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Abstract: There are significant background changes and complex spatial correspondences between
multi-modal remote sensing images, and it is difficult for existing methods to extract common features
between images effectively, leading to poor matching results. In order to improve the matching effect,
features with high robustness are extracted; this paper proposes a multi-temporal remote sensing
matching algorithm CMRM (CNN multi-modal remote sensing matching) based on deformable
convolution and cross-attention. First, based on the VGG16 backbone network, Deformable VGG16
(DeVgg) is constructed by introducing deformable convolutions to adapt to significant geometric
distortions in remote sensing images of different shapes and scales; second, the features extracted
from DeVgg are input to the cross-attention module to better capture the spatial correspondence
of images with background changes; and finally, the key points and corresponding descriptors are
extracted from the output feature map. In the feature matching stage, in order to solve the problem
of poor matching quality of feature points, BFMatcher is used for rough registration, and then the
RANSAC algorithm with adaptive threshold is used for constraint. The proposed algorithm in this
paper performs well on the public dataset HPatches, with MMA values of 0.672, 0.710, and 0.785
when the threshold is selected as 3–5. The results show that compared to existing methods, our
method improves the matching accuracy of multi-modal remote sensing images.

Keywords: multi-modal remote sensing images; image registration; cross-attention; deformable
convolution; homography matrix

1. Introduction

In recent years, the progress of remote sensing technology has enabled people to
use various sensors to acquire rich remote sensing images. Different satellite sensors can
provide multi-modal remote sensing images with multi-temporal, multi-resolution, and
multi-spectrum properties for the same area. These multi-modal remote sensing data have
good complementarity and make up for the deficiency of a single data source. Remote
sensing image registration can establish the corresponding relationship between two or
more remote sensing images obtained, and is widely used in monitoring environmental
change, planning urban areas, and testing land cover. However, due to complex background
changes caused by time, weather, and natural disasters, objects may undergo scale changes
and deformation, which makes multi-modal registration challenging. The solution to this
problem is of great practical significance because it determines whether the subsequent
change detection and image fusion are successful.

Traditional image registration methods can be divided into two categories: (1) Feature-
based methods [1] and (2) region-based methods [2]. The feature-based method is generally
divided into three separate stages: feature detection, feature description, and feature
matching. In the feature detection stage, significant points such as corner points should
be detected as interest points, and then local descriptors should be extracted around these
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corner points. Through the nearest neighbor search [3] or a more complex matching
algorithm, the corresponding relationship between the two can be found to complete
the registration. Scale Invariant Feature Transform (SIFT) [4] is a popular and widely
used feature-based registration method, but the matching time is long, and it is easy to
cause detail loss. Based on the advantages of SIFT, many improved versions have been
proposed to enhance the performance of feature extraction, descriptor, and matching,
such as RootSIFT [5], PCA-SIFT [6], ASIFT [7], etc. Common point feature extraction
methods include Harris [8] operator, SURF [9], ORB [10], and FAST [11]. However, the
hand-designed descriptors cannot accurately deal with the influence of non-optical linear
illumination, shadow, and block, which are not good for the matching of remote sensing
images with complex changes.

Region-based image registration is also known as template matching, that is, to find the
most similar part of the input image and the template image, and its feature extraction and
feature matching are carried out synchronously. However, this method is very sensitive to
the difference in gray information between images. The normalized correlation coefficient
has linear invariance to gray change and has been widely used in remote sensing image
registration [12,13]. Some scholars also use structural features to construct similarity
measurements for matching. Ye et al. used structural features to construct the Histogram of
Orientated Phase Congruency (HOPC) [14], which was successfully applied to multi-modal
image matching. Recently, they proposed CFOG [15] as an extension of HOPC.

