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Abstract: The automotive industry’s focus on driver-oriented issues underscores the critical impor-
tance of driver safety. This paper presents the development of advanced driver assistance system
(ADAS) algorithms specifically tailored for an electric bus (e-bus) to enhance safety. The proposed
approach incorporates two key components: a 360-degree surround-view system and driver behavior
recognition utilizing the You Only Look Once V5 (YOLO_V5) method. The adoption of YOLO_V5 in
ADASs enables rapid response by processing multiple class probabilities and region proposals within
an image instantaneously. Additionally, ADAS implementation includes an image processing-based
surround-view system utilizing OpenCV. In order to evaluate the performance of the proposed
algorithms regarding a smart e-bus, comprehensive experimental studies were conducted. The
driver behavior recognition system underwent rigorous testing using various images captured by
an onboard camera. Similarly, the surround-view system’s performance was verified in diverse
driving scenarios, including regular driving, parking, and parking in near-to-line situations. The
results demonstrate the viability and effectiveness of the proposed system, validating its potential to
significantly improve driver safety in electric buses. This paper provides a comprehensive overview
of the work accomplished by emphasizing the specific contributions of the 360-degree surround-view
system, driver behavior recognition using YOLO_V5, and the experimental validation conducted
for an e-bus.

Keywords: advanced driver assistance system; driver behavior recognition; surround view; you only
look once

1. Introduction

Nowadays, one of the emerging concepts in automotive technologies is smart vehicle
systems that are equipped with a variety of sensors to perceive their surroundings and
driver behavior recognition systems. The main motivation is to reduce the rate of accidents
caused by driver inattention/misbehavior and blind spots by equipping vehicles with
smart features. Thus, the recognition of driver activity and the detection of blind spots
have become key issues for safer vehicles. As a matter of fact, the smart vehicle industry is
expected to improve gradually in the following decades.

The outside mirrors used in vehicles to change lanes have visibility restrictions. Blind
spot detection studies have been carried out to prevent these limitations from causing fatal
traffic accidents as a result of reckless lane departures. The related system is one of the
critical functionalities of conventionally named advanced driver assistance systems (ADAS).
Several studies have been carried out regarding ADASs, and the authors stated that the
automotive industry market intention is increasingly moving toward it as it increases the
driver’s control of the vehicles by providing advanced visualization in real time. Studies
within the scope of ADASs, which involve lane departure monitoring [1], adaptive cruise
control [2,3], speed limit monitoring [4], forward collision warning [5], emergency brake
assistance [6], and surround-view monitoring [7], have been accelerating in the literature.
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Studies highlight that the lane departure warning and forward collision warning systems
provide 9.3–33.3% and 23–50% crash prevention rates, respectively [8].

One of the real-time systems that has been adapted to the ADAS is the bird’s-eye
surround view (SV), which integrates several cameras to produce a virtual bird’s-eye view
in real-time [9,10]. SV represents a sensor fusion problem, in which many sensors, in
this case, cameras, are merged and processed together to create a complete image of the
location surrounding a vehicle and to assist a machine or human driver in making quick
choices. Ananthanarayanan [11] states that processing many sensors in real time can be a
difficult computing task, especially for high-bandwidth applications incorporating video
or radar inputs. The other problem is defined as image stitching in [12]. Several studies,
including (i) pairing the corresponding detected key points and the (ii) interpolation of
image elements captured by vehicle mirror cameras and stereo pairs of cameras at the rear
of the vehicle, were performed in order to solve the stitching problem in [13–16].

The other way to enhance road safety for a vehicle driver is to adopt driver behav-
ior recognition systems. Intelligent (i.e., highly automated) vehicles are classified into
categories by considering their range of autonomy [17]. Some vehicles have no driving
automation, while some vehicles allow drivers to take over vehicle control under emergen-
cies to take control of a vehicle considering the driver’s behavior/activity. Several studies
have been performed regarding real-time driver behavior/activity in the literature. While
previous studies have focused on drivers’ attention/distraction [18], driver intention [19],
driving styles [20], and driver fatigue detection [21,22], the studies based on artificial
intelligence have been accelerated.

