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Abstract: Single-image super-resolution (SISR) is an important task in image processing, aiming
to achieve enhanced image resolution. With the development of deep learning, SISR based on
convolutional neural networks has also gained great progress, but as the network deepens and the
task of SISR becomes more complex, SISR networks become difficult to train, which hinders SISR
from achieving greater success. Therefore, to further promote SISR, many challenges have emerged
in recent years. In this review, we briefly review the SISR challenges organized from 2017 to 2022 and
focus on the in-depth classification of these challenges, the datasets employed, the evaluation methods
used, and the powerful network architectures proposed or accepted by the winners. First, depending
on the tasks of the challenges, the SISR challenges can be broadly classified into four categories:
classic SISR, efficient SISR, perceptual extreme SISR, and real-world SISR. Second, we introduce the
datasets commonly used in the challenges in recent years and describe their characteristics. Third,
we present the image evaluation methods commonly used in SISR challenges in recent years. Fourth,
we introduce the network architectures used by the winners, mainly to explore in depth where the
advantages of their network architectures lie and to compare the results of previous years’ winners.
Finally, we summarize the methods that have been widely used in SISR in recent years and suggest
several possible promising directions for future SISR.

Keywords: single-image super-resolution; single-image super-resolution challenges; deep learning;
deep networks

1. Introduction

Single-image super-resolution is an important task in image processing, aiming to
reconstruct high-resolution images from low-resolution images and optimize both details
and textures to improve the quality of visual perception. It is currently used in a wide range
of real-life scenarios [1–4], including security surveillance [5–7], remote sensing [8–10],
medical imaging [11–13], etc., while contributing to other advanced computer vision
tasks [14–19], and is therefore of wide interest to academia and industry [20–24].

With the rapid development of deep learning [25–30], deep-learning-based SISR
models have achieved state-of-the-art performance on various benchmarks, but SISR
remains a challenging problem as a severely discomforting computer vision problem. This
discomfort can become more severe as the scale factor changes, so there are still many
aspects of SISR that need to be improved.

To facilitate the development of SISR, challenges regarding image super-resolution
have emerged. Among them, NTIRE, PIRM, and AIM are the three most popular challenges.
In this paper, we overview the recent progress of deep-learning-based SISR in addressing
its top challenge. Although there have been some previous surveys on SISR [31–36],
our survey differs from them in that we focus on the performance and progress of SISR
techniques that address their top challenges. Unlike earlier works that mostly investigated
traditional SISR algorithms or focused on a particular class of SISR techniques, this survey
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systematically and comprehensively reviews the development of SISR as its top challenge
during 2017–2022.

NTIRE: The New Trends in Image Recovery and Enhancement (NTIRE) challenge
was combined with CVPR [37]. For the single-image super-resolution challenge, the
challenge tasks include efficient super-resolution, extreme super-resolution, real-world
super-resolution, and classic super-resolution, intending to reconstruct a degraded and
resulting low-resolution image into a new high-resolution image at a target multiple,
and the challenge promotes the development of SR research in the ideal case or the real-
world case.

PIRM: The Perceptual Image Recovery and Manipulation (PIRM) challenge was held
in conjunction with ECCV and includes multiple tasks [38]. This challenge focuses on
generating high-resolution images with both accuracy and perceptual quality. It is well
known that when you choose to generate high-resolution images with higher accuracy, you
tend to obtain poor visual perception, and when you choose to generate high-resolution
images with higher perceived quality, the image quality is often not good enough.

AIM: The Advances in Image Manipulation (AIM) challenge was combined with
ICCV [39,40]. The AIM challenge includes the following main tasks: to train SISR models
that can be applied to real-world scenarios, to improve the efficiency of SISR models, to
increase the speed of the models, and to reduce the memory needed to run them given a
benchmark, etc.

This paper mainly reviews the content of the challenges and the superior methods on
single-image super-resolution in NTIRE, PIRM, and AIM during 2017–2022. The rest of this
paper is organized as follows: Section 2 presents the datasets used in the above challenge;
Section 3 presents the various IQAs proposed and used in the challenge; Section 4 presents
the models that won the above challenge during 2017–2022, focusing on the deep feature
extraction part; Section 5 concludes and discusses the possible future directions of SISR.

2. Background

Among the SISR tasks, we can express the degradation process of high-resolution
images to low-resolution images using the following formula:

y = ϕ
(
x, θη

)
(1)

where y denotes a low-resolution image, x denotes a high-resolution image, ϕ is a function
representing the degradation process, and θη is various parameters in the degradation
process, including noise and downscaling kernels. And the SISR task is to try to predict and
reconstruct a high-resolution image x̂ from the degraded obtained low-resolution image,
and the process can be expressed as follows:

x̂ = ϕ−1(y, θς) (2)

where x̂ denotes the reconstructed high-resolution image, y denotes the input low-resolution
image, ϕ−1 denotes the function solved backward from the degradation process, and θς is
the various parameters in the function solved backward. The image degradation process
in SISR tasks is often unknown and complex and is affected by various factors, such as
noise, blur, compression, and artifacts, so the most challenging task in SISR tasks is how
to construct the inverse solution function ϕ−1. In the field of SISR, most researchers have
modeled the degenerate function ϕ in Equation (1) as follows:

y = (x⊗ k) ↓s +n (3)

where y denotes a low-resolution image, x denotes a high-resolution image, ⊗ denotes a
convolution operation, k denotes a blurring kernel that makes the image blurred, ↓s denotes
a downscaling operation that reduces the size of the image by a factor of s, and n denotes
an additive Gaussian white noise with kernel width σ.
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3. Dataset

To compare the strengths and weaknesses of the SISR model, it is necessary to train
as well as test the validation on the same dataset. The datasets used until 2017 are Train
91 [41] proposed by Yang et al. and Set5 [42], Set14 [43], BSD100 [44], and Urban100 [45]
proposed and merged by Timofte et al. [46].

With the development of SISR networks, the size of the previously proposed dataset
is not sufficient for training complex neural networks, and the training of SISR networks
requires more a priori information, so the size of the dataset gradually increases.