The matching methods described above all require the artificial design of feature de-
scriptors, and the information is redundant. With the increasing maturity of deep learning,
the method of extracting key points and making feature descriptors by neural network has
been widely used [16–18]. By learning semantic features in sample labels, the extracted fea-
tures can be more robust. SCNN [19] designed a convolutional network combining a twin
network with an S-Harris corner detector to improve the image-matching performance of
remote sensing images with complex background changes. Compared with the traditional
detect-then-describe method (extracting key points before making descriptors), D2-net [20]
designed a description-and-detect strategy (extracting key points and descriptors at the
same time), which made the feature module and description block highly coupled. This
method performed well in image matching with day–night changes and large angle changes.
SuperGlue [21] combined feature detectors and matcher as a complete pipeline, combining
detection and matching into a network to improve matching accuracy. Patch2Pix [22]
proposed a new angle to learn correspondence. This proposal directly optimized features
from the matching network without clearly defining feature points. However, due to its
patch-dependent principle, it may lead to the loss of global context information. LoFTR [23]
borrowed from Transformer [24] and used the self-attention layer and mutual information
layer [25] to obtain feature descriptors of two images, which can produce high-quality
matching results in areas with low texture, motion blur, or repetitive image patterns. In
response to the deformable images, Dai [26] increased an offset in CNN convolution kernels
and built a deformable convolution network (deformable convolutional network, DCN).

After the rough feature matching is completed, the common RANSAC [27] algorithm
eliminates the error points in registration. However, the selection of interior points depends
on self-set parameter thresholds, and different types of images are different, which makes
the setting of thresholds particularly important. MSAC [28], a modified version of RANSAC,
uses the median instead of the mean as the cull threshold, enabling the algorithm to
automatically configure corresponding parameters based on the characteristics of the
data. MLESAC [29] is also modified on the basis of RANSAC, which uses maximum
likelihood [30] to estimate the parameters of the model and provides a more robust and
accurate solution than RANSAC, especially when there is a lot of noise in the data processed.
In order to better solve this problem, an adaptive threshold algorithm is proposed in this
paper, which can better screen out high-quality matching pairs.

The work of this paper can be summarized into the following three points:
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1. For multi-modal remote sensing image registration, this paper proposes an end-to-
end trainable convolutional neural network CMRM, which can simultaneously detect
features and extract dense feature descriptors;

2. In order to better capture the relationship between global features and local features,
a cross-attention mechanism is introduced; In order to extract effective features of
deformable remote sensing images, deformable convolution blocks are added. The
focus will be on learning how to extract effective feature points from remote sensing
images with complex background changes;

3. This paper designs an adaptive threshold RANSAC purification algorithm, which can
automatically adjust threshold values according to data characteristics so as to screen
out high-quality matching pairs and improve registration accuracy.

Through the above improvements, the method proposed in this paper can effectively
extract significant feature points and adaptively eliminate mismatching points. Compared
with existing popular algorithms, the algorithm in this paper not only improves the regis-
tration accuracy, but also improves the real-time registration. The rest of this paper is as
follows: In Section 2, the design process of the proposed algorithm is described in detail. In
Section 3, the results are given and analyzed in detail. Section 4 summarizes this paper.

2. Methodology

Effectively improving the matching performance of multi-temporal remote sensing im-
ages depends on reducing the influence of complex background changes on images, so this
paper will carry out experimental design from the following four aspects: (1) VGG16 [31] is
selected as the backbone network and deformable convolution layers and cross-attention
are introduced for feature extraction; (2) the network is trained by using the existing remote
sensing image dataset so that the feature extraction network can learn the robust expression
of features; (3) building a qualified matcher is the key to the registration, and in this paper,
the brute force matching algorithm (BFMatcher) will be chosen to complete the initial
matching; and (4) after the initial matching, the error points will be eliminated by the
adaptive threshold RANSAC algorithm. The above image registration workflow is fully
automated. The network structure diagram is shown in Figure 1.
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2.1. Feature Extraction Network

Feature detection and feature descriptor generation are crucial steps for pixel-level
registration of multi-modal remote sensing images. In this study, to better extract features
and generate feature descriptors, we adjusted the VGG16 network structure for multi-
modal remote sensing image matching and developed a deformable VGG16 model called
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DeVgg (Deformable VGG16). To balance strong feature extraction capability with precise
localization, we modified the backbone through the following steps.