A convolution-based approach for driver activity recognition tasks using body posture
data is proposed in [23]. Additionally, the items and position information, which are used
as inputs for activity recognition graph convolution-based network models, have been
extracted. In order to categorize images, three-dimensional ResNets were used in [24].
Some researchers have used deep convolution neural networks in order to define common
driving activities [25]. The raw images have been segmented by a Gaussian mixture
model to extract the driver’s body as training data. Segmentation is frequently performed
according to the head pose angle, gaze direction, and hand/body joints [25,26]. A virtual
reality driving simulator environment, which is employed with force sensors in the driver’s
seat to collect sensor inputs from many participants, was utilized in [27]. In order to
categorize the test signals, a basic difference-based comparison technique with training
data was employed. An activation map, including the entire image, one body position,
and body-object interactions, based on a deep fusion network that merges layers, was
developed to recognize driver activity in [28]. Zhao, et al. [29] developed a cascading
multiple attention-based deep learning model, where the entire network is composed of
subnetworks. At first, one of the subnetworks takes the original image and creates an
activation map. The most active area on the activation map is then cut out of the input
image and used as input in another subnetwork. A K-nearest neighbor classifier is used to
combine and classify the outputs of each subnetwork.

To summarize, these techniques generally aim to improve accuracy by using
convolution-based approaches. In addition to high accuracy, the frame-per-second factor
has great importance. YOLO (You Only Look Once) is an algorithm for object detection
using a convolution neural network. YOLO excels at fast object detection capabilities (high
frame-per-second factor) in comparison with the aforementioned methods. The perfor-
mance benchmarking of the methods is summarized in Table 1 in terms of mean average
precision (mAP) and frames per second (fps).

This study contains two different solutions for ADASs: (i) a fast driver behavior
recognition machine learning model, which was trained using a new, qualified dataset,
and (ii) an original manual surround-view method. The main superior aspect of the
proposed system is the fast recognition of the driver’s behavior in comparison with existing
methods owing to the fast prediction capability of YOLO_V5. The proposed surround-view
system does not require calibration for different vehicles. Additionally, it excels at fixed
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pixel positions that make for fast and cheap surround-view capture for the system. The
improved ADAS, which was equipped with methods that include the aforementioned
advantages, was experimentally tested using an e-bus.

Table 1. Benchmarking of YOLO with other object detection algorithms.

Detection Frameworks Train mAP fps

Fastest DPM [30] VOC 2007 30.4 15
R-CNN Minus R [31] VOC 2007 53.5 6
Fast R-CNN [32] VOC 2007 + 2012 70.0 0.5
Faster R-CNN VGG-16 [33] VOC 2007 + 2012 73.2 7
Faster R-CNN ZF [33] VOC 2007 + 2012 62.1 18
YOLO VGG-16 [34] VOC 2007 + 2012 66.4 21
YOLO [35] VOC 2007 + 2012 63.4 45

The arrangement of the current work is described in the following manner: the
proposed methods and experimental setup are described in Section 2. The details of the
developed methods are presented in the subtitles of Section 2. The performance results
are presented in Section 3. Finally, Section 4 analyses the results and the contributions of
this paper.

2. Proposed Method and Experimental Setup

The main purpose of the study was to increase the driver’s awareness of the envi-
ronment, develop a warning system to prevent fatal accidents and integrate a compos-
ite feature for the ADAS. The equipment utilized to achieve the objectives consisted of
five automotive-grade cameras equipped with wide-angle fish-eye lenses, a 10.4-inch
widescreen LCD monitor, and a high-end computer optimized for image processing. These
components were integrated into an electric bus platform to evaluate the effectiveness
and user-friendliness of the proposed systems. As depicted in Figure 1, four fish-eye
lens cameras were strategically positioned at the most convenient locations on the bus to
cover all blind spots. Two cameras were situated on the sides, while the other two were
positioned at the front and rear of the bus. The angles of the cameras were determined as
being 185◦—horizontal and 142◦—vertical in order to provide proper placement and ease
of wiring inside the vehicle. The fifth camera, as seen in Figure 1, was installed inside the
interior of the bus. The detailed camera distances and degrees are summarized in Table 2.
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Table 2. Camera distances and degrees of vehicle.

