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Abstract: The existing communication-induced checkpointing protocols may not scale well due
to their slow acquisition of the most recent timestamps of the next checkpoints of other processes.
Accurate situation awareness with diversified information conveyance paths is needed to reduce
the number of unnecessary forced checkpoints taken as few as possible. In this paper, a scalable
communication-induced checkpointing protocol is proposed to considerably cut down the possibility
of performing unnecessary forced checkpointing by exploiting the beneficial features of reliable
communication channels. The protocol enables the sender of an application message to swiftly attain
the most recent timestamp-related information of the next checkpoint of its receiver and accelerate
the spread of the information to others, with little overhead. This behavioral feature may significantly
elevate the accuracy of the awareness of the situations in which forced checkpointing is actually
needed for useless checkpoint-free recovery. In addition, it generates no extra control message and no
message logging overhead while significantly lessening the latency of message sending. Moreover,
the protocol can always be operated under the non-deterministic execution model. The evaluation
results indicate that the proposed protocol outperforms the existing ones at the reduced forced
checkpointing overheads from 12.5% to 84.2%, and at the reduced total execution times from 2.5%
to 11.5%.

Keywords: distributed systems; fault-tolerance; checkpointing; recovery; scalability

1. Introduction

Communication-induced checkpointing (hereafter, CIC) is a rollback recovery tech-
nique that requires no explicit synchronization procedure with other processes upon
checkpointing and that precludes the occurrence of the domino-effect phenomenon [1].
These features can be realized by having every process piggyback on each sent message,
some control information of other processes as well as itself. In addition, if needed before
message delivery, additional checkpoints, called forced checkpoints, can be taken based
on the local variables of the process and the information piggybacked on the messages [2].
Most CIC protocols [3–15] with these advantages have the following common behavioral
features. If each process recognizes the delivery of a message may make any other local
checkpoint of another process, called a basic checkpoint, become useless, the protocols
make the process take a forced checkpoint.

CIC protocols are classified into two types, model-based CIC and timestamp-based
CIC [1]. Although model-based protocols [3,4] may be transformed to their corresponding
timestamp-based ones [5–15], the overhead of the first, in its eagerness to break suspi-
cious message exchange patterns, can be considerably higher than that of the second in
terms of the number of forced checkpoints [1]. Timestamp-based protocols have contin-
uously advanced with their protocol-specific checkpoint timestamping schemes using
Lamport’s logical clock to decrease the number of forced checkpoints in the following
manner. Early-stage CIC protocols [5,6] make each process take a forced checkpoint if their
timestamp-increasing flow condition is not satisfied when comparing its local timestamp
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with the one piggybacked on each message received. However, this may cause a large
number of unnecessary forced checkpoints due to the inaccuracy in decisions about the
uselessness of basic checkpoints of other processes. To cut back on the overhead as much
as possible, improved protocols [7,8,11–15] have been designed to utilize more information
piggybacked on each message, including the most recent checkpoint timestamp of every
other process. In particular, among them, a representative protocol [7], HMNR, attempts
to lower the forced checkpointing overhead by narrowing the condition inducing forced
checkpoints with the help of the control information contained in each message received.
A recently enhanced version of HMNR, LazyHMNR [8], is designed to balance the grow-
ing rates of checkpoint timestamps of processes by temporarily ceasing to increase the
timestamps taken of outliers.

However, despite efforts to decrease the frequency of forced checkpointing, these
previous protocols have a much greater number of forced checkpoints than basic check-
points, highly increasing additional execution time and the stable storage size required [16].
This results in the negative effect of slower acquisition of the most recent timestamps of
the next checkpoints of other processes when receiving each message. Accurate situation
awareness with diversified information conveyance paths is needed to make the number of
unnecessary forced checkpoints taken as low as possible.