First, four deformable convolution layers were constructed, which were placed behind
the first, second, third, and fourth layers of VGG16 (Pool1, Pool2, Pool3, and Pool4). The
deformable convolution layer consists of two parts. In the upper part, offset fields were
introduced on the input feature maps to enable flexible sampling of the convolution kernels
in the vicinity of the current position. In the lower part, deformable convolution was
utilized to generate the output feature maps. The resulting feature maps have the same
dimensions as the input feature maps. The deformable convolution formula is as shown in
Formula (1):

y(P0) = ∑
pn∈R

w(Pn)x(P0 + Pn + ∆Pn) (1)

where ∆pn(n = 1, 2, . . . , N) is the offset of point pn. Compared with traditional convolution,
the shape and size of DeVgg’s kernel can be dynamically changed according to input, which
can provide more flexible and powerful capabilities for feature extraction in remote sensing
images. The comparison between deformable convolution and traditional convolution is
shown in Figure 2.
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Figure 2. (a) is deformable convolution and (b) is traditional convolution feature maps of
3 × 3 convolution.

Next, a cross-attention [32] module was introduced between the third and fourth
layers (Pool3 and Pool4) to effectively capture local features and their global correspondence,
enhancing feature representation. Afterward, the feature, which had undergone feature
enhancement, was passed to the fourth deformable convolution layer. In this deformable
convolution layer, to prevent loss of feature map information, the input feature map
was iteratively sampled using average pooling. Additionally, the size of the feature map
was adjusted to 1/4 of the input image to improve localization accuracy. This approach
enlarged the receptive field and accurately localized targets. Finally, the output map of the
last convolutional layer (Conv4_3) in the fourth layer was chosen as the feature map for
selected key points. The calculation is shown in Formula (2), and the calculation flow is
shown in Figure 3.

yi =
∑ ∀j f

(
θ(ci)

Tφ
(

pj

))
g
(

pj

)
∑ ∀j f

(
θ(ci)

Tφ
(

pj

)) (2)

In the cross-attention computation, the input feature matrices c and p, where Ci and
Pj represent the features at positions i and j, respectively. θ(·), φ(·), and g(·) represent
linear embeddings, and f (·) = exp(·). In this calculation process, the function f(·) is used to
measure the correlation between the features at positions i and j. The computed result yi
represents a normalized summary of features through the Softmax [33] function, which



Electronics 2023, 12, 2889 5 of 18

assigns weights to the features at all positions in P based on their correlation with the
cross-modal feature at position i. The matrix Y composed of yi can integrate non-local
information from p to every position in C. Finally, the output matrix Z is obtained by
adding matrices Y and p, allowing for efficient backpropagation. In the output matrix Z,
the feature at position k summarizes the non-local correlation between the entire primary
feature map and the position k of the cross-modal feature map, as well as the original
information from the primary feature map at position k.
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Then, we removed the fifth layer (Conv5_1 + Conv5_2 + Conv5_3 + Pool5) of VGG16
and the full connection layer at the end of VGG16. We considered that a large number of
convolution operations in the convolution layer of the network would produce a certain
number of negative outputs, and after the activation function of ReLU [34], these negative
values would be replaced by 0, which would lead to the loss of a lot of feature information,
and then would affect the feature detector. Therefore, in the network proposed in this
paper, the ReLU activation function in all convolution layers was changed to Mish’s [35]
activation function.

In the aforementioned network design, if all the pixels in Conv4_3 are used as features,
it would lead to the issue of redundant features and high-dimensional feature space, which
increases the computational cost and makes the model more complex and more prone to
overfitting. To address these issues, feature selection is necessary. The channel-wise and
spatial-wise maximum filtering strategy [20] is utilized to select the features with the best
performance in the high-dimensional feature map while eliminating unnecessary features,
thereby reducing feature dimensionality and retaining important features.

In order to make the model adapt to the images with large-scale variations, the concept
of the discrete feature pyramid is introduced into the proposed model. Four discrete scale
layers with 0.5, 0.75, 1.0, and 2.0 times resolution are adopted to adapt to the scale changes
between the two images. The feature maps presented by each layer of the pyramid are
cumulatively fused. Because the resolution of the pyramid is different, the low-resolution
feature map needs to be linearly interpolated into the high-resolution feature map of the
same size. In addition, by using the training data with certain scale differences, the model
can adapt to the image with large-scale changes.