Camera Horizontal Distances

Cabin Width : 2512 mm
Cabin Height : 8953 mm
Distance Of Rear Camera To Front Camera : 8953 mm
Distance Of Rear Camera To Side Camera : x: 1189 mm y: 2719 mm
Distance Of Side Camera To Side Camera : 2512 mm
Distance Of Side Camera To Front Camera : x: 1269 mm y: 6233 mm

Camera Vertical Distances

Front Camera Ground Distance : 3290 mm
Side Camera Ground Distance : 1428 mm
Rear Camera Ground Distance : 855 mm

Outer Camera Degrees

Camera Lateral Angle : 185◦

Camera Vertical Angle : 142◦

Inner Camera Degrees

Camera Lateral Angle : 180◦

Camera Vertical Angle : 135◦

2.1. 360-Degree Surround-View System

In order to provide an effective surround view and detect blind spots, several steps
were followed for (i) image acquisition, (ii) undistortion, (iii) calibration, (iv) warping,
(v) stitching, and (vi) output image processing, respectively. The steps initiate with the
placement of the cameras to cover a 360-degree view from the bus, as illustrated in Figure 2.
The second step is to transmit the images captured from cameras to the computer via the
serial port. Following image acquisition, several image processing steps were performed to
define depth in the image, calibrate the image, mask the selected areas, warp as order, stitch
the masked images, and perform manipulations through pixels to produce a surround view.
When the two cameras, which have a common place for vision, are different in the vertical
plane but aligned in the horizontal plane (like the human eye), the point of a visible object
falls on the same horizontal axis in both cameras. Thus, information about depth can be
extracted from the proximity and distance of the objects [36]. Searching where the same
point coincides in two images has a huge computational load, so searching only on the
horizontal axis, which is called stereo calibration, by matching the horizontal axes reduces
the processing load. For this, the OpenCV and grab&retreive methods were used, and
the calibration function, flag, and relationship definitions, as well as noise canceling, are
explained by a pseudo-code in Table 3.
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Table 3. OpenCV stereo calibration function pseudo-code.

ret, K1, D1, K2, D2, R, T, E, F = cv2.stereoCalibrate(objp, leftp, rightp, K1, D1, K2, D2, image_size,
criteria, flag

CV_CALIB_FIX_INTRINSIC:
CV_CALIB_USE_INTRINSIC_GUESS:
CV_CALIB_FIX_PRINCIPAL_POINT:
CV_CALIB_FIX_FOCAL_LENGTH:
CV_CALIB_FIX_ASPECT_RATIO:
CV_CALIB_SAME_FOCAL_LENGTH:
CV_CALIB_ZERO_TANGENT_DIST:
CV_CALIB_FIX_K1, . . . ,CV_CALIB_FIX_K6:

R1, R2, P1, P2, Q, roi_left, roi_right = cv2.stereoRectify(K1, D1, K2, D2, image_size, R, T,
flags=cv2.CALIB_ZERO_DISPARITY, alpha=0.9)

LeftMapX, leftMapY = cv2.initUndistortRectifyMap(K1, D1, R1, P1, (width, height), cv2.CV_32FC1)
left_rectified = cv2.remap(leftFrame, leftMapX, leftMapY, cv2.INTER_LINEAR,
cv2.BORDER_CONSTANT) rightMapX, rightMapY = cv2.initUndistortRectifyMap(K2, D2, R2, P2,
(width, height), cv2.CV_32FC1) right_rectified = cv2.remap(rightFrame, rightMapX, rightMapY,
cv2.INTER_LINEAR, cv2.BORDER_CONSTANT)

The next step involves the wrapping and masking of images. Once image calibration is
performed, the frames captured by the fish-eye lenses are stabilized, resulting in calibrated
image frames. The calibrated image’s perspective views are then selected and undergo
warping, as the surround view necessitates the utilization of four distinct images and
stitching. Warping is achieved by specifying four points on the frame to map to the
corresponding destination points. The pseudo-codes of warping and masking are presented
in Table 4.