Although developed to operate based on a reliable first-in, first-out (hereafter, FIFO)
communication channel, most traditional CIC protocols [3–8,10–15] do not use this ad-
vantageous feature to lessen this sort of forced checkpointing overhead. A previous CIC
protocol [9] attempted to decrease the number of forced checkpoints by obtaining the
up-to-date local clock of the next checkpoint of every other process based on performing
sender-based message logging earlier than before. However, the protocol may not only
generate a few extra control messages but may also greatly lengthen the latency of message
sending. In addition, it has a critical limitation that, due to its usage of message logging,
the applicable process execution model can be piecewise deterministic only. Another most
recent CIC protocol [10] is designed to use pessimistic message logging to cut down on
the forced checkpointing frequency. The protocol can overcome the constraint of the piece-
wise deterministic model by recognizing which execution point is deterministic in each
checkpoint interval. However, it has the same limitation as the traditional ones [3–8,11–15]
mentioned above—that is, the slow gathering of the most recent local timestamp of the
next checkpoint of every other process. In addition, if non-deterministic events that can-
not be logged often occur in the execution of processes, the performance gain may be
greatly diminished.

This paper proposes a scalable CIC protocol to considerably cut down the possibility of
performing unnecessary forced checkpointing by exploiting the beneficial feature of reliable
communication channels generally assumed in the research field, namely, rollback recovery
with checkpointing and message logging. This protocol enables each process sending a
message to attain the most recent timestamp-related information of the next checkpoint of
its receiver as fast as possible and accelerate the spread of the information to others with
little overhead. For this purpose, the information is piggybacked on the acknowledgment of
each application message essential to ensuring communication reliability, which requires no
additional control message. In addition, it allows each process to perform actual message
sending operations right after receiving messages without any delay, unlike the existing
protocols [9]. Moreover, the protocol is never constrained by the piecewise deterministic
execution model because it does not utilize message logging.

2. Background
2.1. Assumptions

In a distributed system consisting of a set of n processes following the crash failure
model, the processes exchange messages with each other through reliable FIFO communi-
cation channels [17]. Each process p takes its i-th local checkpoint (i ≥ 0), Cki

p, to record its
current state in stable storage for recovery. At this time, p increments its local clock, clp, by
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one and assigns it to Cki
p, denoted by Cki

p.cl. Whenever p sends a message m to another
process q after Cki

p, it piggybacks clp on m (denoted by m.cl). CIi
p stands for a checkpoint

interval composed of a set of events of internal computing, message sending, and receiving
performed by p from Cki

p to Cki+1
p with Cki

p and without Cki+1
p . In addition, some generally

used terminologies related to consistency on checkpoints are defined as follows:

Definition 1. A global checkpoint is a set of n local checkpoints consisting of only one of each
process in the system [18,19].

Definition 2. An orphan message is a message which is received but never sent between a pair of
local checkpoints of two different processes during recovery [20,21].

Definition 3. The consistency of a global checkpoint is ensured if and only if there exists no orphan
message between every pair of local checkpoints belonging to the global checkpoint [22].

The previous relation→hb does not hold sufficient capability to decide whether two
causally unrelated checkpoints belong to a consistent global checkpoint [10]. Figures 1 and 2
illustrate the limitation of the relation. In Figure 1, a checkpoint timestamping function
using Lamport’s logical clock allows the system to identify that Cki

p and Ckk+1
r (Cki

p →hb

Ckk+1
r ) do not belong to the same consistent global checkpoint through two causally related

messages m1 and m2. Here, two global checkpoints (drawn in red and blue colors), (Cki
p,

Ckj
q, Ckk+1

r ) and (Cki
p, Ckj+1

q , Ckk+1
r ), are both inconsistent because m2 and m1 become

orphan messages, in order. However, though Cki
p 9hb Ckk+1

r in Figure 2, both are also
inconsistent through two causally unrelated messages m1 and m2. To overcome this insuffi-
ciency, the notion of a Z-path [2] has been devised to detect the uncaught message patterns
(called NC-patterns) between a pair of local checkpoints.

Definition 4. A Z-path from Cki
p to Ckj

q (denoted by Cki
p→zz Ckj

q) is a message path composed of a
sequence of messages [m1, m2, ..., mk](k ≥ 1) if and only if every following condition is satisfied [2]:

• After having taken Cki
p, p sends a message m1;

• For ∀w(1 ≤ w < k), both receiving mw and sending mw+1 are executed by another process
r in the same checkpoint interval, or there is at least one checkpoint after the first and before
the second;

• q receives the message mk before taking Ckj
q.