2.2. Feature Matching

In image matching, some physical constraints need to be observed. A feature point can
only have at most one correspondence in another image; due to interference caused by light,
shooting angle, etc., some feature points will not match. Therefore, an effective feature
matcher should find corresponding feature points and be able to detect feature points that
are not correctly matched. The query image Iq and reference image Ir are input into CMRM
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to obtain their feature maps Fq and Fr, executed key points are screened out to obtain Kpq
and Kpr, and the initial matching of Kpq and Kpr is completed through BFMatcher. After
the initial matching, because of the multi-temporal remote sensing images and certain
similar matching points in some scale spaces, it is inevitable that there will be mismatching.
The RANSAC is a stable and reliable algorithm for eliminating wrong matching points.
It estimates the mathematical model through continuous iteration. However, due to the
large differences in multi-modal remote sensing images, the iterative method of RANSAC
will be affected by this. In order to ensure that the algorithm is rational, this paper will
carry out adaptive transformation on the traditional RANSAC algorithm. By designing an
adaptive threshold method, it can reduce the impact on the matching results brought by
artificially set thresholds. The specific steps for improvement are as follows:

• Step 1: Assuming that the feature point sets extracted from two images to be matched
are F1 and F2, each feature point in F1 is Dij, the two points with the smallest Euclidean
distance in F1 are marked as D′ij and D′′ij, and the total number of feature points
extracted from the images is n; then, the average set of their differences can be obtained.

GD =

(
D′11 − D′′11

2
,

D′12 − D′′12
2

. . . . . .
D′nn − D′′nn

2

)
(3)

• Step 2: Select 10 points from the feature point set extracted in the previous step to
establish a constraint equation and calculate its homography matrix.

• Step 3: Sort the difference average set GD extracted in step 1 Formula (3), in descending
order, excluding the first 5% and the last 10% of data, and sum and average the
remaining data as the constraint threshold of RANSAC. When the distance of each
feature point to be matched is less than the constraint threshold, it is regarded as an
interior point; otherwise, it is excluded.

• Step 4: When the number of interior points no longer changes, update the parameter
model and end the iteration.

The adaptive threshold extracted by this method can adapt well to the differences
between images, which effectively preserves high-quality matching points and enhances
the stability of the RANSAC algorithm.

2.3. Loss Function

In the description of feature points, in order to achieve the effect of accurate matching,
the feature character needs to be unique. Therefore, triplet loss is selected as the loss
function in this paper. The triplet loss function punishes any unrelated descriptors that
result in incorrect matches and enhances the uniqueness of the descriptors for more accurate
results. Its calculation formula is shown in Formula (4):

L(I1, I2) = ∑
c∈C

s(1)c s(2)c

∑ q∈C s(1)q s(2)q

m(p(c), n(c)) (4)

where s(1)c and s(2)c are the detection scores of a matching feature point in the reference
image I1 and the source image I2. p(c) and n(c) represent positive distance and negative
distance; C is the set feature points in I1 and I2.

3. Experimental Results and Analysis

In order to verify the matching performance of the algorithm proposed in this pa-
per, comparative experiments were conducted on the public dataset MRSI [36] and the
self-collected dataset GeGZ, and ablation experiments were conducted on the HPathes
dataset [37]. These datasets will be introduced in Section 3.1. The experimental design
and evaluation indexes are introduced in Section 3.2. Then, in Section 3.3, experiments
are introduced to compare a variety of (multi-temporal and multi-modal) remote sensing
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matching algorithms, including deep learning-based CMM-Net [38], RIFT [39], DELF [40],
and template matching-based CFOG [15] and CoFSM [36]. In Section 3.4, the registration
performance of the proposed algorithm under different rotation angles was tested. The
ablation experiment was verified in Section 3.5. Finally, an example of an intuitive result
graph is given in Section 3.6.