Table 4. Pseudo-code of warping and masking.

%wraping
cv::Point2f srcPointsF[] = {Point(x1,y1),Point(x2,y2),Point(x3,y3),Point(x4,y4)};
cv::Point2f dstPointsF[] = {Point(z1,x1),Point(z2,x2),Point(z3,x3),Point(z4,x4)};
Mat F = getPerspectiveTransform(srcPointsF, dstPointsF);

%masking
cv::Mat maskR = cv::Mat::zeros(cv::Size(width, height), CV_8U);

vector<Point> pts = {Point(x1,y1),Point(x2,y2),Point(x3,y3),Point(x4,y4)};
fillPoly(maskR,pts,Scalar(255));

cvtColor(maskR, maskR, COLOR_GRAY2BGR);
cv::Mat resR;
bitwise_and(frame,maskR,resR);

getPerspectiveTransform calculates a perspective transform from four pairs of the
corresponding points. The function calculates the 3 × 3 matrix of a perspective transform
so that tix′i

tiy′i
ti

 = mapmatrix.

xi
yi
1

 (1)

dst(i) =
(
x′iy
′
i
)
, src(i) = (xi, yi), i = 0, 1, 2, 3 (2)

The wrapping process continues to stitch images by considering the differences be-
tween the pixels. The camera frames are taken from the operating system, which is
Linux/Ubuntu. A capture card is required for taking the camera frames. The serial channel
gathers the frames from the video channels and provides channels that are stored in channel
buffers. Using cat commands provides the desired channel data transmission in ASCII code
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placement. Having different ASCII characters flowing through the channels means video
transmission data are arriving in the serial channels; thus, it could be accessed via OpenCV
libraries. OpenCV has a VideoCapture class that gives features to use frames for open
channels and retrieve frames and show them with imshow commands. These frames have
default settings for PAL- or NTSC-type video capture. Both are terrestrial broadcast signals.
Image quality is the same for both. “VideoCapture::read(frame*)” accesses these PAL
frames using colored images from a 0-to-255 matrix using a three-dimensional color matrix.

After all the necessary preparations, the videos are recorded for the image stitching
test. Since different images can have varying frame types, such as PAL, NTSC, and other
formats, stitching the images requires them to be captured separately. Even different frames
can have different dimensionalities, like 2D, 3D, and 4D, and color channels may differ
from full RGB and limited RGB, like 0–255 or 16–235. That is why image stitching needs to
be taken care of separately. If any frame is irrelevant to the other frames regarding type or
range, the exception is thrown out.

Stitching images requires warping and masking. Four different frames are warped
from upside to down, and important points are masked for stitching. The masks are implied
to have colored frames with the bitwise and operator. The frames are rotated due to stitching
places: the front stays the same, the left frame rotates 90 degrees counterclockwise, the right
image rotates 90 degrees clockwise, and the back image rotates 180 degrees. All frames are
resized for stitching purposes to have a size of 640,480 for the final image. Lastly, all frames
are summed up. If all frame types are the same and the dimensions do not differ, this can
be summed with the “+” operator.

final_frame = front_frame + left_frame + right_frame + back_frame (3)

Stitched images may not show the best surround view when first stitched. So, a
function is written for pixel manipulation that changes the source points from srcPoints and
dstPoints by giving arguments to increase some x and y dimensions for the written function.

