. In contrast, Jha et al. considered both
the spatial position relationship between voxels and the relationship between different
directional signals within voxels by generating multidirectional DWIs from few-direction
DWIs and further improved the compressed sensing reconstruction effect of DWIs [22].
RCNN [23] directly utilizes LSTM to build an encoder–decoder with 3D convolution to
learn the relationship between the spatial domain and q-space. SPC-GAAN [24] uses
3D convolution to reconstruct dMRI data in both the spatial domain and k-space, while
introducing adversarial learning strategies and attention mechanisms to make the recon-
structed dMRI data closer to real data. However, this method requires a large amount of
memory space and has certain requirements for data size. Performing k-space and q-space
undersampling simultaneously while reconstructing the original complete signal can sig-
nificantly accelerate HARDI imaging speed. Vaish et al. proposed MSR-HARDI [25] for
joint k-q space reconstruction of dMRI using the Smooth-FISTA method based on multiple
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sparse regularization terms for signal recovery, which proved feasible for the joint k-q
space reconstruction method. On the other hand, Mani et al. trained a denoiser using deep
learning as a regularization term for joint k-q space reconstruction providing an idea for
deep learning-based k-q space reconstruction methods [26].

Although the above-mentioned methods have achieved fast and accurate reconstruc-
tion of HARDI, they still require a large amount of fully sampled HARDI images as labels
for training, which has certain limitations in clinical applications. To address this issue,
a self-supervised deep learning reconstruction model was proposed using compressed
sensing and the concept of SSDU [27]. It performs division on undersampled k-space
signals, predicts missing signals based on the available part signals, and achieves label-free
data reconstruction. This demonstrates the feasibility of self-supervised MRI compressed
sensing reconstruction. Cole et al.combined self-supervised strategies with adversarial
generative networks and designed an unpaired k-space signal reconstruction method
using adversarial learning, expanding the idea of self-supervised compressed sensing
reconstruction [28]. However, existing self-supervised models focus only on accelerated
k-space reconstruction and it is difficult to further improve HARDI imaging speed without
considering q-space information. Reconstructing the HARDI signal in k-q space using
limited data remains a challenging task.

In this paper, we propose an unpaired HARDI reconstruction network based on
minimizing the uncertainty of reconstruction order, aiming to jointly utilize k-q space
information and achieve the high-quality reconstruction of HARDI signals in cases where
some labels are not paired. The main contributions are as follows:

(1) We designed a cascaded model for jointly compressed sensing reconstruction of
HARDI data in both k-space and q-space. The model consists of two parts: the
k-space reconstruction model and the q-space reconstruction model. The former ob-
tains effective neighborhood information from both the image domain and Fourier
domain to supplement the undersampled signal, while the latter obtains highly
correlated information from both the image domain and q-space domain, ensuring
high-quality images at lower sampling rates;

(2) Considering that the order of disrupting k-space reconstruction and q-space re-
construction will affect the reconstruction effect of the model and increase the
uncertainty of the reconstruction results, a training strategy was designed to reduce
the uncertainty of predicting different reconstruction orders, which can ensure the
reconstruction effect of the model under conditions where some data are not paired;

(3) To reduce the impact of noise on the model reconstruction performance, we intro-
duced a graph framelet transform (GFT)-based denoising module that enhances the
robustness of the model.

2. Materials and Methods

HARDI requires scanning of DWIs with multiple b-values and directions, which
together form q-space. Here, b-value is a parameter used in DWI to quantify the extent
of diffusion weighting applied to the MRI signal. The corresponding DWI is obtained by
acquiring k-space signals and performing Fourier transform when given a direction and b-
value. To reduce the acquisition time of HARDI, sampling is typically performed on either
k-space or q-space (as shown in Figure 1A,B). We propose a joint k-q space sampling strategy
(Figure 1C) to further improve the sampling rate while enhancing the reconstruction quality
of HARDI, named the order-aware uncertainty minimization (OAUM) network.
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Figure 1. Sampling patterns: (A) only sampling in k-space; (B) only sampling in q-space; (C) jointly
sampling in k-q space.

Jointly sampling in k-q space can effectively reduce the acquisition time of HARDI.
However, the order of reconstructing k-space and q-space affects the reconstruction qual-
ity of HARDI, leading to increased uncertainty in the results. Ideally, HARDI results
obtained through different reconstruction orders should be consistent. To address this
issue, we propose a reconstruction model that enforces consistency to improve training
on unpaired samples. For ease of reference, we denote the DWI slice with full sam-
pling in k-q space as s f , f = {xi

f ; i = 1, · · · , n}, where xi
f ∈ R2 denotes a k-space fully

sampled 2D slice in direction i and n denotes the number of directions. The subscript f
here represents the full sampling, and u the undersampling. The first subscript indicates
whether k-space is undersampled, and the second subscript means whether q-space is
undersampled. Undersampled data in q-space are denoted as s f ,u = {xi

f ; i ∈ mq} where
mq = {j; 1 ≤ j ≤ n} denotes the undersampling mask in q-space. Undersampled data in
k-space are denoted as su, f {xi

u; i = 1, · · · , n} where xi
u denotes a k-space undersampled 2D

slice in direction i. DWI data simultaneously undersampled in both k-space and q-space as
su,u = {xi

u; i ∈ mq}. Our unpaired training dataset consists of two parts:
s f ,u1 = {si

f ; i ∈ mq
1} and su,u2 = {xi

u; i ∈ mq
2} where mq

1 ∩ mq
2 = ∅ and

mq
1 ∪mq

2 = {1, . . . , n}. The task of reconstructing k-space and q-space involves solving the
mapping relationship between undersampled data and fully sampled data. Therefore, their
formalized reconstruction processes are given below:

ŝk→q
f , f = hq(ŝ f ,u; θq) = hq(hk(su,u; θk); θq) = hq({hk(x

i
u; θk); i ∈ mq}; θq) (1)

ŝq→k
f , f = hk(ŝu, f ; θk) = hk(hq(su,u; θq); θk) = {hk(x̂

i
u; θk); i = 1, · · · , n} (2)



Electronics 2023, 12, 2985 5 of 25

Equation (1) defines hk( · ; θk) as the reconstruction mapping function in k-space,
where θk represents the network parameters for k-space reconstruction. Similarly, hq( · ; θq)
represents the reconstruction mapping function in q-space and its corresponding mapping
parameters. In addition, ŝ f , f designates the HARDI data jointly reconstructed from k-q
space. x̂i

u denotes the q-space data reconstructed from undersampled k-space. Ideally,
different orders of reconstruction should yield identical results:

ŝ f , f = ŝq→k
f , f = ŝk→q

f , f (3)

However, during the predicting process, prediction errors can cause overlapping
and interference between reconstruction errors in k-space and q-space. The order of
reconstruction may also introduce uncertain perturbations to the results. To improve the
stability and effectiveness of DWI reconstruction, it is necessary to reduce uncertainty
related to order of reconstruction. We propose a consistency constraint for different orders
of k-space and q-space reconstructions:

arg min
θk ,θq
‖hk→q(su,u; θk, θq)− hq→k(su,u; θk, θq)‖2

2 (4)

The model framework shown in Figure 2 includes hk→q(su,u; θk, θq) and hq→k(su,u; θk, θq),
which represent the reconstruction of the k-space signal followed by the reconstruction
of the q-space signal and the reconstruction of the q-space signal followed by the recon-
struction of the k-space signal. In addition, the network shares the parameters of the
identical module.

To begin, the k-q space jointly undersampled data su,u must be inputted into parallel
reconstruction networks for both k-space and q-space. This will result in the preliminary
restoration of the data, producing ŝ f ,u and ŝu, f . Once this step is complete, these results
are then alternately fed back into opposite reconstruction modules to obtain the final
reconstructed output. The subsequent section will provide a comprehensive description of
the k-space and q-space reconstruction networks used in this process.

2.1. k-Space Reconstruction Module

The DWI resulting from the undersampled k-space signal in any gradient direction
can be expressed as:

xu = F−1(mkF (x f )) (5)

The following notations are used: F ( · ) for Fourier transform, F−1( · ) for inverse
Fourier transform, and mk ∈ R2 for a random sampling matrix. Thus, the objective of
optimizing k-space reconstruction is:

arg min
θk
‖hk(xu; θk)− x f ‖2

2 (6)

Figure 2B shows the model structure of hk( · ; θk). Before inputting data into the
model, it is necessary to adjust the data dimension. The original input data size is (B, D, H,
W), where B represents batch size, D the number of directions in DW images, and H and W
the height and width of DW images, respectively. To rearrange this data for processing, we
convert them into (B × D, 1, H, W). After Fourier transform, the k-space signal is obtained
and represented by two channels for the real and imaginary parts of the signal. These
signals are then fed into a stacked deblurring module that produces a so-called k-space
completion image. The structure of the deblurring module can be seen as a black box in
Figure 2B. Since brain structures have a certain symmetry on the spatial level and k-space
signals also have certain symmetry relative to a low-frequency center, we introduce the
spatial flip concatenation (SFC) operation (Figure 2D) and k-space flip concatenation (KFC)
operation (Figure 2E) in this module. SFC flips along the H direction center for the input
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spatial image, while KFC flips along the H and W direction center for the input k-space
image. These flipped images are merged before being passed through feature extraction
modules that use similar structure assistance features for effective feature extraction. In
this way, undersampled images processed by SFC and feature extraction modules can
preliminarily remove artifacts. Fourier transform results are transferred to k-space where
similar signal restoration can be assisted through KFC combined with feature extraction
modules. Finally, the k-space DC layer increases the sensitivity of model reconstruction for
missing signal areas. The k-space data consistency layer can be written as KDC:

Fout
(i,j) =

Fin
(i,j), mk

(i,j) = 0
F (xu)(i,j)+αFin

(i,j)
1+α , mk

(i,j) = 1
(7)

Figure 2. Structure of the proposed OAUM network: (A) schematic diagram of the overall reconstruc-
tion process of the network; (B) k-space reconstruction module; (C) q-space reconstruction module;
(D,E) the SFC module and the KFC module, respectively, which are used to fuse the symmetrical
features of the spatial feature map and the frequency domain feature map.
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The variable (i, j) denotes the row and column index of the 2D matrix. The k-space un-
dersampling mask mk

(i,j) = 0 means that the k-space signal is not sampled while mk
(i,j) = 1,

which, in turn, means that the k-space signal is sampled at row i and column j.F (xu)(i,j) des-
ignates the k-space signal of the original undersampled image at row i and column j. The
output restored images’ k-space signals from consistency module are represented by Fout

(i,j). A
tuning parameter α is used to adjust proportion between original signals and restored sig-
nals. After being constrained in the frequency domain by the consistency module, inverse
Fourier transform can be applied to obtain reconstructed images without aliasing artifacts.
Finally, we apply a residual network structure composed of convolutional layers with the
LeakyReLU activation function to further refine the reconstruction results. The network can
achieve improved restoration of image details by integrating spatial domain antialiasing
processing with frequency domain consistency constraints.

2.2. q-Space Reconstruction Module

The total acquisition time is significantly influenced by the number of acquisition
directions. In the HARDI model, collecting DWI data with multiple b-values and directions
is necessary for estimating crossing fibers. Therefore, q-space reconstruction aims to
recover the original multidirectional q-space information from q-space undersampled data
to improve the accuracy of fiber crossing estimation. This objective can be compared to
k-space undersampling and expressed as follows:

arg min
θq
‖hq(s·,u; θq)− s·, f ‖2

2 (8)

where s·,u and s·, f represent the undersampled and fully sampled HARDI data in q-space,
respectively, while the k-space signal can either be complete or undersampled. Figure 2C
shows the model structure of hq( · ; θq). To capture the correlations of signals at different
scales and directions, we use a multiscale convolution module (MSCB) for feature extraction
and the reconstruction of q-space images. This module comprises three parallel convolu-
tional layers and one LeakyReLU activation function. Each layer uses dilated convolutions
with different dilation factors to convolve the data, resulting in feature maps that are
merged on channels before being activated by LeakyReLU. CNN models usually represent
different features of data through different channels. Therefore, our q-space reconstruction
model assigns DWIs with various gradient directions to corresponding channels precisely.
In this way, 2D networks can process 3D data while reducing computational costs without
sacrificing reconstruction quality.