3.1. Dataset

The dataset for comparison and evaluation consists of the following three parts:

• MRSI dataset: MRSI is a multi-modal remote sensing image database, which is com-
posed of six mode pairs. A total of six groups of multi-temporal image experiments
are set up, which are optic–optical (cross-time), infrared–optical, depth–optical, map–
optical, sar–optical, and night and day. These images have different resolutions,
ranging from 400 × 400 to 650 × 650. Each dataset contains 10 image pairs, producing
a total of 60 MRSI pairs, with contrast loss and geometric deformation being the main
variations between image pairs.

• GeGZ dataset: In order to enrich the diversity of the dataset, this paper collected a
large number of remote sensing images by Google Earth Pro, ZY3 high-resolution
optical satellite, and GF multi-spectral satellite. There are two main reasons for using
the Google Earth dataset: (1) Google Earth can provide free historical images for
many locations, from which we can select appropriate image pairs suitable for multi-
temporal remote sensing registration. (2) Diversified Google Earth image datasets
include atmospheric conditions and perspective changes. These images are represen-
tative of many variations in lighting conditions and seasonal conditions, which help
train CMRM. In order to enrich the dataset, high-resolution images taken by different
sensors, ZY3, GF1, and GF2, were also selected for training, which, to some extent,
made up for the limitations of a single dataset. These datasets include rivers, coastlines,
roads, farmland, forests, and urban and rural buildings. The dataset is divided into
six groups, with each group containing 358 pairs of multi-temporal images. In the
experiment, various data augmentation techniques, such as random cropping, random
rotation, and color space enhancement, were applied to the dataset, expanding the
dataset to a total of 6000 pairs. The training set and validation set have a ratio of 8:2 in
terms of the number of samples. These images have sizes ranging from 583 × 583 to
1965 × 1024 pixels and resolutions ranging from 0.5 m/pixel to 2 m/pixel. Examples
of image data from the above six groups are shown in Figure 4 and Table 1.

• HPatches: In order to further analyze the performance of each module of the algo-
rithm presented in this paper, this paper conducts experimental verification on the
public dataset HPatches (Homography Patches), which consist of two sets of images,
one consisting of 59 pairs of viewpoint transformations and the other of 57 pairs of
illumination variations. The homography between the reference image and the target
image was carefully calibrated. It has been cited in many registration tasks due to its
diversity, real data origin, large scale, and multi-tasking characteristics [41,42].

Table 1. A specific description of each pair of images in Figure 4.

Image Pair
Reference Image Source Image

Image Characteristics
Image Source Time Image Source Time

Pair 1 (a) (b) ZY3(MUX) 2020 ZY3(NAD) 2022 The image pair has a high resolution, and
the feature changes greatly.

Pair 2 (c) (d) Google Earth 2017 Google Earth 2022 The illumination difference between
ground objects is obvious.

Pair 3 (e) (f) Google Earth 2018 Google Earth 2022 The images are selected from urban areas,
and the background obviously changes.
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Table 1. Cont.

Image Pair
Reference Image Source Image

Image Characteristics
Image Source Time Image Source Time

Pair 4 (g) (h) Google Earth 2016 Google Earth 2020 Image time span is large; there is a certain
change in perspective.

Pair 5 (i) (j) GF1(WFV2) 2018 GF2(PMS2) 2021 Image detail texture is different; structure
is similar.

Pair 6 (k) (l) GF2(PMS1) 2016 GF2(PMS2) 2021 The image is affected by fog and other
weather conditions, and there is noise.
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3.2. Experimental Setting
3.2.1. Training

The experimental platform and system settings in this paper are as follows: the CPU
is an Intel (R) Core (TM) i7-7500U2, 70GHz, and the GPU is NVIDIA GeForce RTX 3090;
the operating system is Ubuntu 20.04, pytorch1.8 deep learning framework is used, and the
Python version is 3.7. The gradient optimization algorithm uses stochastic gradient descent,
SGD), and the initial learning rate is 0.001. The training process of each experimental
network model is the same. The model training is performed in batches of eight sample
pairs, with a maximum of 50 epochs. Training is stopped when the difference in the loss
function is less than 0.01. The maximum number of rounds of model training is 50 rounds,
and the training is stopped when the difference of loss function is less than 0.01. The
training process of the model is shown in Algorithm 1:



Electronics 2023, 12, 2889 9 of 18

Algorithm 1: Training procedure.