Figure 1. Example of causal path from Cki
p to Ckk+1

r .
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Figure 2. Example of causally unrelated path from Cki
p to Ckk+1

r .

Definition 5. Two consecutive messages in a Z-path form an NC-pattern if sending one of them
happens before receiving the other at the same checkpoint interval [7].

A Z-path can be classified into two kinds, a C-path and an NC-path. A C-path is a
message sequence where the delivery of the message to each process except the last one
always precedes the message being sent from the same process, such as [m1, m2] in Figure 1.

Definition 6. A Z-path with no NC-pattern is called a C-path [7].

An NC-path is a message sequence where the ordering rule of C-path for delivering
and sending messages from each process is violated, such as [m1, m2, m3] in Figure 3.

Definition 7. A Z-path including at least one NC-pattern is called an NC-path [7].

Figure 3. Example of an NC-path consisting of m1, m2, and m3.

In order to reduce the rollback distance of each process as much as possible in case
of process failures, the protocol periodically takes its local checkpoint on its own speed.
However, even if the checkpoint timestamping function is applied in the system, this
checkpointing autonomy may result in the checkpoint not belonging to any consistent
global checkpoint. This useless checkpoint may result in a great rollback distance of not
only the crashed process but also the other processes during recovery.

Definition 8. A local checkpoint belonging to no consistent global checkpoint is called a useless
checkpoint [7].

A Z-path flowing from a checkpoint back to itself, called a Z-cycle, prevents the
checkpoint from being part of any consistent global checkpoint.
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Definition 9. A Z-cycle is a Z-path holding Cki
p →zz Cki

p [2].

The property of Z-cycles may become a precise condition for determining whether
each checkpoint is useless. For example, Figure 3 shows a Z-path consisting of an NC-
pattern [m1,m2] from Cki

p to Ckk+1
r and then a message m3 after Ckk+1

r , where Ckk+1
r comes

back to itself, called a Z-cycle, [m3,m1,m2]. In this example, Ckk+1
r becomes useless because

no global checkpoint including Ckk+1
r is consistent, such as (Cki

p, Ckj
q, Ckk+1

r ), (Cki
p, Ckj+1

q ,

Ckk+1
r ), and (Cki+1

p , Ckj+1
q , Ckk+1

r ) in Figure 3.

Theorem 1. Cki
p is a useless checkpoint if and only if it forms Cki

p →zz Cki
p [2,3,7].

Therefore, if it is guaranteed that every local checkpoint never becomes useless, the
Z-cycle-free system can be recovered with the most recent consistent global state after
process failure, decreasing the amount of computation nullified due to the crashes to the
maximum extent.

Corollary 1. A system is Z-cycle-free if no useless checkpoint exists.

2.2. Related Work

Most existing CIC protocols [3–10,14,15] have been designed to ensure that no basic
checkpoint becomes useless by satisfying Theorem 2 at all times.

Theorem 2. For any pair of checkpoints Cki
p and Ckj

q, Cki
p →zz Ckj

q with (Cki
p.cl < Ckj

q.cl)
includes no Z-cycle [1,2].

Theorem 2 provides the criteria for designing a CIC protocol that ensures useless
checkpoints involved in a Z-cycle are not created by keeping the checkpoint timestamp
flow increasing along any Z-path.

Let us review how the previous works advanced CIC protocols with some examples in
Figures 4 and 5. Early-stage CIC protocols [5,6] let each process q take a forced checkpoint
if the following equation is met in order to conform to Theorem 2 (such as in Figure 4):

m1.cl > m2.cl (1)

Equation (1) can be implemented with two vector variables, sent_toq and minq. The
first is used to detect the creation of NC-patterns in every other process r. In other words,
sent_toq[r] is a Boolean variable that is set to true if q sends a message m2 to r for the
first time since its latest checkpoint. minq[r] maintains the checkpoint timestamp of m2,
m2.cl. When q receives m1 from another p, the following deduced safety predicate, Cm1

early, is
performed to evaluate whether q should take a forced checkpoint:

Cm1
early ≡ sent_toq[r] ∧ (m1.cl > minq[r]).