2.2. 360-Degree Surround-View System Differences from Related Studies

The development of 360-degree surround-view systems for car safety is an ongoing
effort, with different models utilizing varying numbers of cameras and technologies to
create surround views of varying quality. While there is no industry standard for this
technology, some models outperform others in terms of quality and frame rates, with
specific equipment and technologies being used depending on the needs of the application.
The primary goal of these systems is to improve driver safety by providing vision for
blind spots.

One approach proposed in a recent article [37] uses a super-resolution convolutional
neural network (SRCNN) to enhance image quality. While the use of SRCNN resulted in
better image quality when compared to traditional systems, it does come with a significant
disadvantage in that it is computationally intensive and requires high processing power
and memory to operate effectively. Thus, using embedded systems for such models is
not recommended.

Another article [38] proposed a method using a homography matrix, MSL deform,
polynomial deformation, and homography merging to warp an image. While this method
can automatically calibrate the system, it can be slow and heavy to process, and any changes
to the calibration file require recalibration.

In this article, we propose a method that uses fixed calibration points instead of fully
automatic calibration, making it more efficient and cost-effective. The proposed approach
requires less computation and can be integrated into less powerful systems, making it more
suitable for embedded systems in vehicles.

Overall, the goal of a 360-degree surround-view system is to improve driver safety
by providing visibility to blind spots. The proposed method offers a more efficient and
cost-effective approach to achieve this goal, making it a promising option for integration
into future car safety systems.
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2.3. Driver Behavior Recognition Based on YOLO

Figure 1 also shows the placement of the internal camera that checks the behavior
of the driver. The driver behavior detection system used the YOLO method. YOLO is
much faster than other algorithms because it takes the region proposal inside of an image
with multiple class probabilities and processes it instantaneously. The YOLO algorithm
performs several steps [27], as follows; (i) dividing the image into N grids, with each region
having an equal dimension of SxS, (ii) using bounded boxes to predict objects, (iii) using
a loss function, and (iv) using nonmaximal suppression to suppress all bounding boxes
that have low probability scores. The YOLO method includes different versions, and
YOLO_V5 was used in this study since it gives better results for real-time object detection.
YOLO_V5 was chosen rather than the new version: YOLO_V8, due to several reasons.
Firstly, YOLO_V5 is significantly advanced regarding improved speed and efficiency. It
delivers fast inference times and reduces computational requirements when compared
to YOLO_V8. Another important reason is that YOLO_V5 has an active development
community and ongoing support, ensuring continuous updates and bug fixes. This active
community guarantees access to the latest improvements, making YOLO_V5 a future-proof
choice for object detection projects. Furthermore, YOLO_V5 maintains compatibility with
previous YOLO versions, facilitating a seamless integration process for users with existing
workflows and projects. A comprehensive comparison study on the versions of YOLO is
presented in [39]. By considering these factors, YOLO_V5 emerged as a compelling choice
for object detection.

The detection process initiates with training, which is essential for machine/deep
learning models, as illustrated in Figure 3. In order to extract the training data, a simulation
area was formed, and 5 h of video data was captured. Several drivers took the role of simu-
lating their typical activities in order to create the dataset and to train and quantitatively
evaluate the proposed method; a total of 3099 images were selected from this video data
for use in model training. The dataset has been split into three parts for better evaluation:
Train 70%, Validation 20%, and Test 10%. The dataset median image ratio is 960 × 1080,
and the class balance is around an equal ratio. The dependent classes for model training
are as follows (Table 5):

Table 5. Dataset class distribution.