Input: Training multi-temporal dataset D
Initialize model Mw parameters using pre training weights
Output: Trained model Mw
for epochs do

for
(

Ip , Ic) in D do
# Construct two inputs
Ip = preprocess

(
Ip )

Ic = preprocess(Ic )
# Forward propagation
Ǐp = DeVgg

(
Ip ) + cross-att

(
Ip , Ic)

Ǐc = DeVgg(Ic ) + cross-att(Ic , Ip)
# Compute loss
L = L

(
Ǐp , Ǐc, Igt)

# Backward propagation and Update parameters
ω = ω − lr ∗ dl

dw
end

# Validate the model
end

3.2.2. Evaluation

In this paper, we use the number of correct matches (NCM), which has been widely
applied in other matching tasks [43,44], as well as the number of feature points, root mean
square error (RMSE) of matched points, matching time, and mean matching accuracy
(MMA) as evaluation metrics. Their descriptions are as follows:

Formula (5), judging the number of correct matching points (NCM), is as follows:

Corr (n) : ‖ n1 − n2 ‖ ≤ ε (5)

The position of a feature point in reference image A is n1, and the position of a feature
point in the source image B is n2. The homography matrix can map the coordinates in
A into B. When the distance between the mapped n1 and n2 is less than the precision
threshold, it is considered a correct match. This index can reflect the performance of the
registration algorithm.

The root mean square error (RMSE) of a matching point is calculated as follows in
Formula (6):

RMSE =
1

NCM∑
i
‖ H(n1)− n2 ‖ (6)

The RMSE of the matching point indicates the degree of deviation from the true
value. The smaller the RMSE, the higher the measurement accuracy. H indicates the
transformation model of the two images after homography matrix calculation.

In the HPatches dataset, MMA with an error threshold of 3–5 is taken as the evaluation
index, and MMA is the average value of correct matching in image pairs considering
multiple pixel error thresholds.

3.3. Comparative Experiments

The five selected methods are excellent image-matching algorithms based on local
features. RIFT and CFOG have been the representative multi-modal registration algorithms
in the past two years. DELF and CMM-Net are based on convolutional neural networks,
and perform well in the registration tasks with a chaotic background and partial occlusion.
The comparison results are shown in Tables 2 and 3.
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Table 2. Average NCM in the MRSI dataset.

Method Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6

RIFT [39] 506.6 515.5 425 386.2 266.3 375.5
CoFSM [36] 595.9 641.3 566.9 400 351.6 435.4

CMRM 666.2 1 629.6 413.8 462.7 384 369.7
1 Number in bold represents the optimal value of NCM.

Table 3. Comparison of experimental results in the GeGZ dataset.

Matching Method Evaluation
Index Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6

RIFT [39]
NCM 944 1 232 1205 22 790 904

Feature Points 2361 1321 2091 1618 2229 1787
Times/s 23.88 15.62 31.94 32.29 21.17 18.47

CFOG [15]
NCM 127 74 105 26 84 4

Feature Points 163 284 495 199 192 245
Times/s 5.38 6.37 5.92 7.77 6.38 5.66

CMM-Net [38]
NCM 721 256 1051 15 922 896

Feature Points 1423 986 2195 199 1182 1985
Times/s 3.90 2.81 3.83 5.17 2.88 4.62

DELF [40]
NCM 675 152 42 9 910 981

Feature Points 2111 571 2310 1721 2102 1523
Times/s 14.63 7.71 18.26 7.81 10.60 9.61

CMRM *
NCM 782 1549 1095 52 965 1252

Feature Points 2135 2699 2307 2059 1823 2462
Times/s 2.48 1.43 1.22 1.41 2.91 3.01

CMRM
NCM 749 1420 508 36 890 1204

Feature Points 2135 2699 2307 2059 1823 2462
Times/s 2.44 1.52 1.26 2.84 2.23 2.88

* Represents the RANSAC adaptive threshold. 1 Number in bold represents the optimal value of NCM.