However, the aggressive predicate has no functionality and cannot obtain the most
recent checkpoint timestamp of every other process. This insufficiency of information
acquisition may incur high failure-free costs by taking unnecessary forced checkpoints, such
as in Figure 4. In this example, when q receives m1 from p, it can recognize an NC-pattern
connecting m1 with m2 because sent_toq[r] is true. In addition, as m1.cl (= 3) > minq[r] (= 2),

the value of Cm1
early is true, and so q takes a forced checkpoint Ckj+1

q . However, in this case,

it is not necessary that q performs the forced checkpointing because Cki
p.cl < Ckk+1

r .cl.
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Figure 4. Example of removing the potential of Z-cycle occurrences in advance in early-stage protocols.

A set of HMNR protocols [7,8,14,15] is designed to reduce the number of unnecessary
forced checkpoints by narrowing down Equation (1) to Equation (2), as follows, where
clq(r) is the value of the most recent checkpoint timestamp of r that q knows:

(m1.cl > m2.cl) ∧ ((m1.cl > clq(r)) ∨ (clq(r) ≥ Ckk+1
r .cl)) (2)

Equation (2) can also be split into two Equations (3) and (4):

(m1.cl > m2.cl) ∧ (m1.cl > clq(r)) (3)

(m1.cl > m2.cl) ∧ (clq(r) ≥ Ckk+1
r .cl) (4)

To implement Equation (3), aside from sent_top and clp, a process p keeps a lightweight
vector greaterp to indicate whether its current logical clock clp is greater than the latest
checkpoint timestamp of every other p estimate. In other words, greaterp[r] is a Boolean
variable that is set to false when receiving mα from r because mα.cl ≥ clp in Figure 5. The
vector variable is piggybacked on each sent message m, denoted by m.greater. As q receives
m1 from p, the following safety predicate, Cm1

1 , is conducted for q to make a decision about
whether a forced checkpointing action should be performed:

Cm1
1 ≡ sent_toq[r] ∧m1.greater[r] ∧ (m1.cl > clq)

Let us clarify how the HMNR protocols require fewer forced checkpoints compared
with the early-stage ones with the example in Figure 5. In this example, the current
checkpoint timestamp of r flows to p through mα between m2 and m1. As mα.cl and
clp have the same value(=3), greaterp[r] becomes false and is relayed to q through m1 as
m1.greater[r]. At this point, q does not take any forced checkpoint because the value of
Cm1

1 is false, i.e., Cki
p.cl < Ckk+1

r .cl. After p and q eventually take their basic checkpoints,

Cki+1
p and Ckj+1

q , respectively, at their preferred execution positions, a globally consistent

checkpoint (Cki+1
p , Ckj+1

q , Ckk+1
r ) is formed. However, if there is no application message

such as mα between m1 and m2 in Figure 5, the protocols should still perform forced
checkpointing like in Figure 4. This limitation may considerably and unnecessarily increase
additional application execution time and stable storage size needed for recovery.
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Figure 5. Example of decreasing forced checkpointing frequency by piggybacking in a family of
HMNR protocols.

Equation (4) can be implemented with two vector variables, ckptq and takenq. ckptq is
a table used to record the number of checkpoints of each process taken since its beginning
that q knows. takenq is a Boolean vector indicating whether there is a C-path to the next
checkpoint of q from the latest checkpoint of every other process that q presumes. When q
takes a local checkpoint, all elements in takenq, except one for itself, which is always false,
are reset to true. Whenever an application message is sent, the two variables are included
in the message. If p sends m1 to another process q such as in Figure 6, q carries out the
following safety predicate, Cm1

2 , to determine whether m1 may potentially cause a Z-cycle
to be formed:

Cm1
2 ≡ (ckptq[q] = m1.ckpt[q]) ∧m1.taken[q].