2.3. Loss Function

The loss function of this model comprises three components: k-space reconstruction
loss, q-space reconstruction loss, and order-independent reconstruction consistency loss.
Equation (9) defines the k-space loss:

lk = ‖ŝ f ,u − s f ,u‖2
2 = ‖hk(su,u)− s f ,u‖2

2 (9)

where ŝ f ,u = hk(su,u) represents the intermediate result obtained through k-space recon-
struction model. s f ,u denotes the uncompleted HARDI data in q-space with the fully
sampled signal in k-space. The reconstruction loss of q-space can be expressed in a
similar manner:

lq = ‖ŝu, f − su, f ‖2
2 = ‖hq(su,u)− su, f ‖2

2 (10)

where ŝu, f = hq(su,u) denotes k-space undersampled DWIs that have been reconstructed
and completed in q-space. su, f represents the k-space undersampled DWIs that have been
fully sampled in q-space. This loss function helps to ensure the accurate
directional reconstruction.
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In addition, to ensure that the DW images obtained under different reconstruction
orders are consistent, we introduce a loss function for order-independent reconstruction
consistency. The expression is as follows:

lc = ‖hk(hq(su,u))− hq(hk(su,u))‖2
2 = ‖hk(ŝu, f )− hq(ŝ f ,u)‖2

2 (11)

The lost signal in k-space can be reconstructed either before completing q-space data
or after. Both methods should yield the same result. Therefore, the loss function of the
network is:

l = λ1lk + λ2lq + λ3lc (12)

where λ1, λ2, and λ3 are hyperparameters that control the weights of three loss functions.

2.4. Reconstruction of Noisy HARDI Data Using Graph Framelet Transforms

The OAUM technique is proficient in rapidly and efficiently reconstructing noise-free
HARDI data. However, obtaining such data in clinical settings can be challenging. To
address this issue, we develop here a module that utilizes OAUM to swiftly denoise q-
space signals. This module initially represents the input noisy q-space signal as a graph
and then applies graph framelet transform (GFT) to segregate various frequency bands
of the graph signal [29]. By selecting appropriate levels and frequency bands, we obtain
nearly noise-free HARDI data, which are subsequently fed into the OAUM network for
reconstruction. The outcome is a reconstructed image that is almost free from any noise.
This method is referred to as the denoised-OAUM(DN-OAUM).

2.4.1. Graph Representation of q-Space

To begin, we consider every point in the q-space as a vertex on a graph. We then
determine the correlation between each pair of points by utilizing their b-values and
gradient direction vectors as weights for the edges. To represent the weight between two
points i and i′ in q-space, we use ai,i′ . The values of i and i′ range from 1 to n, where n is
the maximum number of gradient directions in the data. The calculation method for
determining these weights is as follows:

ai,i′ = exp(−
1− (q̄T

i q̄i′)
2

2σ2
q

) exp(− (
√

bi −
√

bi′)
2

2σ2
b

) (13)

The given formula utilizes various variables to calculate the adjacency matrix A for
a graph. Specifically, q̄i = qi/‖qi‖ represents the normalized direction vector of point i,
while bi denotes the b value at point i. Additionally, hyperparameters σq and σb are
employed to control the two exponential decays. By applying this formula, we can de-
termine the correlation between each pair of points and obtain a symmetric adjacency
matrix A = {ai,i′ ; i = 1, · · · , n; i′ = 1, · · · , n} for our graph. Then, we can build a
graph G = {v, e, w} with vertices represented by v = {1, · · · , n}, edges denoted by
e ⊆ {(1, 1), (1, 2), · · · , (n, n)} and weights given by w. If ai,i′ > 0, then (i, i′) is an edge in
the graph with weight equal to ai,i′ . The degree of each vertex can be computed by:

di =
n

∑
i′=1,i′ 6=i

ai,i′ (14)

To perform graph framelet transforms, we obtain the degree matrix D and Lapla-
cian matrix L of the graph. The degree matrix is obtained by taking the diagonal ele-
ments di for i = 1, · · · , n. The Laplacian matrix is then calculated as L = D−A, where A is
the adjacency matrix of the graph. An eigendecomposition on the Laplacian matrix is
performed to obtain its eigenvalues and eigenvectors. Denote these as {λi; 0 = λ1 ≤ λ2 ≤
· · · λn = λmax} and U = {µi}, respectively, where λmax is the maximum eigenvalue.
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Once we have obtained these matrices, we can proceed with performing graph framelet
transforms.

2.4.2. Denoising Using Graph Framelet Transforms

Graph framelet transforms decompose the graph signal to various frequency bands
using a set of masks {âr(·); r = 0, · · · , R}. Each mask is used for filtering signals in different
frequency bands, where â0(·) is utilized for low-pass filtering. The GFT of noisy signals
defined on the graph, denoted as š, can be written as:

α = Wš = {αl,r = Wl,r š; (l, r) ∈ BL,R} (15)

where BL,R = {(1, 1), · · · , (L, R)} ∪ {(L, 0)} and L is the maximum decomposition level.
The process of solving W is as follows:

Wl,r =

{
UΩ̂r(γ−L+1Λ̃)UT l = 1,
UΩ̂r(γ−L+lΛ̃)Ω̂0(γ

−L+l−1Λ̃) · · · Ω̂r(γ−L+l−1Λ̃)UT 2 ≤ l ≤ L
(16)

where Λ̃ = diag{λ̃i; i = 1, · · · , n}, Ω̃r(cΛ̃) = diag{âr(cλ̃); i = 1, · · · , n}. The present
study uses Haar mask, namely, â0(ξ) = cos( ξ

2 ), â1(ξ) = sin( ξ
2 ). We use the low-pass filter

operator W1,0 to denoise the signal on q-space:

s = α1,0 = W1,0š (17)

The final result is a noise-free signal s. The network architecture for denoising using
GFT is depicted in Figure 3.

Figure 3. Structure of the proposed DN-OAUM network.

2.5. Dataset and Preprocessing

This work utilizes data from the Human Connectome Project (HCP) public dataset [30],
which was acquired using a 3T Siemens MRI machine. All dMRI data were obtained
with the same imaging protocol. The diffusion-weighted images were collected on three
spherical shells at b = 1000 s/mm2, b = 2000 s/mm2, and b = 3000 s/mm2, with each shell
consisting of 90 diffusion gradient directions. The slice thickness was 1.25 mm. Additionally,
18 structural images were obtained at b = 0. Consequently, every subject had a total of
270 DWIs and 18 b0 images. Each subject underwent scanning for 145 slices, resulting in a
data size of 145× 174× 145× 288 per individual.