3.3.1. Comparative Experiments on MRSI

According to the analysis of Table 2 and Figure 5, the mean NCM of all image pairs
in RIFT is 412.52, and the mean standard deviation is 5.294. RIFT has high matching
accuracy and robustness, but high computational complexity requires a lot of computing
resources and time. The average NCM of all image pairs in CoFSM is 498.52, and the
average standard deviation is 2.956. The matching effect in these six groups of experimental
data is excellent. This is because CoFSM has high registration accuracy and computational
efficiency by transforming the image registration problem into a combinatorial optimization
problem, but it is more sensitive to input image illumination and noise interference. The
average NCM of all image pairs of CMRM is 486.83, and the mean standard deviation is
3.118. CMRM performs well in multi-temporal images and map-optical images, but in
depth-optical and sar-optical datasets, the average RMSE of CMRM is 0.188 higher than
CoFSM, and the registration effect is slightly lower.

3.3.2. Comparative Experiments on GeGZ

Through the analysis of Table 3 and Figure 6, it can be seen that in the six groups
of experiments, the CMRM algorithm can all match matching points with certain correct
values, and the feature points extracted by CMRM are evenly distributed and accurately
positioned. The average RMSE value of CMRM is lower than that of the other four
registration methods, which indicates that the registration effect in this experiment is good
and the information utilization rate between images is high. Both RIFT and DELF can
obtain more matching points, but the matching of RIFT is significantly reduced in the image
with larger scale transformation. CMM-Net also works well in images with changing
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backgrounds, and CFOG makes only a small number of matches. The experimental results
are shown in Figure 7 as follows. It shows that among the above six matching algorithms,
the CMRM algorithm has the best performance in matching.
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3.4. Rotation Adaptation Experiment

To verify the ability of CMRM to align images with rotational changes, four sets of
images are randomly selected from the GeGZ dataset, and then each set of images is rotated
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from 20◦ to 80◦ at 20◦ intervals to generate four rotated images. Finally, 16 new matching
result maps are obtained and used to evaluate the performance of the proposed algorithm
in terms of rotation adaptation. Meanwhile, the image to be aligned is rotated by 80◦ in
1◦ steps, and the cosine distance between the features extracted from the rotated image
and the features on the reference image is calculated as the similarity index. The results
of the experiment are shown in Figure 8a. The NCM values of the four sets of rotated
images made are shown in Figure 8b. One set of experimental matching results is shown in
Figure 9.
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Figure 9. (a–d) are the matching results for rotations of 20◦, 40◦, 60◦, and 80◦.

By analyzing the above results, it can be observed that overall, the algorithm main-
tained a good level of feature similarity within a certain range of angles (30◦). This is
because the network learned the invariance to small rotations during the training process.
However, when the rotation angle exceeded 30◦, the NCM experienced an average decrease
of over 50%, and the cosine distance between features increased significantly.
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3.5. Ablation Experiment
3.5.1. Functional Module Ablation Experiment

In order to further analyze the function of each module in this algorithm, ablation
experiments with a threshold of 3–5 are carried out in the HPatches dataset, and the results
are shown in Table 4; a set of experimental results are shown in Figure 10.

Table 4. Ablation results in the HPatches dataset.

Method Cross-Attention DeVgg
MMA

(ε=3px|4px|5px)

CMRM
√ √

0.672 1/0.710/0.785√
0.661/0.706/0.721√
0.657/0.673/0.749

Baseline 0.421/0.456/0.571
1 Numbers in bold represent the optimal values of MMA.
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Figure 10. (a–d) are a comparison of the results of adding Cross Attention and DeVgg and not adding
Cross Attention and DeVgg.

(1) When only cross-attention is added, the MMA of the dataset is increased by 0.24,
0.248, and 0.147, respectively, compared with that of the baseline network, which effectively
verifies that the network’s ability to express the spatial correspondence between the features
of multi-temporal remote sensing images is improved when the attention module is added;
(2) with the addition of the DeVgg module, the ability of feature extraction and registration
is obviously higher than that without the DeVgg module, which verifies the effectiveness
of DeVgg. The main reason is that during the training process, the training data have
obvious background changes, which makes the features extracted by the network have a
robust expression, and strengthens the ability of feature expression of deformation. (3) By
combining cross-attention and DeVgg, the MMA value of the public dataset is increased by
0.251, 0.254, and 0.214, respectively, compared with that of the baseline network. As can be
seen from Figure 10, when the deformable convolution layer and attention surrender were
added, the registration result of the network was significantly improved.