Figure 6 illustrates an instance of taking a forced checkpoint with Cm1
2 in the HMNR

protocols. When receiving m2, r updates ckptr[q] and takenr[q] to j and false, respectively. If
r takes a basic checkpoint Ckk+1

r , takenr[q] is reset to true. Receiving mβ, p updates ckptp[q]
and ckptp[r] to j and k + 1 and takenp[r] to false. When q receives m1, it decides to perform
forced checkpointing as the value of Cm1

2 is true.

Figure 6. Example of performing forced checkpointing by satisfying Equation (4) in a family of
HMNR protocols (a, c < i and b < k).

To reduce the forced checkpointing overhead, a recent CIC protocol [9] with sender-
based message logging, EsbmlCIC, attempts to obtain the up-to-date local clock of the
next checkpoint of every other process by using its control message exchange procedure to
notify the sender of each application message of its received sequence number. However,
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due to the behavioral feature of sender-based message logging, the procedure always
requires one extra control message per application and may also incur a not little delay on
completing message send operations requested right after the receipt of the application.
Moreover, it should be subject to the piecewise deterministic model because it employs
message logging.

Another recent CIC protocol [10], S-CIC, attempts to bring the forced checkpointing
frequency down as much as possible by using pessimistic message logging without being
restricted by the piecewise deterministic model. This can be achieved by identifying which
part of each checkpoint interval is deterministic. Even if receiving a message m induces a
forced checkpoint, as either the value of Cm

1 or Cm
2 is true, the protocol does not perform

the checkpointing action at the execution point of the sender right before transmitting m is
recoverable. However, if there exists at least one non-deterministic event that cannot be
replayed in the interval right before sending m as well as in every interval which the first
depends on, the protocol should take the same forced checkpoint as the previous ones. In
addition, this protocol does not have the functionality to acquire the latest timestamps of
the next checkpoints of other processes earlier than the latter.

Unlike all the CIC protocols stated above, three CIC protocols, Adaptive [11], FINE [12],
and LazyFINE [13], cannot realize useless checkpoint-free recovery. They sacrifice this
feature in exchange for a lower forced checkpointing frequency by weakening the condition
identifying the Z-cycle pattern, as shown in Figure 3.

3. The Scalable CIC Protocol

The proposed CIC protocol, LightweightCIC, is designed to substantially decrease the
possibility of making wrong decisions when performing forced checkpointing, as follows:

• The protocol enables each process sending a message to attain the most recent times-
tamp information of the next checkpoint of its receiver as fast as possible and accelerate
the spread of the information to others in a lightweight manner.

• It incurs neither additional control message nor delay in the completion of application
message send operations executed right after each message is received.

• It can always be operated under the non-deterministic execution model.

The protocol can meet the third requirement because it is a checkpoint-only protocol
using no message logging technique unlike our previous one [9]. Then, to combine the first
and second requirements together, it exploits the beneficial feature of reliable communi-
cation channels, as follows. The protocol has each process r receiving a message m2 from
another process q piggyback its current timestamp (clr(r)) upon acknowledgment of m2,
denoted by ack2. Then, it propagates the information, ack2.cl, not only to its sender q but
also to others in an effective manner. With this immediate update of the information, the
protocol identifies whether q should take a forced checkpoint upon receipt of a message m2
based on Equations (4) and (5), unlike the HMNR protocols [7,8,14,15]:

(m1.cl > ack2.cl) ∧ (m1.cl > clq(r)) (5)

Compared with Equation (3), Equation (5) can greatly enhance the up-to-dateness
of the two important variables of each process q, clq and greaterq, and speed up their
dissemination to other processes. This improvement may greatly boost the accuracy of
both m1.greater[r] and (m1.cl > clq) in Cm1

1 . With this feature, the protocol can greatly
reduce the possibility of taking unnecessary forced checkpoints compared to the existing
protocols [3–15]. We proved the superiority of Equation (5) over Equation (3) in Lemma 1
in terms of the number of forced checkpoints taken.

Lemma 1. Equation (5) causes fewer or the same forced checkpoints as Equation (3) to be taken.