Databases: Driver Behaviors

Instances: 3099
Attributes: 10
Sum of Weights: 286

No Attributes Type

1 C0_smoking Nominal
2 C1_talking_passenger Nominal
3 C2_radio_checking Nominal
4 C3_reaching_behind Nominal
5 C4_drinking Nominal
6 C5_texting Nominal
7 C6_talking_on_phone Nominal

The dataset images were preprocessed to decrease training time and increase perfor-
mance by applying image transformations of Auto Orient, Resize (Stretch to 416× 416), and
Grayscale. Additionally, data augmentation was applied to the driver behavior detection
datasets to obtain better datasets and more instances. In this regard, Rotation Between−15◦

and +15◦ (helps the model be more resilient to camera roll), Shear ±15◦ Horizontal, ±15◦

Vertical (adds variability to the perspective to help the model be more resilient to camera
and subject pitch and yaw), saturation between −25% and +25% (adjusts the vibrancy of
the colors in the images), brightness between −25% and +25% (adds variability to image
brightness to help the model be more resilient to lighting and camera setting changes) were
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applied. Following the data augmentation, the generated maximum version size of the
images included 7437 images.
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2.4. Driver Behavior Recognition Based on YOLO Differences from Related Studies

In the context of detecting human behavior, machine learning models were compared
to determine which model produces better results. Various studies have been conducted
on driver behavior detection, such as “Pose Estimation Based Activity Recognition [40]”,
which employed State Farm Distracted Driver Detection [41]. This study also utilized a
distracted driver dataset to achieve better results. Because the datasets used in these studies
are similar, model learning can be easily compared. While developing the YOLO_V5 model,
in addition to carefully building the database, the State Farm dataset was used to increase
the dataset and the performance of the model.

When comparing the two articles, it can be concluded that the YOLO_V5 model
proposed in this study is slightly superior to the Pose Estimation model in terms of detection
method and accuracy. OpenPose is a pretrained deep learning model for pose estimation
and is supported by logistic regression, support vector machine, decision tree, and random
forest classifiers. It has performed well in detection, with an accuracy ranging from 0.90 to
0.92. In contrast, the YOLO_V5 model proposed in this study is a real-time object detection
algorithm that detects and classifies driver behaviors using a dataset of 3099 images. The
model’s performance was improved through data augmentation, resulting in a precision
level of 0.60.

While both articles use different machine-learning approaches, they fall within the
same recognition field. The use of a supported CNN model has led to slow model pro-
cessing, and typically requires multiple passes to make a decision, as noted in another
article [42]. Conversely, YOLO_V5 is a better fit for real-time applications, particularly those
with limited resources, such as those running on mobile devices or embedded systems.
Because this model is intended to run on an embedded system in a car, a faster and more
effective model needs to be used for driver behavior detection. The article also shows that
the YOLO_V5 model achieved a precision level of 0.60 using a short learning time. More-
over, more training with additional steps and data produced better results, as explained in
the performance results section, due to the recall and precision metrics’ relationship with
the steps. YOLO_V5 models have achieved better performance in object detection tasks
compared to other algorithms and are slightly more efficient and effective, which is crucial
in real-time applications.

3. Performance Results

The experimental study was conducted on a platform called Google Colab, which
requires n1-highmem-2 instance, 2vCPU @ 2.2 GHz, 12 GB RAM, 100 GB of free space, an
idle cut-off of 90 min, and a maximum of 12 h. The test results of the proposed method
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illustrate the classification performance, as shown in Figure 4. The proposed approach’s
mAP (mean average precision) value is 0.3264, and the precision value is around 0.6342.
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In machine learning applications, the precision and recall values should be in inverse
relationships to achieve high performance. ROC curve tests show that if a model aims to
be better than a random model, it is expected that recall and precision have an inverse ratio
with time. If the model is better than random, an increase in recall generally decreases
precision. If the model is worse than random, precision generally increases. As illustrated
in Figure 4a,b, after increasing the epoch numbers, the relationship between precision and
recall is inverse, which highlights that the model obtains better results than a random
prediction model with an increase in epochs. Additionally, it emphasizes that the model
becomes better when using the YOLO approach and when there is enough data/time for
model training as illustrated in Figure 5.
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In order to validate the performance of the proposed 360-degree surround-view
system, a blind/referenceless image spatial quality evaluator (brisque) technique was used
to calculate the differences between the original frame and modifications [43]. As illustrated
in Table 6, while the brisque value of the original frame varies within the range of 18.9–28.5,
the brisque value of the modified frame varies within the range of 46.6–56.1. The results
highlight that the brisque values are within acceptable limits, as in the methods proposed
in the literature. Moreover, the performance of the 360-degree surround-view system was
tested by drivers in the case studies of routine driving, parking, and parking near-to-line
tests. The performance results were illustrated in Figure 6. Another metric for calculating
the performance of an algorithm is false positive ratio (FPR) detection, which is used to
evaluate the performance of a binary classification model [44]. It helps assess the model’s
ability to correctly identify negative instances by considering the FPR. It can understand
the trade-off between correctly identifying positive instances and accurately identifying
negative instances.