In the experiment of OAUM, we initially randomly selected 13 subjects with brain skull
as the dataset. We used 10 subjects for training, 1 subject for validation, and the remaining 2
for testing. Then, we used the Patch2Self [31] method to denoise and preprocess the data to
simulate noiseless data. In order to save time during training and verify our reconstruction
idea’s feasibility, we only selected the middle 72 slices of each subject’s data for training. We
randomly sampled 64 directions of HARDI data from b = 1000 s/mm as ground truth for
the reconstruction analysis. After downsampling the DWIs at 32 gradient directions using
a k-space downsampling template, they were used as labeled data for the unpaired training
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dataset of the model. Therefore, during both the model training and testing phases, each
subject’s data size was 145× 174× 72× 64 with undersampled k-space on 32 directions.
Before inputting into network models, grayscale normalization was performed separately
on both the training set and test set.

In the DN-OAUM experiment, all aspects of data processing were consistent with
those used in the OAUM experiment, except for the use of noisy HARDI data as the input of
the network. In addition, we trained the OAUM network using HARDI data denoised using
the Patch2Self and Neighbor2Neighbor [32] methods, for comparison with DN-OAUM.

2.6. Sampling and Model Training Parameter Settings

In order to accelerate the acquisition speed of HARDI, the present study uses a 2D
Gaussian sampling method to simulate k-space undersampling and a spherical uniform
sampling method to simulate q-space undersampling. By using k-q joint sampling, recon-
struction experiments with 4-fold acceleration and 8-fold acceleration were performed,
that is, simulating 4-fold acceleration (acceleration factor = 4 or AF = 4) by downsampling
k-space with a sampling rate of 0.5 and downsampling q-space with a sampling rate of
0.5; simulating 8-fold acceleration (acceleration factor = 8 or AF = 8) by down sampling
k-space with a sampling rate of 0.25 and downsampling q-space with a sampling rate of
0.5. After Fourier transform, the k-space data becomes complex, and in the present study,
two channels were used to separately train the real part and imaginary part.

Since there have been no reports on the use of deep learning-based k-q space joint
undersampling for the fast reconstruction of HARDI, to evaluate the performance of
our model, we compared it with the latest k-space signal reconstruction models. The
comparison methods simulated AF = 4 and AF = 8 using k-space undersampling rates of
0.25 and 0.125, respectively. The k-space reconstruction models used in the comparison
included self-supervised methods SSDU and SSMR [33], and supervised methods Md-
Recon-Net, DGDN [34], ISTANet++ [35], and IDPCNN [36].

For the model proposed in the present study, all network layer parameters were
initialized using the Kaming uniform method, with a learning rate of 0.0001 and a batch
size of 1 for a total of 400 epochs. The comparison models were trained according to their
default configurations.

2.7. Quantitative Evaluation Indicators

In order to quantitatively compare the reconstruction results of different methods, we
used three objective indicators: root mean square error (RMSE), peak signal-to-noise ratio
(PSNR), and structural similarity index (SSIM). Among them, RMSE reflects the root mean
square error of the gray level between the reconstructed image IR and the ground truth
image IG. The smaller the RMSE value, the better the reconstruction quality. It is calculated
as follows:

RMSE(IR, IG) =

√√√√ 1
hw

h

∑
i=1

w

∑
j=1

(IR
i,j − IG

i,j)
2 (18)

where h and w represent the height and width of the image, respectively.
PSNR reflects the ratio of peak signal energy to average noise energy, and a higher

value represents better image quality. It is defined as:

PSNR(IR, IG) = 10 log10

 max2(IG)
1

hw ∑h
i=1 ∑w

j=1(IR
i,j − IG

i,j)
2

 (19)

where max(IG) represents the maximum gray value of image IG.
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SSIM measures the structural similarity between two images. The closer its value is to
1, the higher the similarity. It is defined by:

SSIM(IR, IG) =
(2µIR µIG + c1)(2σIR IG + c2)

(µ2
IR + µ2

IG + c1)(σ
2
IR + σ2

IG + c2)
(20)

where µIR and µIG represent the grayscale mean values of the reconstructed image and the
ground truth image, respectively. σIR and σIG are the corresponding grayscale variances,
while σIR IG represents the covariance between the reconstructed image and the ground
truth image. c1 and c2 are constants.

3. Results

The experiment consisted of two main parts. The first part showcases the training
and comparison results of models using HARDI data with denoising preprocessing. In
the second part, we present the reconstruction outcomes of noisy HARDI data utilizing
the GFT module, along with the reconstruction results of noisy data trained with various
denoising preprocessing methods.

3.1. Reconstructing Denoised Data
3.1.1. Reconstruction Results of DWIs

Figure 4 shows the DWIs reconstructed using the proposed model (OAUM) and
various comparison models under 4-fold accelerated sampling, along with their respective
ground truth (GT) images. For clarity, reconstruction results in two gradient directions
are presented in Figure 4, and all results were normalized for consistency. Our method
(OAUM) outperforms both self-supervised and supervised methods in terms of image
quality improvement in both the gradient directions. Compared to the ground truth full-
sampled data, OAUM has the smallest residual error when reconstructing DW images
while exhibiting clearer details and textures that can be observed through red arrow areas.
IDPCNN and ISTANet++ exhibit poor reconstruction performance at the brain structure
edges, while SSDU performs poorly in background regions and skull edges. Although
SSMR, MdRecon, and DGDN have acceptable residual ranges, their residual values are still
larger than those of our proposed method when compared side-by-side.

Table 1 shows the quantitative evaluation results, which demonstrate that our pro-
posed model achieved superior results. Specifically, it obtained the highest PSNR and
SSIM values while also having the lowest RMSE value. Compared to DGDN, a subop-
timal method, OAUM reduced the RMSE by 33% and increased the PSNR and SSIM by
8% and 25%, respectively. These findings suggest that DW images reconstructed using
OAUM are more accurate representations of real images. In addition, we also show the
minimum computational complexity of each model in Table 1. It can be seen that this
model has a relatively high minimum computational complexity. It is worth noting that
our proposed method reconstructs diffusion-weighted images with 64 gradient directions
at the minimum computational complexity, while the compared method only reconstructs
diffusion-weighted image with only 1 gradient direction.

Table 1. RMSE, PSNR, and SSIM of DWIs reconstructed from different methods at acceleration factor
(AF) = 4 and computational complexity of each model.