Proof. We prove the correctness of the lemma by contradiction. It is assumed that Equation (5)
may lead to more forced checkpoints being taken than Equation (3), meaning the first
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equation cannot detect the situations where forced checkpointing need not be performed
more accurately than the latter, as Theorem 2 is satisfied. Suppose two consecutive messages
m1 and m2 form an NC-pattern where sending m2 to r after Ckk

r before Ckk+1
r precedes

receiving m1 from p after Cki
p before Cki+1

p in the same checkpoint interval CIj
q. There are

two cases that can happen, as follows:
Case 1: m1.cl ≤ m2.cl.

In this case, as Cki
p.cl ≤ m2.cl < Ckk+1

r .cl, both equations enable q to skip performing a
forced checkpointing action when q receives m1.
Case 2: m1.cl > m2.cl.

In this case, we should consider two subcases, as follows:
Case 2.1: m2.cl ≥ clr(r) right after m2.
In this case, as Cki

p.cl ≮ Ckk+1
r .cl, both equations cause a forced checkpoint to be taken

when q receives m1.
Case 2.2: m2.cl < clr(r) right after m2.

In this case, we should consider the following two subcases:
Case 2.2.1: m1.cl > clr(r) right after m2.

In this case, as Cki
p.cl ≮ Ckk+1

r .cl, both equations force q to decide to perform a forced
checkpointing action when q receives m1.
Case 2.2.2: m1.cl ≤ clr(r) right after m2.

In this case, Cki
p.cl ≤ m1.cl < Ckk+1

r .cl. Equation (5) can detect this situation because
ack2.cl is equal to clr(r) right after m2 and results in no forced checkpoint being taken
when q receives m1. However, Equation (3) cannot identify this situation without the help
of a C-path starting with m2 and bringing clr(r) to q before q actually delivers m1. Due
to this limitation, Equation (3) may exclude this situational possibility to skip taking a
forced checkpoint.

Therefore, Equation (5) leads to fewer or the same number of forced checkpoints to be
taken as in Equation (3). This contradicts the hypothesis.

Figure 7 shows the formal description of five modules of the proposed protocol for
each process p. The first module, INITIALIZE(), initializes all the variables that p should
maintain and takes its initial checkpoint. The second module, LOCAL-CHECKPOINTING(),
increments both its checkpoint timestamp and the number of checkpoints taken by p
from the beginning of its execution by one. Then, it resets several other variables used
for deciding whether the value of Cm1

1 is true and records its current state with the first
two variables in the stable storage. The third module, MSG-SEND(), indicates that p
sends a message m to the receiver of m after its most recent checkpoint. Then, p sends
the message with the variables for making a decision about whether the receiver is forced
to take a checkpoint before delivering m. The fourth module, MSG-RECV(), first checks
whether the received message may make useless checkpoints. If so, p performs a forced
checkpointing by calling LOCAL-CHECKPOINTING(). Then, p sends an acknowledgment
with its checkpoint timestamp and greaterp. Next, it updates its local variables related to
the decision-making condition according to the values of the piggybacked variables and
delivers the contents of the message to its target application. The last module, ACK-RECV(),
updates its checkpoint timestamp and greaterp according to the value of the checkpoint
timestamp piggybacked on the acknowledgment.
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Module INITIALIZE() AT p
clp ← 0;
greaterp[p]← F;
takenp[p]← F;
∀j(1≤j≤n): ckptp[j]← 0;
call LOCAL-CHECKPOINTING();

Module LOCAL-CHECKPOINTING() AT p
increment clp by one;
increment ckptp[p] by one;
∀j(1≤j≤n): sent_top[j]← F;
∀j(1≤j≤n, j 6= p): greaterp[j]← T; takenp[j]← T;
save its local state with (clp, ckptp[p]) on the stable storage;

Module MSG-SEND(data, q) AT p
if(sent_top[q] = F) then sent_top[q]← T;
send m(clp, greaterp, ckptp, takenp, data) to q;