First presented at NTIRE 2017, the DIV2K [47] dataset features 1000 images collected
from the Internet and covers a variety of content, including people, environments, animals,
and more. Each image in this dataset has 2K pixels, i.e., they have 2K pixels in at least one
axis (horizontal or vertical) direction with a much higher resolution than the images in the
dataset presented above.

The challenging task of NTIRE 2019 was to achieve single-image super-resolution
in the real world. At that time, most of the LR images in the dataset were HR images
obtained via simple bicubic downscaling, while the image degradation in the real world
was much more complex than that, so the SISR method at that time did not perform well
on the real-world images. The dataset used in NTIRE 2019 is RealSR [48], proposed by
J. Cai et al. This dataset was captured using a digital camera, and an image alignment
algorithm was developed to gradually align image pairs at different resolutions to obtain
LR-HR image pairs of the same scene by adjusting the focal length. In addition, for the
2020 AIM Real-World Super-Resolution Challenge, Wei et al. proposed the DRealSR [49]
dataset, which has more numbers and diversity than the RealSR, and the DPED [50] dataset,
which consists of three different mobile phones and one high-end camera, was used for the
challenge. The dataset consists of real photos taken on three different cell phones and a
high-end camera.

Due to the resolution limitation of the dataset, scaling of larger factors was difficult to
achieve with the then-available datasets, so the DIV8K [51] dataset was proposed at the
2019 AIM Extreme Super-Resolution Challenge, which is suitable for scaling factors of 32
and above. The dataset has 1504 high-resolution images, of which the validation set and the
test set have one hundred images each. The horizontal pixel resolution of the images in the
validation set, test set, and part of the training set is not less than 7680, and the horizontal
resolution of the remaining images in the training set is not less than 5760. In Table 1, we
list a number of datasets commonly used in the SISR challenges. In Figure 1, We show a
selection of images from a commonly used dataset.

Table 1. Image representation of the SISR challenge datasets 2017–2022.

Dataset Amount Format Short Description

Train 91 91 PNG Images for training, including a car, flower, fruit, etc.
Set5 5 PNG Images for testing, including a baby, bird, butterfly, head, and woman.

Set14 14 PNG Images for testing, including humans, animals, insects, etc.
BSD100 100 PNG Images for testing, including animals, buildings, food, etc.

Urabn100 100 PNG Images for testing, including a city, urban, structure, etc.

DIV2K 1000 PNG Each image in this dataset has 2K pixels, including the environment, flora,
fauna, handmade object, etc.

RealSR 595 PNG
The dataset was built via two cameras (Cannon 5D3 and Nikon D810) and

used an image alignment algorithm to obtain LR-HR pairs for the real-world
SISR challenge.

DRealSR 2507 PNG Compared to RealSR, it has more diversity and more data volume.

DPED 6000 PNG The authors used three cell phones and a DSLR to photograph an object
simultaneously to form a new database of 6000 photographs for this study.

DIV8K 1504 PNG Images are suitable for scaling factors of 32 and above.
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4. Evaluation Method

Typically, image quality is assessed using both subjective human perception methods
(i.e., whether the image looks realistic) and objective methods. SISR aims to generate
images that match human perception and are of high image quality. Since subjective
human perception methods take a lot of time to evaluate, the prevailing method is the
objective method. Since objective methods do not reflect human perception of images,
the results obtained using subjective and objective methods sometimes differ significantly,
and we next describe the subjective and objective methods used in the SISR challenge in
2017–2022.

4.1. Peak Signal-to-Noise Ratio (PSNR)/Structural Similarity Index (SSIM)

Given a high-resolution image as opposed to low-resolution images I with N pixels
and a super-resolution image Î, L is typically 255, and PSNR [52] is defined based on MSE.

MSE is defined as follows:

MSE =
1
N
∥∥I − Î

∥∥2 (4)

PSNR is defined as follows:

PSNR = 10log10

(
L2

MSE

)
(5)
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SSIM [52] is defined as follows:

SSIM
(

I, Î
)
=

(
2µIµ Î + C1

)(
σI Î + C2

)(
µ2

I + µ2
Î
+ C1

)(
σ2

I + σ2
Î
+ C2

) (6)

where µI and σ2
I are the mean and variance of I, σI Î is the covariance between I and Î, and

C1 and C2 are the constant terms.

4.2. Perception Index (PI)

The previous IQA can only reflect the quality of the picture, which is difficult to
reflect the effect of human visual perception of the picture. The PI is proposed in the 2018
PIRM Challenge on Perceptual Image Super-resolution to reflect the perceived quality of
the picture.

The No-Reference Quality Metric (NRQM) [53] is a learning-based no-reference metric
that trains a regression network for evaluating the perceptual quality of SR images by
learning a large number of SR images and the corresponding perceptual scores.

Natural Image Quality Evaluator (NIQE) [54] is a natural scene statistic (NSS) model
based on which the quality of the test image is expressed as the distance between the
multivariate Gaussian (MVG) fit of the NSS features extracted from the test image and
the MVG model of the perceptual quality features extracted from the natural image. PI
uses reference-free image quality assessment methods such as NRQM and NIQE to achieve
the following:

PI =
1
2
((10−NRQM) + NIQE) (7)

4.3. Learned Perceptual Image Patch Similarity (LPIPS)

LPIPS [55] is used to measure the difference between two images and is more consistent
with human perception than the traditional SSIM and PSNR.

d(x, x0) = ∑
l

1
HlWl

∑
h,w

∥∥∥wl �
(

ŷl
hw − ŷ0

l
hw

)∥∥∥2

2
(8)

where d denotes the distance from x0 to x. The feature stack is extracted from the l layer
and unit-normalized in the channel dimension. The vector Wl is used to deflate the number
of activated channels, and finally, the L2 distance is calculated. Finally, it is averaged over
the space and summed by channel.

4.4. Mean Opinion Score (MOS)/Mean Opinion Rank (MOR)

MOS refers to the scoring of the generated image against a relative reference image
with six ratings.