Indicator OAUM SSDU SSMR MdRecon ISTANet++ DGDN IDPCNN

RMSE 0.06% ± 0.02% 0.18% ± 0.04% 0.12% ± 0.04% 0.1% ± 0.03% 0.25% ± 0.06% 0.09% ± 0.03% 0.5% ± 0.11%
PSNR 46.1 ± 3.6 36.6 ± 1.1 40.4 ± 1.9 42.1 ± 2.5 33.9 ± 1.5 42.5 ± 2.5 27.8 ± 1.4
SSIM 0.991 ± 0.022 0.944 ± 0.019 0.979 ± 0.004 0.987 ± 0.004 0.915 ± 0.020 0.984 ± 0.021 0.883 ± 0.024

FLOPS 689.5 G 11.9 G 23.6 G 6.8 G 17.7 G 67.4 G 1313.7 G
parameters 0.343 MB 0.323 MB 0.645 MB 0.276 MB 0.725 MB 2.727 MB 7.98 MB
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Figure 4. The DWIs reconstructed from models with acceleration factor (AF) = 4 and two diffusion
gradient directions.

Figure 5 demonstrates the reconstruction effect of our model at a higher sampling
rate. The figure shows the reconstructed DWIs of each model and its residual images
compared to the true fully sampled image at an 8-fold acceleration factor (sampling rate of
0.125). Our method outperformed all other methods in detail recovery, as shown by the
red arrow in the DW image. Comparing the Dir.1 and Dir.2 directions, OAUM exhibited a
worse performance in the Dir.2 gradient direction than the Dir.1 direction because Dir.2
DWIs were reconstructed from q-space undersampled data. However, compared to self-
supervised method SSDU and supervised methods ISTANet++ and IDPCNN, OAUM still
had significantly lower errors, demonstrating its superiority.

Table 2 gives the quantitative evaluation results for reconstructing DW images using
various methods with an 8-fold acceleration factor. The results indicate that our method is
superior, while the MdRecon method is inferior under this level of sampling. Our method
outperforms the suboptimal approach by achieving an 18% improvement in RMSE and a
5% increase in PSNR.

Table 2. RMSE, PSNR, and SSIM of DWIs reconstructed from different methods at acceleration
factor(AF) = 8.

Indicator OAUM SSDU SSMR MdRecon ISTANet++ DGDN IDPCNN

RMSE 0.14% ± 0.04% 0.37% ± 0.08% 0.21% ± 0.05% 0.17% ± 0.05% 0.31% ± 0.07% 0.18% ± 0.05% 0.5% ± 0.11%
PSNR 39.1 ± 2.2 30.4 ± 1.2 35.2 ± 1.8 37.1 ± 2.2 32.0 ± 1.5 36.9 ± 2.1 27.6 ± 1.4
SSIM 0.971 ± 0.021 0.864 ± 0.023 0.950 ± 0.010 0.969 ± 0.010 0.863 ± 0.027 0.963 ± 0.023 0.870 ± 0.034
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Figure 5. The DWI results reconstructed from models with acceleration factor (AF) = 8 and two
diffusion gradient directions.

3.1.2. Fiber Structure and Diffusion Parametric Maps Reconstructed by HADRI

To demonstrate the superiority of our method, we used multidirectional DW images
to conduct HARDI reconstruction and calculate fiber orientation (FO) and diffusion para-
metric maps. Figure 6 shows the fiber orientation maps reconstructed under the 4-fold and
8-fold acceleration factor, along with angle error maps between the primary fiber orientation
reconstructed using different methods and the true primary fiber orientation. The OAUM
model reconstructs fiber orientations closest to true ones (as shown in white circles in the
figure), regardless of whether it is under conditions of 4-fold or 8-fold accelerated sampling,
with significantly lower angular errors between true and reconstructed primary fiber orien-
tations than those obtained by comparative methods. The quantitative analysis in Table 3
shows that, under conditions of 4-fold and 8-fold accelerated sampling, compared to the
suboptimal model MdRecon, the OAUM model reduced fiber orientation errors by 31% and
17%, respectively.

Table 3. The average angle errors between the real primary fiber orientation and reconstructed
primary fiber orientation from different methods at different acceleration factors.

AF OAUM SSDU SSMR MdRecon ISTANet++ DGDN IDPCNN

4 2.2◦ 4.77◦ 3.9◦ 3.55◦ 6.05◦ 3.65◦ 8.91
8 4.62◦ 7.4◦ 6.25◦ 5.94◦ 7.61◦ 6.02◦ 9.7◦
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Figure 6. The primary fiber orientations and angle errors estimated from DWIs at different accelera-
tion factors.

Based on the reconstruction of fiber orientation using HARDI, we calculated the gen-
eralized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA) under
different acceleration sampling factors to characterize the diffusion of water molecules in
tissues, as shown in Figure 7. The given GFA and NQA results, along with corresponding
residual maps, indicate that all models except IDPCNN and ISTANet++ can reconstruct
diffusion parametric maps well. Our OAUM model had the closest reconstructed GFA and
NQA to the real results, with minimal residual values compared to the other models. Al-
though the NQA image reconstructed by DGDN was close to our method, its reconstructed
GFA image was slightly worse. Tables 4 and 5 provide quantitative indicators that show
that, regardless of whether it is at a 4-fold or 8-fold acceleration factor, the OAUM model ob-
tained optimal quantitative evaluation results for both GFA and NQA, i.e., with the lowest
RMSEs and the highest PSNRs and SSIMs. This implies that our proposed strategy ensures
accuracy in HARDI parametric maps reconstruction under undersampling conditions.

Table 4. RMSE, PSNR, and SSIM of GFA reconstructed from different methods at different acceleration
factors.

AF Indicator OAUM SSDU SSMR MdRecon ISTANet++ DGDN IDPCNN

4
RMSE 0.014 ± 0.006 0.023 ± 0.006 0.018 ± 0.005 0.015 ± 0.005 0.026 ± 0.006 0.017 ± 0.005 0.039 ± 0.008
PSNR 37.3 ± 3.0 32.8 ± 2.1 34.8 ± 2.4 36.3 ± 2.7 31.4 ± 2.1 35.5 ± 2.6 27.9 ± 2.0
SSIM 0.986 ± 0.007 0.975 ± 0.010 0.982 ± 0.009 0.985 ± 0.008 0.959 ± 0.016 0.981 ± 0.009 0.912 ± 0.028

8
RMSE 0.0219 ± 0.008 0.033 ± 0.007 0.025 ± 0.006 0.0224 ± 0.006 0.033 ± 0.007 0.024 ± 0.006 0.043 ± 0.009
PSNR 33.2 ± 2.6 29.5 ± 2.1 31.8 ± 2.0 32.9 ± 2.3 29.6 ± 2.0 32.2 ± 2.2 27.2 ± 2.1
SSIM 0.968 ± 0.016 0.942 ± 0.020 0.962 ± 0.015 0.965 ± 0.015 0.942 ± 0.020 0.958 ± 0.017 0.897 ± 0.033
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Figure 7. The parametric maps estimated from DWIs at different acceleration factors.