3.5.2. Experiments on Different Backbone Networks

CMRM selected the VGG16 model pre-trained on the ImageNet dataset as the back-
bone network. In order to verify the accuracy of the selection, different backbone feature
extraction networks were evaluated on the HPatches dataset, ResNet50 and MobileNet
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V2 pre-trained on the ImageNet dataset were tested, and the dataset was added with
deformable convolution. In the original VGG16, the resolution of the output feature map
was 1/8, but in this paper, in order to improve the positioning accuracy, the resolution was
expanded from 1/8 to 1/4. Similarly, the original output of ResNet was expanded from
1/16 to 1/4. The results are shown in Figure 11.
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Figure 11. (a–c) show the matching MMA values and matching point values of different backbone
models on the HPatches dataset, demonstrating the uneven matching accuracy achieved under
different thresholds.

Overall, different backbone networks exhibit significant variations in MMA on the
HPatches dataset. MobileNet V2 performs the worst under different threshold conditions,
while VGG16 achieves the best results at 1/8 and 1/4 resolutions. Considering the impact
of lighting conditions, we conducted experiments with different threshold conditions, and
the results show that VGG16 outperforms MobileNet V2 at 1/8 and 1/4 resolutions, and
it also outperforms ResNet when the threshold is less than 6. Considering the effect of
viewpoint changes, the experimental results with different threshold conditions are shown
in Figure 10c, indicating that VGG16 outperforms ResNet and MobileNet V2 at 1/8 and
1/4 resolutions.

3.6. Examples of Matching Results

Figure 12 further demonstrates the feature extraction capability of CMRM. The selected
six pairs of images are from the GeGZ dataset, and their specific descriptions are shown
in Table 1. The image pairs in Figure 12a are from different sensors, and the images show
irregular changes in water systems. The zoom-in results show that CMRM can still achieve
good matching in areas with significant changes. The image pairs in Figure 12b–d are
all from Google Earth. The content of the image pair in Figure 12b is similar in structure
and distributed uniformly in farmland, with obvious perspective differences. Although
only a small number of feature points are extracted, a high degree of matching can still
be achieved. The image pairs in Figure 12c contain a large amount of arable land. Under
highly similar shapes, CMRM can still find many corresponding points. The image pair in
Figure 12d has a large time span and significant background differences. CMRM can only
find a small number of corresponding points; however, compared to other algorithms, it still
achieves good results. The image pairs in Figure 12e are taken from urban areas and contain
many urban buildings and roads with many detailed texture differences. CMRM shows
good matching performance. The image pairs in Figure 12f have noise due to weather
conditions, but CMRM can still find a large number of feature points. From Figure 11, it can
be seen that the feature points extracted by CMRM are distributed evenly and accurately
locate the corresponding areas in the images, indicating that CMRM has good feature
extraction capabilities.
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4. Conclusions

The present study proposed a convolutional neural matching network based on cross-
attention and deformable convolutions. By leveraging the cross-attention, it enhanced
the spatial correspondence between local and global features. Additionally, the network
utilized deformable convolution layers to improve the representation capability of deforma-
tion features. We also introduced an adaptive threshold constraint in the feature removal
stage to obtain high-quality matching points.

Experimental results demonstrated that the proposed algorithm was suitable for multi-
modal remote sensing image registration tasks with significant background variations
and certain viewpoint changes. Furthermore, compared to other multi-modal matching
algorithms, it exhibited advantages in terms of feature point extraction quantity, matching
accuracy, and time. However, during the training process of the proposed network, a precise
localization model was required to eliminate scale and geometric differences between
images, which increased the training time. In future research, the matching performance
of this algorithm will be further investigated under large rotation angles and different
modal transformations.
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