MOS = ∑ x·p(x)
x∈[0,1,2,3,4,5]

(9)

MOR means that the study participants are asked to rank the images obtained using
the different methods without seeing the reference image. In addition, the IQA-Rank
was calculated using the average of four evaluation methods: NIQE, Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE) [56], Perception-based Image Quality Eval-
uator (PIQE) [57], and NRQM. BRISQUE means extracting the mean subtracted contrast
normalized (MSCN) features from the image and fitting them to an asymmetric generalized
Gaussian distribution (AGGD), extracting the fitted Gaussian distribution features and
inputting them to a vector machine (SVM) to predict the result of the image quality eval-
uation. PIQE is more concerned with extracting local features and predicting the overall
image quality score from the local image quality score. Similar to BRISQUE, PIQE also
calculates MSCN coefficients first and then calculates the quality fraction of the whole
picture according to the formula based on distortion, etc. Then, the IQA-Rank of each
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method and the ranking given by the participants were used to calculate the average to
obtain the MOR.

4.5. Parameters Used to Measure Efficiency

To improve the operational efficiency of the network, several parameters used to
measure efficiencies, such as runtime, parameter calculation, FLOPs, activation, and GPU
memory usage, are used in a series of efficient super-resolution challenges. In Table 2, we
show the subjective and objective methods used in the SISR challenge in 2017–2022.

Table 2. The subjective and objective methods used in the SISR challenge in 2017–2022.

Evaluation Method Full-/Non-Reference Short Description

Peak Signal-to-Noise Ratio (PSNR) Full-Reference

The image quality reference value between the maximum
signal and the background noise is calculated to measure
whether the image is distorted or not. Higher PSNR values
indicate higher quality of the generated images.

Structural Similarity Index (SSIM) Full-Reference

Calculate whether the structure of two images is similar
from the point of view of brightness, contrast, and image
structuring. The larger the SSIM, the more similar the
images are.

Perception Index (PI) Non-Reference
It is used to calculate the perceived quality of the image,
and often the lower the value, the better the perceived
quality of the image.

Learned Perceptual Image Patch
Similarity (LPIPS) Full-Reference

The perceptual similarity is calculated, which is more in line
with human perception than traditional methods (PSNR
and SSIM). The lower value indicates that the two images
are more similar.

Mean Opinion Score (MOS) Non-Reference The perceived quality of the images is evaluated via
human ratings.

Mean Opinion Rank (MOR) Non-Reference Similar to MOS, the perceived quality of the images is
evaluated via human ratings of the images.

5. Superior Method

Depending on the task of the challenge, it can be broadly classified into four categories:
classic SISR, efficient SISR, perceptual extreme SISR, and real-world SISR. In this section,
the network architecture of the winning approach in the 2017–2022 SISR challenge will
be presented.

5.1. Classic SISR

Classic SISR refers to the reconstruction of LR images obtained by bicubic downsam-
pling or unknown degradation into images with magnification factors of ×2, ×3, ×4. The
classic SISR challenge has two tracks: one track is to obtain the LR image corresponding to
each HR using the classic bicubic downsampling and degradation factor; the other track
is to obtain the LR image using an unknown degradation. The goal of both tracks is to
reconstruct the original HR image from LR separately [37,47,58,59]. In Table 3, we show
the classic SISR challenge track and winner for the period 2017–2022. In Table 4, we show
the results of the classic SISR challenge winners with amplification factors of 2, 3, and 4 for
2017–2022 and show the winner with a factor of 8 in Table 5.
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Table 3. Classic SISR challenge track.

Challenge Track Winner

NTIRE 2017
Track 1: Degradation is achieved using bicubic downscaling with degradation factors ×2, ×3, ×4

EDSRTrack 2: Degradation is achieved using an unknown method with degradation factors ×2, ×3, ×4

NTIRE 2018

Track 1: Degradation is achieved using bicubic downscaling with a degradation factor of ×8 DBPN
Track 2: Degradation is achieved using an unknown method with a degradation factor of ×4.
Track 3: Similar to Track 2, except that the degradation is more complex, with a degradation factor
of ×4.
Track 4: Similar to Track 2 and 3, the degradation factor is ×4, and the degradation mode is
different between images, and four LR images are generated for each HR image.

WDSR

AIM 2022 Implement a ×4 super-resolution for JPEG images compressed using python code with a quality
factor of 10. TCIR

Table 4. Results of the classic SISR challenge winners (×2, ×3, and ×4) in 2017–2022.

Challenge
Category

SISR
Networks

×2 ×3 ×4

PSNR SSIM PSNR SSIM PSNR SSIM

classic EDSR 34.93 0.948 31.13 0.889 29.09 0.837
blind EDSR 34.00 0.934 30.78 0.881 28.77 0.826

Table 5. Results of the classic SISR challenge winners (×8) in 2017–2022.

Challenge
Category

SISR
Networks

×8

PSNR SSIM

classic DBPN 25.455 0.7088

blind
WDSR (Mild) 23.631 0.6316

WDSR (Difficult) 22.329 0.5721
WDSR (Wild) 23.080 0.6038

5.1.1. EDSR (Winner of NTIRE 2017)

The EDSR [60] proposed by the SNU CVLab team won in both tracks. The SNU CVLab
team has made a series of improvements to the EDSR based on SRResNET [61], and the
specific network structure is shown in Figure 2. They removed the Batch Normalization
(BN) from the residual module because the BN [62] layer would have eliminated the
flexibility of the network due to the normalization feature, and this operation was effective
in improving the PSNR. The training process becomes unstable as the depth of the network
increases. To solve this problem, EDSR uses residual scaling. A residual scaling layer
(scaling using constant multiplication) is also added after the second convolution, which is
experimentally found to effectively stabilize the learning process when C = 0.1. The model
consists of 36 such residual modules. In Figure 3 we compare the original residual block
with the residual block in EDSR. The EDSR only has upsampling modules that differ by
the scale factor. The EDSR architecture further optimizes SRResNET by removing the BN
layer from the SISR network to improve the network performance, allowing one to train
a larger model under limited conditions, and also giving rise to the exploration of batch
normalization layers in SISR networks.
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5.1.2. DBPN/WDSR (Winner of NTIRE 2018)