Table 5. RMSE, PSNR, and SSIM of NQA reconstructed from different methods at different accelera-
tion factors.

AF Indicator OAUM SSDU SSMR MdRecon ISTANet++ DGDN IDPCNN

4
RMSE 0.007 ± 0.002 0.013 ± 0.003 0.010 ± 0.003 0.008 ± 0.002 0.013 ± 0.003 0.008 ± 0.002 0.015 ± 0.004
PSNR 41.2 ± 2.6 36.1 ± 2.4 38.0 ± 2.6 39.8 ± 2.8 35.5 ± 2.3 39.2 ± 2.3 34.4 ± 2.5
SSIM 0.986 ± 0.007 0.976 ± 0.008 0.985 ± 0.006 0.986 ± 0.006 0.967 ± 0.011 0.983 ± 0.007 0.944 ± 0.018

8
RMSE 0.010 ± 0.003 0.014 ± 0.004 0.012 ± 0.003 0.011 ± 0.002 0.015 ± 0.004 0.011 ± 0.003 0.017 ± 0.004
PSNR 37.2 ± 2.3 34.7 ± 2.7 36.9 ± 2.1 37.8 ± 2.0 34.0 ± 2.6 36.6 ± 2.3 33.2 ± 2.4
SSIM 0.972 ± 0.013 0.957 ± 0.014 0.966 ± 0.011 0.971 ± 0.011 0.957 ± 0.013 0.971 ± 0.011 0.930 ± 0.024

3.1.3. Ablation Experiment
Consistency Constraint for K-Q and Q-K Order Reconstruction

To test the effectiveness of our proposed order-independent reconstruction consistency
loss for k-q and q-k reconstruction, we conducted ablation experiments. We trained sep-
arate modules for k-space and q-space reconstructions. The k-space module was trained
to learn the relationship between full-sampled and undersampled k-spaces using fully
sampled data from 32 directions as labels, while the q-space module learned mapping rela-
tionships of DW images in different directions with another 32 directions of undersampled
k-spaces as labels. Using these trained modules, we compared three methods: sequential
reconstruction by k-q order, sequential reconstruction by q-k order, and reconstructed
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results with order-independent reconstruction consistency constraint. Figure 8 shows that
without order-consistency constraints, the DW image details obtained by other methods
were relatively blurry with significant loss (as shown in the zoomed in areas, especially
with q-k order), especially at high acceleration rates where their performance was even
worse. However, introducing order-independent reconstruction consistency loss greatly
improved the DW image quality. By observing diffusion parametric maps reconstructed
by different models, it was found that order-independent reconstruction consistency loss
helped models obtain better diffusion parametric maps reconstruction results with smaller
residual values compared to the true value, which proves the effectiveness of our proposed
order-consistency reconstruction idea.

Figure 8. The DWIs reconstructed from OAUM, K-Q order, and Q-K order for ablation at different
acceleration factors.

Key Module Ablation for Reconstruction Modules

To enhance the reconstruction effect, we incorporated three modules: the multiscale
convolution block (MSCB), K-space flip concatenation module (KFC), and spatial flip
concatenation module (SFC) into the OAUM model. We conducted ablation experiments
on each module to evaluate the effectiveness, as shown in Figure 9. In the simple OAUM
model, ordinary convolution layers were used instead of the MSCB module, and flip and
concatenation operations were removed from the KFC and SFC modules. The +MSCB
model introduced the MSCB module to the simple OAUM; +MSCB+SFC added the spatial
flip concatenation operation to +MSCB; +MSCB+SFC+KFC further included the k-space
flip concatenation operation. The results indicate that introducing MSCB can improve DW
image and parametric map GFA reconstruction at both 4x and 8x acceleration rates by
reducing the RMSE while increasing the PSNR and SSIM. Adding SFC led to an overall
improvement in the reconstruction results. However, incorporating KFC improved the
performance only at a 4× acceleration rate; at an 8× acceleration rate, there was a slight
increase in both DW image’s and GFA image’s RMSE while the PSNR decreased slightly.

3.2. Reconstructing Noisy Data with GFT
3.2.1. Reconstruction Results of DWIs

Figure 10 shows reconstructed DWIs using various methods with k-q space joint
fast reconstruction on input noisy k-space undersampled data under 4-fold and 8-fold
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acceleration factors. The figure also includes their corresponding residual maps and
zoomed-in maps. For the DN-OAUM method, the denoised result of original noisy DWIs
obtained by GFT was used as the reference standard, i.e., the first column in the figure (GT-
GFT). To preprocess denoised data for network training, Patch2Self and Neighbor2Neighbor
methods were used for OAUM method. GT-P2S and GT-N2N represent data preprocessed
using the Patch2Self and Neighbor2Neighbor methods for denoising, respectively, and
their corresponding reconstructed DWIs after network training are shown on the right side.
Similar to the above figures, two gradient directions’ results (Dir.1 and Dir.2) are displayed
for each method to reflect both the k-space reconstruction effect and q-space reconstruction
effect of networks. Observing the results in the Dir.1 gradient direction first shows that
DN-OAUM reconstructed clear and smooth DWIs with very little visual difference from
GT-GFT even when zoomed in significantly. However, OAUM trained using GT-P2S data
preprocessing contained obvious noise points in its reconstructed DWIs; when observing
zoomed-in regions compared to GT-P2S, they cover an additional layer of granular noise
while image details became blurred due to the noise influence. Similarly, OAUM trained
using GT-N2N also contained noise points in its reconstructed DWIs. Combining error
maps revealed that DN-OAUM had minimal reconstruction errors among all methods
in the Dir.1 direction with better image quality, while there were significant differences
between the OAUM results using different denoising preprocessing techniques.

Figure 9. Results of DWI and parametric maps at different acceleration factors.

Upon examining the label data for each method in Figure 10, it is evident that GT-
GFT and GT-P2S had fewer instances of visual noise compared to GT-N2N. Consequently,
when training OAUM to reconstruct k-space with noisy data using GT-N2N, both the
reconstructed result and label contained similar noise, resulting in relatively small errors.
However, when using GT-P2S for training OAUM, there was no apparent noise in its label.
Nevertheless, upon reconstructing k-space with data affected by noise, its reconstructed
result contained a significant amount of noise, which differed significantly from that of
GT-P2S. Therefore, this method performs exceptionally well on k-space reconstruction and
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can produce high-quality DWIs without significant visual noise compared to GT-GFT while
minimizing error.