Module MSG-RECV(m(cl, greater, ckpt, taken, data)) AT p from q
// Check whether a forced checkpoint should be taken before m. //

if(((∃j(1≤j≤n):sent_top[j] ∧ m.greater[j]) ∧ (m.cl > clp)) ∨
((ckptp[p] = m.ckpt[p]) ∧ m.taken[p])) then
call LOCAL-CHECKPOINTING();

// Update its local clock and Z-cycle detection variables. //
if(m.cl > clp) then

send ack(clp, ⊥) to q;
clp ← m.cl;
∀j(1≤j≤n, j 6= p): greaterp[j]← m.greater[j];

else if(m.cl = clp) then
send ack(clp, greaterp) to q;
∀j(1≤j≤n, j 6= p): greaterp[j]← greaterp[j] ∧ m.greater[j];

else
send ack(clp, greaterp) to q;
greaterp[q]← F;
∀j(1≤j≤n, j 6= p):

if(m.ckpt[j] > ckptp[j]) then
ckptp[j]← m.ckpt[j]; takenp[j]← m.taken[j];

else if(m.ckpt[j] = ckptp[j]) then
takenp[j]← takenp[j] ∨ m.taken[j];

deliver m.data to its corresponding application;

Module ACK-RECV(ack(cl, greater)) AT p from q
if(ack.cl > clp) then

clp ← ack.cl;
∀j(1≤j≤n, j 6= p): greaterp[j]← ack.greater[j];

else if(ack.cl = clp) then
∀j(1≤j≤n, j 6= p): greaterp[j]← greaterp[j] ∧ ack.greater[j];

else // the case that clq has been already updated with the value of clp as clq < clp. //
greaterp[q]← F;

Figure 7. Modules of LightweightCIC for process p.

Let us examine how our protocol can fulfill both requirements with the beneficial
feature unlike a representative useless checkpoint-free CIC protocol, HMNR, using several
examples of checkpointing and communication patterns. Figures 8–13 illustrate four
examples to clarify how the two protocols trigger events of taking forced checkpoints with
three messages, m1, m2, and m3. The first example, shown in Figures 8 and 9, shows the
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case where Ckj
q.cl < Cki

p.cl < Ckk
r .cl. In Figure 8, HMNR takes two unnecessary forced

checkpoints, as follows. When receiving m1, q decides to record a forced checkpoint
state Ckj+1

q before m1 because it has a mistaken knowledge that Cki
p.cl is equal to that

of the next checkpoint of r (i.e., the value of Cm1
1 is true). Similarly, as p receives m3

from r, it performs forced checkpointing because it knows Ckk
r .cl is equal to that of the

next checkpoint of q after having received m1 (i.e., the value of Cm3
1 is true). However,

in Figure 9, LightweightCIC triggers no events of forced checkpointing for the reasons
mentioned below. On the receipt of m2, r knows its current logical clock value is greater
than clq piggybacked on m2 (on calling module MSG-RECV()). Then, it conveys to q the
acknowledgment of m2 with clr and greaterr and indicates that the updated checkpoint
timestamp of q is equal to clr(greaterr[q]←F). Afterwards, q changes clq and greaterq[r]
to the current timestamp of r piggybacked on the acknowledgment and ack2.greater[r]
(on calling module ACK-RECV()). When receiving m1, q can accurately recognize it is
not necessary for q to take a forced checkpoint as Cki

p.cl < Ckk+1
r .cl (i.e., the value of

Cm1
1 is false) (on calling module MSG-RECV()). Then, as q knows clp is less than clq, it

immediately transmits the acknowledgment of m1 with clq and greaterq to p and sets
greaterq[p] to F. Upon receiving this message, p updates clp and every greaterp[i](i 6=p) with
ack1.cl and ack1.greater[i], respectively, (on calling module ACK-RECV()), like in Figure 9.
When receiving m3, LightweightCIC restrains p from performing forced checkpointing
because it knows Ckk

r .cl < Ckj+1
q .cl (i.e., the value of Cm3

1 is false) (on calling module
MSG-RECV()). Upon the receipt of ack3, r changes greaterr[p] to F. With this reduction
in overhead, the proposed protocol requires no extra control message to quickly update
the recovery information and has no delay on actually sending messages right after each
message is received by their corresponding targets.