The DBPN [63] proposed by Muhammad Haris et al. achieved superiority on track 1,
and the specific network structure is shown in Figure 4. DBPN is a kind of back-projection
network, the previous networks are more feed-forward to predict the results of SR, and each
layer is basically based on the results of the previous layer to obtain. We show the upper
and lower projection units in DBPN in Figure 5. DBPN connects the features of up- and
downsampling together. Each instance of upsampling or downsampling reconstruction
uses all of the previous LR or HR image features. Finally, splicing the depth features of all
the HR images were obtained from upsampling to reconstruct the final HR image. Unlike
previous feed-forward networks, DBPN proposes an iterative mapping projection network
that fully exploits the relationship between low-resolution images and high-resolution
images, uses the error between the upper and lower projections to guide the reconstruction
of images, and stitches the feature maps of all the high-resolution images obtained via
upsampling to reconstruct high-resolution images. DBPN also achieves a super-resolution
network with a large magnification factor.
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The WDSR [64] proposed by Yu et al. achieved superiority on track 2, and the specific
network structure is shown in Figure 6. WDSR has improved the Residual block in EDSR
by increasing the number of channels of the feature map before the ReLU function, which
can activate the network better and obtain better performance without increasing the
computational overhead; In addition, a large convolutional kernel after the ReLU function
is split into two small convolutional kernels, which can effectively reduce the number of
computations while ensuring the same perceptual field; in addition, WDSR replaces the
BN layer with the Weight Normalization (WN) [65] layer to increase the training speed and
speed up the convergence of the neural network.
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In the overall network architecture, WDSR removes the redundant convolutional
layers from the EDSR and does not insert convolutional blocks after the upsampling layer.
We show that in Figure 7. This operation can effectively improve the operation speed and
reconstruction effect of the network.
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5.1.3. TCIR (Winner of AIM 2022)

Compression plays an important role in the efficient transmission of images on
broadband-limited Internet, but compression can lead to image artifacts and degrade
image quality. Therefore, AIM 2022 proposed a super-resolution challenge for compressed
images using the DIV2K dataset, and the TCIR proposed by the VUE Team won the year,
with the specific network structure shown in Figure 8.
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Figure 8. TCIR’s overall network architecture.

They divided the network into two stages: the first using a hybrid network of Trans-
former and CNN to remove artifacts and the second using a modified RRDBNet to achieve
×4 super-resolution.
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The improvements made by the team to SwinIR [66] are outlined below. Firstly, they
downsample the image with a convolution of step 2 to shrink the image by a factor of
two. Since the image itself is compressed with a quality factor of 10, this operation does
not affect the performance of TCIR, saves GPU memory, and accelerates the model. And
then they use the new Swinv2 transformer module to replace the STL module in SwinIR to
greatly improve the performance of the network. Thirdly, they added three RRDB modules
to the RTCB (the basic module of the network) in TCIR, which can take advantage of both
CNN and the Transformer. The network combines CNN and the Transformer together and
achieves excellent results, proving that the combination of CNN and the Transformer has a
good development prospect.

5.2. Efficient SISR

The goal of the Efficient SISR Challenge is to increase the efficiency of super-resolution
networks with amplification factors of ×2, ×3, and ×4 as much as possible. Factors that
affect the efficiency of SISR networks include runtime, number of parameters, FLOPS,
activation, and memory consumption. Therefore, the efficiency of the SISR network is
evaluated from different aspects. The Efficient SISR Challenge is a SISR challenge that
optimizes other metrics as much as possible while limiting one parameter, aiming to
improve the operational efficiency of SISR networks and advance the lightweight and
efficiency of networks [39,67,68]. In Table 6, we show the efficient SISR challenge track and
winner for the period of 2017–2022, and, in Table 7, we show the results of efficient SISR
challenge winners for 2017–2022.

Table 6. Efficient SISR Challenge track in 2017–2022.

Challenge Track Winner

AIM 2019

Track 1: Degradation is achieved using bicubic downscaling with degradation factors ×2, ×3, ×4
Track 2: Degradation is achieved using an unknown method with degradation factors ×2, ×3, ×4 IMDN

Track 3: Fidelity is used to design networks with high fidelity under the premise of guaranteeing
the PSNR and running time of MSRResNet. BaiDu-NAS

AIM 2020
The goal of this challenge is to design a network that reduces one or more aspects, such as
runtime, parameters, FLOP, activation, and memory consumption while maintaining at least the
PSNR of MSRResNet.

RFDN

NTIRE 2022
Main Track: Designing networks with short run times. RLFN
Sub Track 1: Designing networks with few model parameters and FLOPS. BSRN
Sub Track 2: Combines runtime, parameters, FLOPs, activation, and memory consumption. EFDN

Table 7. Results of the Efficient SISR Challenge winners. ‘Params’ denotes the total number of
parameters in 2017–2022. ‘FLOPs’ is the abbreviation for floating point operations. ‘Acts’ measures
the number of elements of all outputs of convolutional layers. ‘GPU Mem’ represents maximum GPU
memory consumption.

SISR
Networks

PSNR
[dB]

Ave.
Time
[ms]

Params
[M]

FLOPs
[G]

Acts
[M]

GPU Mem.
[M]

IMDN 28.78 50.86 0.893 58.63 154.14 120
BaiDu
NAS 28.84 - 1.461 - - -

RFDN 28.75 41.97 0.433 27.10 112.03 200
RLFN 28.72 27.11 0.317 19.70 80.05 377.91
BSRN 28.69 140.47 0.156 9.50 65.76 729.94
EFDN 28.71 29.97 0.272 16.86 79.59 575.99

MSRResNet 28.70 - 1.517 166.36 292.55 610
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5.2.1. IMDN (Winner of AIM 2019)

AIM 2019 presents a challenge of image super-resolution performed under constraints,
which is based on MSRResNet [69] as a baseline with three tracks. The aim is to optimize the
remaining one parameter under two of the conditions limiting the number of parameters,
runtime, and PSNR, respectively.