Figure 10. DWIs reconstructed by different methods using noisy data at different acceleration factors.

Upon observing the reconstructed DWIs in the gradient direction of Dir.2, the DN-
OAUM method yielded clearly superior image quality. Although visually appealing, the
OAUM method trained on GT-P2S data exhibited small particle-like noise when scru-
tinized under zoomed-in areas. Conversely, OAUM based on GT-N2N data produced
blurry DWIs that lacked detail. Error maps corroborate these findings by demonstrating
that DN-OAUM’s reconstruction results in the Dir.2 gradient direction were optimal. To
better quantify image quality, we conducted a quantitative analysis comparison on recon-
structed DWIs as presented in Table 6. The results indicate that the DN-OAUM method
outperformed the other comparative methods in terms of quantitative indicators.

Table 6. RMSE, PSNR, and SSIM of DWIs reconstructed from different methods at different accelera-
tion factors.

AF Indicator DN-OAUM OAUM (P2S) OAUM (N2N)

4
RMSE 0.06% ± 0.03% 0.24% ± 0.09% 0.2% ± 0.12%
PSNR 46.2 ± 3.7 34.6 ± 3.4 36.7 ± 5.3
SSIM 0.99 ± 0.003 0.95 ± 0.032 0.94 ± 0.035

8
RMSE 0.12% ± 0.03% 0.25% ± 0.08% 0.25% ± 0.1%
PSNR 39.4 ± 2.1 34.2 ± 2.8 33.9 ± 3.2
SSIM 0.971 ± 0.007 0.947 ± 0.029 0.920 ± 0.031
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The results of visualizing DWIs reconstructed using various methods under an ac-
celeration factor of 8 are also presented in Figure 10. In the gradient direction Dir.1, the
DN-OAUM method showed clear details in the DWIs, while the OAUM method was
severely affected by noise. Similarly, for an acceleration factor of 8 in the Dir.2 gradient
direction, the DN-OAUM method produced better image quality than the OAUM method.
Table 6 provides quantitative results that show a decrease in the RMSE and an improvement
in the PSNR and SSIM with the DN-OAUM method compared to the OAUM method.

3.2.2. Fiber Structure and Diffusion Parametric Maps Reconstructed by HADRI

Figure 11 shows a comparison of the reconstructed primary fiber orientation and angle
error maps using the above methods. Upon zooming in on the primary fiber orientation
map, it becomes apparent that the DN-OAUM method produced results closest to its label
under different acceleration factors, while the other methods yielded larger errors. Notably,
GT-P2S-trained OAUM exhibited significant errors in fiber orientation reconstruction. The
angle error map corroborates these findings and confirms that DN-OAUM is superior
in recovering fiber orientation. Table 7 provides further quantitative evaluation results
supporting this conclusion.

Table 7. The average angle errors between the real primary fiber orientation and reconstructed
primary fiber orientation from different methods at different acceleration factors.

AF DN-OAUM OAUM (P2S) OAUM (N2N)

4 6.2◦ 11.24◦ 10.45◦

8 8.15◦ 11.24◦ 11.03◦

The results of the GFA and NQA parameter visualization, calculated from recon-
structed HARDI data using the above methods under 4-fold and 8-fold acceleration factors,
are presented in Figure 12. Clearly, the DN-OAUM method had smaller errors in both
GFA and NQA compared to the two OAUM methods trained with denoising preprocessed
data. The latter had larger errors due to noise interference. These findings are supported by
quantitative results in Tables 8 and 9, leading to a conclusion that DN-OAUM outperforms
OAUM regarding GFA and NQA. Thus, it can be concluded that the denoising effect of the
DN-OAUM method is not only effective on DWIs but also has practical significance for
diffusion parameter reconstruction.

Table 8. RMSE, PSNR, and SSIM of GFA reconstructed from different methods at different acceleration
factors.

AF Indicator DN-OAUM OAUM (P2S) OAUM (N2N)

4
RMSE 0.024 ± 0.01 0.051 ± 0.01 0.028 ± 0.01
PSNR 32.9 ± 3.5 25.8 ± 2.6 31.2 ± 2.5
SSIM 0.978 ± 0.009 0.918 ± 0.032 0.976 ± 0.009

8
RMSE 0.034 ± 0.016 0.040 ± 0.010 0.044 ± 0.014
PSNR 29.6 ± 3.4 27.8 ± 2.5 27.3 ± 2.6
SSIM 0.953 ± 0.021 0.938 ± 0.026 0.951 ± 0.017

Table 9. RMSE, PSNR, and SSIM of NQA reconstructed from different methods at different accelera-
tion factors.

AF Indicator DN-OAUM OAUM (P2S) OAUM (N2N)

4
RMSE 0.013 ± 0.007 0.017 ± 0.004 0.018 ± 0.007
PSNR 35.05 ± 3.2 31.39 ± 2.9 32.81 ± 2.9
SSIM 0.945 ± 0.020 0.794 ± 0.065 0.924 ± 0.025

8
RMSE 0.16 ± 0.008 0.015 ± 0.004 0.022 ± 0.009
PSNR 33.64 ± 3.1 32.06 ± 2.9 30.87 ± 3.0
SSIM 0.932 ± 0.025 0.809 ± 0.063 0.905 ± 0.029
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Figure 11. Reconstructed primary fiber orientation maps and angular error maps obtained by each
method at different acceleration factors.

Figure 12. The parametric maps estimated from DWIs at different acceleration factors.
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4. Discussion

This work proposes a compressed sensing reconstruction algorithm based on order-
consistency and k-q space joint compression. It uses unpaired image data, namely, a set
of undersampled k-space data and another set of fully sampled k-space data in different
diffusion gradient directions, to reconstruct images from undersampled images with fewer
directions to fully sampled images with more directions. In order to reduce the impact of
the reconstruction order in k-q joint reconstruction, consistency loss constraints for both
k-q and q-k order reconstructions are proposed. In addition, to improve the reconstruction
performance, spatial symmetry priors of both k-space and spatial image are utilized,
resulting in a k-space flip concatenation module for k-space and a spatial flip concatenation
module for spatial information. To evaluate the superiority of this model, we compared it
with state-of-the-art compressed sensing-based DWI reconstruction algorithms by means
of the HCP public dataset. The experimental results showed that under 4 and 8 acceleration
factors, our model can effectively reconstruct detailed information about multidirectional
DWIs from undersampled data with fewer directions, which is beneficial for the accurate
estimation of complex fiber orientation and diffusion parametric maps in HARDI imaging.
Moreover, by introducing the GFT method, the proposed model can quickly and effectively
reconstruct noisy data. The introduction of the GFT method can reduce noise interference
on reconstruction and further broaden the applicability of OAUM. Through our method,
the quality of undersampled HARDI data can be greatly improved, restoring image details
and enabling better analysis of images.