False Positive Ratio (FPR) = False Positives (FP)/(False Positives (FP) + True Negatives Count (TN)) (4)

FP = (1 − Precision) × TN (5)

With True Negatives (TN) = 1000;

At threshold 0.05: Precision: 80, Recall: 90

FPR = 0.1667 or 16.67%

At threshold 0.23: Precision: 40, Recall: 70

FPR = 0.375 or 37.50%

Table 6. Brisque scores of original and modified surround view.

Original Surround View Modified Surround View

24.827 56.108
28.592 46.661
18.911 48.012
25.743 53.881
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These estimated FPR values are considered to reflect relatively good results. The FPR
ranges from 16.67% to 37.50%, indicating that the model has a moderate-to-low rate of
false positives. This suggests that the model maintains a good balance between identifying
positive instances while keeping false positives relatively low.

According to Figure 4c, precision and recall were positively correlated; as the threshold
decreased, precision tended to decrease, while recall also decreased. Additionally, even
though the precision values decrease with a decreasing threshold, they remain relatively
high. This indicates that the model maintains a good level of accuracy in identifying
positive instances. The overall trend suggests that the model can strike a balance between
capturing a significant number of positive instances (high recall) while maintaining a
reasonably low rate of false positives (relatively high precision). This can be advantageous
in various applications where both sensitivity and accuracy are essential.

4. Conclusions

This paper is about the development of an advanced driver assistance system (ADAS).
It is important to consider both a 360-degree surround-view car technology system and
a driver behavior recognition system via machine learning. These two systems are inter-
connected, as they both contribute to improving driver safety and preventing accidents on
the road. The 360-degree surround-view system enhances the driver’s awareness of their
surroundings, while the driver behavior recognition system uses machine learning to detect
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distracted or impaired driving. By including both systems in the article, readers can gain a
comprehensive understanding of the current state and potential future advancements of
ADAS technology.

This paper proposes (i) a 360-degree surround view to detect blind spots and minimize
visibility restrictions and (ii) a YOLO-based driver behavior recognition system to detect
inattention/misbehavior to determine suitable vehicle control strategies. Unlike the existing
behavior recognition systems, the YOLO-based method was adopted for the ADAS because
of its faster prediction capability and fps value. The proposed methods were applied to
an electric bus that was equipped with the required hardware cameras. The performance
of the proposed methods was tested under different scenarios: routine driving, parking,
and parking near-to-line tests, providing a 360-degree surround view, and monitoring
radio/phone/texting/talking driver behavior via a recognition system.

In conclusion, the research highlights the significance of integrating 360-degree
surround-view car technology systems and driver behavior recognition systems in ADASs.
The findings demonstrate the successful implementation and performance of these systems,
emphasizing their potential to enhance driver safety and contribute to a comprehensive
understanding of ADAS technology advancements.

As a result, the performance of the proposed driver behavior recognition system has
been validated, with n mAP value of 0.3264 and a precision value of 0.6342. Besides, the
effectiveness of the 360-degree surround view was tested with drivers. It was concluded
from the test results performed by the drivers that the proposed system has a positive effect
on awareness.
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