The winner of the year was the IMDN (Information Distillation Network) [70] pro-
posed by the Rainbow Team, the specific network structure of which is shown in Figure 9.
The main idea is to use the IMDB module to replace the 16 residual modules in MSRResNet,
where the IMDB module is shown in Figure 10. This module can divide the intermediate
features into two parts by channels, one part is retained, and the other part is further
processed via a 3 × 3 convolutional layer, and a 1 × 1 convolution is used to combine them
at the end. This operation can effectively preserve information and greatly improve the
performance of the SISR network with only a small increase in parameters. The final up-
sampling module simply employs a sub-pixel convolution to preserve as many parameters
as possible. IMDB uses a Contrast-aware Channel Attention layer (CCA) to enhance image
details and improve the accuracy of SISR. Due to the split channel operation in extracting
features, the number of input channels is reduced, and an excellent balance between the
number of parameters, running time, and PSNR at runtime is achieved. The information
distillation model proposed via IMDN is one of the most advanced methods for lightweight
networks, which effectively guides the development of lightweight networks.
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Figure 10. IMDB module.

5.2.2. RFDN (Winner of AIM 2020)

The 2020 AIM presents an efficient single-image super-resolution challenge with a
magnification factor of ×4. The goal is to design a network that reduces one or more
aspects of runtime parameter computation, flops, activation, and memory consumption
while guaranteeing the PSNR of MSRResNet.

The RFDN [71] proposed by the NJU MCG team achieved superiority, and the specific
network structure is shown in Figure 11. The team proposes the FDC module to make the
network lighter and more accurate and proposes the SRB module to enable the network to
harvest the most from the residual learning.
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Figure 11. RFDN overall network structure.

The NJU MCG team found that the feature extraction operation is implemented with
a 3 × 3 convolution, but similar to other CNN models, it is more efficient to use a 1 × 1
convolution for channel separation. To ensure the spatial context and better refine the
features, the 3 × 3 convolution is still used on the right convolutional theme, which is the
FDC block proposed by the team.

The team also introduced a smaller range of residual learning in the network by de-
signing a shallow residual block (SRB), which consists of a 3 × 3 convolution, a connection,
and an activation unit, as shown in Figure 12. This block can benefit from residual learning
without introducing any additional parameters; the residual linking in IMDB is too coarse
to take advantage of residual linking. In contrast, the SRB block allows a lightweight
network to take advantage of residual learning as well. In addition, the authors believe
that using spatial attention in a shallow SR model is more effective than using channel
attention and, therefore, replaced the CCA layer in the RFDB with the ESA layer in the
network model that participated in the competition.
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Figure 12. RFDB (a) and SRB (b) in RFDN.

5.2.3. RLFN (Winner of NTIRE 2022)

In 2022, NTIRE proposed the Single-Image Efficient Super-Resolution Challenge,
which has three tracks [67]: a main track for runtime, a sub-track for model complexity, and
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a sub-track for overall performance. The RLFN [72] proposed by ByteESR won in the main
track, and the specific network structure is shown in Figure 13.
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Figure 13. The overall network architecture of RLFN.

The team rethought RFDB and proposed the RLFB module as the basic module of their
network. They use three layers of convolution to achieve local feature learning of residuals,
simplifying the feature aggregation operation. They believed that although the feature
extraction connection achieved using RFDB via 1 × 1 convolutional operations and cascade
operations could effectively reduce the number of parameters, it would seriously slow
down the inference speed. Therefore, they forgo multiple feature extraction connections
and use several 3 × 3 conv and ReLU layers for local feature extraction. And they add
the final output features to the shallow extracted features from the very first input after
multiple local feature extraction. The obtained features are next passed through the 1 × 1
convolutional layer and its subsequent ESA module to obtain the final output of RLFB, as
shown in Figure 14. In addition, to further reduce the runtime, the number of convolutional
layers in each ConvGroups in ESA is reduced to one, which not only prevents performance
degradation but also optimizes the inference time and model parameters.
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5.3. Perceptual Extreme SISR

There is a balance between the two types of evaluation metrics, one focusing on picture
quality and the other on perceptual quality, and there is no method yet to achieve the best
picture quality while at the same time achieving optimal perceptual quality. Existing
SISR methods tend to focus on the image quality of the reconstructed images; however,
the perceived quality of the images is also an important indicator of the merit of the
reconstructed images. In addition, the problem of SISR regarding the magnification factor
at large scales has received little attention. Therefore, it is a worthwhile problem to realize
large-scale SISR and to reconstruct images with excellent perceptual quality. The perceptual
extreme super-resolution challenge aims to achieve super-resolution reconstruction with
very large magnification factors, similar to ×16 [38,68,73], as well as to achieve super-
resolution reconstruction of images with high perceptual quality. In Table 8, we show the
perceptual extreme SISR challenge track and winner for the period of 2017–2022, and in
Table 9, we show the results of perceptual extreme SISR challenge winners for 2017–2022.

Table 8. Perceptual extreme SISR challenge track in 2017–2022.

Challenge Track Winner

PIRM 2018

The task divides the perceptual distortion plane into three regions in terms of
RMSE, and the participant’s goal is to obtain the best average perceptual
quality on each perceptual plane region.
Region 1 (low RMSE, high PSNR)

EPSR

Region 2 (middle RMSE, middle PSNR) DBPN
Region 3 (high RMSE, low PSNR) ESRGAN

AIM 2019

Track 1: The aim is to generate high-fidelity results with an amplification factor
of ×16. DSSR

Track 2: Designed to generate high perceptual quality results with a
magnification factor × 16. MGBPv2

NTIRE 2020 Realization of amplification factor × 16 RFB-SRGAN

Table 9. Results of the perceptual extreme SISR challenge winners.