Traditional compressed sensing reconstruction algorithms often use iterative approxi-
mation methods, resulting in a slow reconstruction speed. The DGDN method splits the
traditional approach into two parts: a linear approximation module and a image geometric
compensation module. By reconstructing lost texture details through the image geomet-
ric compensation module, the traditional method gains learnable ability and alleviates
problems such as blur. However, this image geometric compensation module only mines
detail information from pixel neighborhoods, which is insufficient for 0.125 sampling rate
DW images that lose significant details (as shown in Figure 5) and cannot meet clinical
application requirements. To alleviate the instability issue of model reconstruction un-
der multiple sampling rates, ISTANet++ constructs a deep learning model based on the
traditional iterative shrinkage threshold algorithm by introducing the sampling rate as
conditional information into ISTANet. However, its effectiveness depends on dataset di-
versity with difficult training leading to unsatisfactory results. Md-Recon-net designs two
parallel networks to process k-space frequency domain data and spatial image data using
convolutional neural networks that can effectively approximate any bounded function
defined on domain and range directly without constructing networks based on traditional
methods. Because of its simplicity, it still has visible distortion in reconstructed results (as
shown by red arrows in zoomed-in areas of Figures 4 and 5). IDPCNN divides the MRI fast
reconstruction problem into two subtasks: denoising and least squares fitting. The denois-
ing task can use any pretrained denoising model, which in a way alleviates the difficulty
of obtaining specific data and makes model training more flexible. However, IDPCNN
requires pretraining many different levels of denoisers for different rates of downsampling
where the number of denoisers significantly affects the reconstruction results with high
training difficulty. Although the current best denoisers preserve edge details well, residual
maps from Figures 4 and 5 show large errors in the edge details.

SSDU and SSMR are self-supervised learning models that use undersampled data for
reconstruction. SSDU divides the original undersampled k-space signal into two parts:
using one as input and the other as a reconstruction constraint. This method assigns more
low-frequency signals to the input and more high-frequency signals to the output, making
it competitive at a 4× acceleration rate. However, there is no constraint on low-frequency
parts, such as the background, resulting in large errors in background reconstruction (as
shown in Figure 4). At an 8-fold sampling rate, there will be fewer learnable data leading
to increased difficulty during model training with significant errors in the reconstructed
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results (as shown in Figure 5). Unlike SSDU, SSMR uses two different undersampling
templates for the secondary undersampling of raw k-space signals and takes both DW
images from these samples as inputs for parallel networks while introducing consistency
reconstruction loss. Although its performance at a 4-fold acceleration rate is close to
the current state-of-the-art supervised methods, under high-fold subsampling rates, the
insufficient signal quantity limits its ability even at an 8-fold acceleration rate like SSDU.

The k-space reconstruction module in the OAUM model, proposed in this paper,
differs from the aforementioned models by exploring the relationship between the spatial
and frequency domains through transformation. To improve reconstruction quality and the
detail recovery effect, we introduced SFC and KFC modules that utilize the prior structural
information of data. Additionally, OAUM achieves superior reconstruction quality at
an 8-fold acceleration rate through k-q space joint reconstruction and order-consistency
constraint. This solves the problem of detail loss observed in comparison methods at an
8-fold sampling rate. Due to the fact that the OAUM method only considers how to train
and reconstruct noise-free HARDI data, we further propose the DN-OAUM method, which
integrates denoising and reconstruction methods for HARDI data. This enables the fast
and high-quality reconstruction of noisy HARDI data.

However, there are still some limitations to this study. Firstly, although the introduc-
tion of SFC and KFC in the k-space reconstruction module can improve the reconstruction
under a low sampling rate, KFC does not have an advantage under a high sampling rate,
implying that different sampling rates have a certain impact on the symmetry prior assump-
tion of k-space. How to design appropriate prior criteria according to different sampling
rates is a topic for future research. For example, we could introduce a weight parameter
that is used to control the contribution of the KFC module’s reconstructed feature map to
the final reconstruction result. This weight parameter can be calculated from the sampling
rate. Then, in order to ensure consistency between k-q and q-k order reconstructions, we
trained two parallel networks for both modules, which resulted in large computational
complexity. Finally, since there were no absolute noise-free data as the gold label for this
experiment, even though each result of DN-OAUM was optimal, it was not possible to
directly prove that DN-OAUM’s reconstruction was optimal. The subsequent step should
concentrate on enhancing the structures of both the k-space and q-space reconstruction
modules. This could be done by minimizing network parameters while simultaneously
ensuring high-quality reconstruction. Additionally, efforts will be made to further boost
the speed of HARDI reconstruction.

5. Conclusions

The proposed OAUM method successfully utilized nonmatching HARDI data for
model training. Compared with existing methods, the proposed method had a better
reconstruction quality on noise-free data under different acceleration factors. Therefore, the
OAUM method can train and predict models without the need to use fully sampled HARDI
data, which, to some extent, alleviates the difficulty of obtaining clinical data. In addition,
the proposed DN-OAUM method solved the problem that OAUM cannot reconstruct noisy
HARDI data and greatly improved the robustness of the model, making it a potential
method for accelerating HARDI data acquisition for clinical applications.
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Abbreviations
The following abbreviations are used in this manuscript:

dMRI diffusion magnetic resonance imaging
DWIs diffusion weighted images
DTI diffusion tensor image
HARDI high angular resolution diffusion imaging
SMASH simultaneous acquisition of spatial harmonics
SENSE sensitivity encoding
CS compressed sensing
CNN convolutional neural networks
ADMM alternating direction method of multipliers
CRNN convolutional recurrent neural networks
DAGAN dealiasing generative adversarial networks
OAUM order-aware uncertainty minimization
SFC spatial flip concatenation
KFC k-space flip concatenation
KDC k-space data consistency
MSCB multi-scale convolution module
GFT graph framelet transform
HCP human connectome project
AF acceleration factor
RMSE root mean square error
PSNR peak signal-to-noise ratio
SSIM structural similarity index
GT ground truth
Dir direction
FO fiber orientation
GFA generalized fractional anisotropy
NQA normalized quantitative anisotropy
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