SISR Networks PSNR SSIM LPIPS PI RMSE TIME

EPSR - - - 2.709 11.48 -
DBPN - - - 2.199 12.40 -

ESRGAN - - - 1.978 15.30 -
DSSR 26.79 0.7289 - - - 30

MGBPv2 25.44 0.6551 - - - 47.11
RFB-SRGAN 23.38 0.5504 0.348 3.977 - 8.1

5.3.1. EPSR/DBPN/ESRGAN (Winner of PIRM2018)

The 2018 PIRM challenge was to achieve factor × 4, the super-resolution of a single
image with bicubic downsampling. Unlike in the past, this challenge aims to reconstruct
perceptually good quality images. The task divides the perceptual distortion plane into
three regions in terms of RMSE, and the participant’s goal is to obtain the best average
perceptual quality on each perceptual plane region. The basic architecture of the networks
used by the winners of this challenge is all GAN networks, where the ESRGAN [69]
proposed by Wang et al. achieves the best average perceptual quality over region three,
as shown in Figure 15, for the specific network structure. The EPSR [74] proposed by
Vasu, S. et al. obtained the best average perceptual quality over Region I. The specific
network structure is shown in Figure 16. The network is trained using a combination of
mean squared error loss, perceptual loss, and adversarial loss using EDSR as the generator.
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Figure 16. The overall network architecture of ESRGAN (a) and the basic block in it (b).

ESRGAN removes all BN layers compared to SRGAN [61] to train deeper networks
and replaces the basic blocks in SRRESNet with RRDB to make the network easier to train.
Basic blocks consist of residual modules and tight junctions, allowing more layers in the
network and improving performance effectively. Meanwhile, ESRGAN uses a relative
discriminator, which is no longer the probability of true and false in SRGAN, but the
probability of judging the true image to be truer than the false one. And this design helps
guide the generator to generate reconstructed images with more realistic texture details.
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5.3.2. DSSR/MGBPv2 (Winner of AIM 2019)

AIM 2019 also presents an extreme super-resolution challenge, using the DIV8K
dataset to achieve a factor × 16 super-resolution. The competition has two tracks: the first
aims to generate high-fidelity results, and the second aims to generate high-perceptual-
quality results.

The DSSR [75] proposed by NUAA-404 achieves superiority in generating a high-
fidelity track, and the specific network structure is shown in Figure 17. The network
connects two × 4 networks to achieve the target result of ×16. DSSR consists of two parts,
i.e., SKIP and BODY. SKIP is a sub-pixel convolution module that uses the low-frequency
information in LR images to reconstruct HR images. BODY consists of two networks with
an amplification factor of ×4. The first network consists of a feature extraction layer, an
ADRU layer, a GFF layer, and an AFSL layer. The second network consists of a feature
extraction layer, an ADRB layer, and an AFSL layer. The BODY layer is used to reconstruct
the HR image using the high-frequency information from LR, and finally, the HR image is
obtained by combining the results of BODY with the results of SKIP. The ADRU module
consists of four ADRB modules that are tightly connected, and the obtained features are
merged via GFF. The first segment of the network consists of four ADRU modules tightly
connected with the features obtained via fusion with the LFF layer. The convolution unit in
ADRB consists of two wide convolutions and a Leaky ReLU, similar to WDSR, as shown in
Figure 18.
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The network proposes a new reconstruction model, AFSL, which uses more parameters
and more computation than the commonly used subpixel convolution, and also brings
better results.

The MGBPv2 proposed by BOE-IOT-AIBD achieves superiority in generating a high
sensory quality track with the specific network structure. This method combines MutiGrid
(MG) and BackProjections (BP) to provide feasibility for extreme SISR tasks. Although
MGBP has good results, MGBP does not work on super-resolution issues. This is mainly
due to the poor quality of the reconstructed images due to the small number of parameters
and the recursive network structure that causes the number of network features to remain
constant along the scale. Compared to the MGBP they proposed in 2018, they made the
following improvements.

The MGBPv2 uses recursive networks at the beginning of the network. And then,
BOE-IOT-AIBD proposed a strategy to merge patches in inference as a way to handle
large-scale images. And they simplify the main module by allowing each instance in the
network to use different parameters. In addition, the team proposes a multiscale training
strategy that combines distortion or perceptual loss of the output image with a reduced
scale output image.
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5.3.3. RFB-SRGAN (Winner of NTIRE 2020)

The extreme super-resolution challenge is presented in NTIRE 2020, using a dataset of
DIV8K, which aims to achieve a super-resolution with a magnification factor of ×16. The
winning model for that year is the RFB-SRGAN [76] proposed by OPPO-Research based on
ESRGAN, and the specific network structure is shown in Figure 19. The network consists of
five modules: shallow feature extraction module, Trunk-A, Trunk-RFB, upsampling module,
and reconstruction module. Among them, the Trunk-A module consists of 16 RRDBs, and
Trunk-RFB consists of 8 RFB-RDBs.
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Figure 19. The overall network architecture of RFB-SRGAN.

For the perceptually extreme super-resolution challenge task, multi-scale features
are needed to reconstruct the details. So, the team introduced the RFB module. The RFB
module can utilize a multi-branch pool with different kernels corresponding to different
sizes of receptive fields, apply its extended convolutional layers to control their eccentricity,
and finally reconstruct to generate the final result. The RFB module in RFB-SRGAN
uses a combination of 1 × 1, 1 × 3, and 3 × 1 convolutional kernels instead of large
convolutional kernels such as 3 × 3, 5 × 5, and so on, as shown in Figure 20. This method
effectively reduces the time and parameters needed for the computation, in addition to
better extracting detailed features. The important reason for the team to use RFB is the
ability to extract very detailed features that can effectively reconstruct the image.
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Figure 20. RRDB (a), RFB-RDB (b), and RFB (c) in RFB-SRGAN.

The team also made adjustments in the upsampling section, using not only nearest
interpolation (NNI) [77] or subpixel convolution (SPC) but alternating them. RFB after NNI
can make the NNI transform from space to depth fully affects the depth, and RFB after
SPC can make the SPC transform from depth to space fully affects space, alternating them
to effectively make information exchange between space and depth. In addition to this,
the use of SPC can effectively reduce the number of parameters and the running time. In
Figure 21, we show upsampling method used in RFB-SRGAN.
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5.4. Real-World SISR

Previous SISR network training relies on pairs of low-resolution images and high-
resolution images, and the trained networks often have difficulty performing well in the
real world. Since real-world LR images are degraded differently from LR images in datasets,
resulting in existing SISR methods that often perform poorly on real-world images, the
Real-World Image SISR Challenge aims to advance SISR models that can be used in the real
world [78–80]. The challenge aims to train a network model to achieve super-resolution of
natural images without paired high- and low-resolution images. In Table 10, we show the
real-world SISR challenge track and winner for the period of 2017–2022, and in Table 11,
we show the results of real-world SISR challenge winners for 2017–2022.

Table 10. Real-world SISR challenge track in 2017–2022.

Challenge Track Winner

NTIRE 2019 Track: Realization of real-world SISR. UDSR

AIM 2019
Track 1: Designed to generate SR images with LR features, magnification factor ×4.

DSGANTrack 2: Designed to generate clean, high-quality HR images with a magnification factor of ×4.

AIM 2020 Track: The aim is to obtain images with high quality and high fidelity with magnification factors
×2, ×3, ×4. Baidu NAS

NTIRE2020

Track 1: An unknown degradation factor is used to obtain an approximation to the real-world LR,
from which the SR network is trained.

Real-SRTrack 2: The images taken with the iPhone 3 in the OPED dataset were used as LR, from which
the SR network was trained.

Table 11. Results of the real-world SISR challenge winners 2017–2022.

SISR Networks PSNR SSIM LPIPS MOS

UDSR 29.00 0.84 - -
DSGAN [Track 1] 22.65 0.48 0.36 2.22
DSGAN [Track 2] 20.72 0.52 0.40 2.34
Baidu NAS [×2] 33.460 0.9237 - -
Baidu NAS [×3] 30.950 0.876 - -
Baidu NAS [×4] 31.396 0.875 - -

Real SR 24.67 0.683 0.232 2.195

5.4.1. UDSR (Winner of NTIRE 2019)

The task of this challenge was to reconstruct real-world images, using the dataset
RealSR, and the winner was UDSR, proposed by the SuperRior team.

In UDSR, the depth feature map is obtained from the input image via the convolution
layer. The low-resolution image feature map is obtained via the residual block, and the
low-resolution image feature map is used as the input. The first path processes the feature
map via the residual block, the second path downsamples the feature map after going
via the residual block, and the third path downsamples the feature map again. And then,
the fourth path upsamples the obtained feature map and applies the residual block and
convolution block. In addition, they output the highest-resolution feature maps as residual
images and add them to the input images The high-resolution images obtained from the
three paths are combined with the input image to achieve the final output image. We show
the Network architecture of UDSR in Figure 22.
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A tandem structure is used for training UDSR, where the HR image is first restored
to its original size after quadruple downsampling the HR image of the first segment to
calculate the loss function. The output of the first segment is used as the input of the second
segment, and the HR image is restored to its original size after quadruple downsampling
the HR image of the second segment to calculate the loss function. And the output of the
second segment is used as the input of the third segment to calculate the loss function
using the original HR image. After this three-stage training, the network can recover the
LR image to the HR image. We show the training method of UDSR in Figure 23.
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5.4.2. DSGAN (Winner of AIM 2019)

AIM 2019 presents the challenge of super-resolution in the real world with two tracks.
One is to reconstruct high-resolution images with guaranteed low-quality picture features.
And the other is to provide a set of unrelated images of the same quality as the target, with
the learning goal of generating clean, high-quality HR images. The magnification factors of
the target images are all ×4.

The DSGAN [81] proposed by the Mad Demon team achieves superiority in both
tracks. In Figure 24, we show the network structure. The network is divided into two
phases. The first phase is to generate LR images with real-world LR image features. The
second phase is to train the network in the form of supervised LR-HR pairs formed in the
first phase.
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Figure 24. DSGAN generates LR images in the first stage (a) and pairs of LR-HR images in the second
stage for training (b).

In the first stage, the HR image y is bicubic downsampled to obtain xb, and xb is used
as the input to obtain the LR image xd via the generator. The discriminator is used to
determine which of xd and z is the synthetic LR image and which is the real LR image. In
the second stage, the SR network is trained based on the obtained image pairs. During
the training, the generated SR images are separated from the low and high frequencies
using filters. The low frequencies use L1 loss to focus on the recovery of image content,
and the high frequencies use the adversarial loss to focus on the recovery of image details.
In addition to obtaining better perceptual quality and also better combining low- and
high-frequency information, a perceptual loss function is introduced; the perceptual loss
function also allows better recovery of the image content. The SR network used is ESRGAN.
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5.4.3. Baidu NAS (Winner of AIM 2020)

The 2020 AIM presented a real-world super-resolution challenge using the DRealSR
dataset, and the winner that year was Baidu’s proposed GP-NAS-based design for super-
resolution in search space [82]. Baidu focused more on the macroscopic network structure,
using the GP-NAS method to search for parameters of key network structures and generate
multiple alternative models. In Figure 25, we show overall architecture of the GP-NAS-
based network model.
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Figure 25. Overall architecture of the GP-NAS-based network model proposed by BaiDu (a), where the
DRB (b). “#1” means the first double-layer convolutions. “#L” means the Lth double-layer convolutions.

The backbone model of this method is DRBN, and the whole network consists of DRB
except for the shallow feature extraction convolution and the end upsampling module.
The shallow feature extraction convolution converts the input three-channel image into
F-channel shallow features. Each DRB consists of L double-layer convolutions, and the
L outputs in the DRB are connected at the end with a 1 × 1 convolution and passed
through a channel attention module. There are two types of jump connections in each
DRB, intra-block jump connections and extra-block jump connections. There are three key
hyperparameters in this network: F is the number of channels, D is the number of DRB
layers in the network, and L is the number of bilayer convolutions in each DRB.

While previous works have often used expertise or experience to make choices about
these hyperparameters, the Baidu team used a neural architecture search based on a Gaus-
sian process to determine these hyperparameters as a way to obtain a network architecture
with optimal performance. The method combines AI and super-resolution networks,
offering new possibilities for the development of super-resolution networks.

5.4.4. Real SR (Winner of NTIRE 2020)

NTIRE 2020 proposes the real-world resolution challenge, which is divided into two
tracks, one using an unknown degradation factor to obtain LR and the other using iPhone
3 images from the OPED dataset, both aiming to obtain the best perceptual quality images.

The model proposed by Impressionism achieved superiority in both tracks [83]. In
Figure 26, we show the network used by RealSR. The team designs a new degradation
model for real-world images by estimating degradation kernels and blur kernels and
proposes a new real-world super-resolution model with the aim of better perceptual quality.
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The degradation model uses kernel estimation similar to Kernel GAN [84] to estimate
degradation kernels from real-world images. To make the degraded image and the source
image have the same noise distribution, the team obtains noise directly from the real-world
image, and the team constructs a degradation pool from the degradation kernels and the
obtained noise. To obtain more HR images, the team bicubic downsamples the real-world
images to remove the noise to obtain clean images, degrades the obtained clean images
with randomly selected blur kernels from the degradation pool to obtain LR images with
noise and blur similar to the real-world ones, and finally trains the SR network.

The team designed the SR model based on ESRGAN. The generator adopts the struc-
ture of RRDB, and the loss function uses the weighted sum of L1, perceptual loss, and
adversarial loss. The perceptual loss uses the inactive features of VGG-19 to enhance
the low-frequency features; the adversarial loss is used to enhance the details of the im-
age to make the image look more realistic. In addition, the discriminator uses a patch
discriminator instead of VGG-128 for two reasons.

Firstly, VGG-128 can only discriminate images of size 128, which does not perform
well on multi-scale tasks. Secondly, VGG-128 has a deeper network, which focuses more
on global features and ignores local features, while the patch discriminator has a fixed
perceptual field due to its fully convolutional structure, and its output values are only
related to the local part, and the local loss is fed back to the generator to optimize the local
details. To ensure overall consistency, the final error uses the average of all local errors.

6. Conclusions

In this paper, we present an overview of the challenge tasks on SISR for the period
of 2017–2022. In Section 2, we discuss the datasets used in previous years’ challenges,
using different datasets to meet the requirements of each challenge task and to provide
enough a priori information to improve the efficiency of the network. Section 3 introduces
the IQA methods commonly used in previous years’ competitions. Section 4 shows the
challenge tasks and the network architectures of the winners in previous years. The
challenge tasks in previous years can be broadly classified into four categories: 1. Classic
SISR challenge, including two tracks of known bicubic downsampling degradation and
unknown degradation factor super-resolution; 2. Perceptual Extreme SISR challenge,
mainly to achieve super-resolution with special amplification factor × 16; 3. Efficient SISR
challenge, aiming to achieve reduced network inference time and a number of computations;
4. Real-world SISR challenge, which aims to advance the development of networks with
super-resolution that also work in the real world. Among these challenges, many effective
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approaches have been proposed and applied to their network architectures to improve
network performance, such as attention modules, back-projection networks, tight junctions,
residual networks, information distillation, recursive networks, and the recently acclaimed
Transformer. Despite the advancements in SISR with the involvement of deep-learning-
based methods, there are still a number of challenges that need to be considered. We
present an outlook of future work in the following items.

1. Normalization layer: During 2017–2022, many superior networks used different
normalization layers to improve network performance, such as EDSR, to remove the
BN layer, TCIR to use the LR layer, etc. The BN layer normalizes the same batch of
data, which can accelerate network convergence, control overfitting, allow the use of
larger learning rates, and is more applicable to scenarios with larger batch sizes. The
LN layer normalizes the data of the whole layer and is insensitive to the size of the
batch, in addition to inheriting the advantages of the BN layer. Therefore, it is often
necessary to select the appropriate normalization layer by experience when designing
the network. Switchable Normalization (SN) [85] was proposed in 2018, combining
various operations of IN, LN, and BN to select the appropriate normalization layer
for the network when targeting different vision tasks. This may become one of the
normalization methods often used in SISR tasks in the future.

2. More efficient or lighter networks: Using CNN networks to implement SR is fast and
occupies less memory, but some edge information will be lost; using Transformer
networks to implement SR can be achieved using full-text information to reconstruct
images, but it is slower and occupies more memory. In addition, although CNN
networks have advantages in local feature extraction, they are still inadequate for
global feature representation. Transformer, on the other hand, has a good sense of
global features but ignores local feature details. In recent years, many networks
combining CNN and Transformer have been proposed. TCIR is a typical network
combining CNN and Transformer. This network added several RRDB modules to the
basic module of TCIR, which combined the advantages of both CNN and Transformer
and achieved first place in the AIM 2022 compressed image super-resolution challenge.
So, further research can be conducted in this direction to design networks to better
combine the advantages of both.

3. The need for more accurate and effective IQA: Existing IQA methods are difficult to
balance perceptual quality and image quality, and images that score high in image
quality often do not score high in perceptual quality. Therefore, we need a more
suitable IQA method to evaluate both perceptual quality and image quality.

4. Unsupervised real-world image super-resolution network model training: The cur-
rently proposed super-resolution challenge superiority methods on real-world images
are based on learning degradation methods in the real world, from which LR images
corresponding to HR are obtained, and then pairwise supervised network training
is performed to obtain the network model. The performance of the obtained SISR
network depends more on the ability to generate LR images with similar blurring as
real-world LR images for training. Such networks are also often not strongly gener-
alizable due to the various reasons for the blurring of real-world images. Therefore,
how to implement unsupervised super-resolution training on real-world images is a
direction for future development.
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