Figure 8. HMNR takes two forced checkpoints in the first example.

The second example, shown in Figures 10 and 11, shows the case that Ckj
q.cl < Cki

p.cl

= Ckk
r .cl. In Figure 10, upon the receipt of m1, HMNR takes one forced checkpoint, Ckj+1

q ,
before delivering m1 because q wrongly believes Cki

p.cl = Ckk+1
r .cl after m2. On the other

hand, it lets p perform no forced checkpointing when receiving m3, as it can recognize that
Ckk

r .cl is less than the timestamp of the next checkpoint of q after m1. However, in Figure 11,
LightweightCIC does not only have p, but also q does not perform forced checkpointing
when receiving m1 because q can see Cki

p.cl < Ckk+1
r .cl after m2 according to the update of

clq upon receiving ack2.
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Figure 9. LightweightCIC takes no forced checkpoint in the first example.

The third example, shown in Figures 12 and 13, illustrates the case that Cki
p.cl =

Ckj
q.cl < Ckk

r .cl. When q receives m1 in Figure 12, HMNR does not need to record a forced
checkpoint, as it can detect Cki

p.cl < Ckk+1
r .cl after m2. However, before delivering m3,

HMNR forces p to perform forced checkpointing because p cannot ensure the timestamp of
the next checkpoint of q after m1 is greater than Ckk

r .cl. In contrast, after q has received m1
in Figure 13, LightweightCIC has q piggyback clq and greaterq on ack1 and has p update
clp along with it. Thanks to this procedure, upon the receipt of m3, LightweightCIC

prohibits p from performing forced checkpointing, as it can sense that Ckk
r .cl < Ckj+1

q .cl by
checking Cm3

1 .

Figure 10. HMNR takes one forced checkpoint in the second example.

The fourth example, shown in Figures 14 and 15, depicts the case of a different
checkpointing and communication pattern in which a C-path, m1→hbm2→hbm3, forms an
NC-path, m3→zzm1. Receiving m3 in Figure 14, HMNR has p generate a forced checkpoint
Cki+1

p before m3 because p recognizes Ckk
r .cl ≮ Ckj+1

q .cl. On the other hand, when obtaining
ack2 in Figure 15, LightweightCIC enables q to change its current checkpoint timestamp
and greaterq to the most recent ones of r with the piggybacked information. Thanks to this

early update, by checking the information piggybacked on m3, p can see Ckk
r .cl < Ckj+1

q .cl,
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as r already knew clq after receiving ack2 is equal to clr before sending m3(greaterr[q] = F);
p thus decides not to take a forced checkpoint.

Figure 11. LightweightCIC takes no forced checkpoint in the second example.

Figure 12. HMNR takes one forced checkpoint in the third example.

Figure 13. LightweightCIC takes no forced checkpoint in the third example.
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Figure 14. HMNR takes one forced checkpoint in the fourth example.

Figure 15. LightweightCIC takes no forced checkpoint in the fourth example.

Theorem 3. Our protocol always satisfies the property that no checkpoint becomes useless.

Proof. We prove the correctness of the theorem by contradiction. It is assume that some
checkpoints become useless even after the protocol has been executed. When each process
receives a message forming a Z-path, the protocol decides whether a forced checkpoint
should be taken before delivering the message based on Equations (4) and (5). It was
proven in HMNR [7] that the property is always satisfied in all cases where Equation (4)
instructs each process not to take a forced checkpoint. Therefore, we only need to check all
cases where each process decides not to take a forced checkpoint based on Equation (5).
There are two cases to consider:
Case 1: the Z-path is a C-path.

In this case, as the protocol uses a checkpoint timestamping function based on Lam-
port’s clock, the timestamp flow always goes up along any C-path. This behavioral feature
makes Theorem 2 satisfied, meaning every C-path includes no Z-cycle at all times.
Case 2: the Z-path is an NC-path.

In this case, every NC-pattern in the NC-path should be checked in all cases presented
in the proof of Lemma 1. Among them, we only need to examine two cases, Case 1 and
Case 2.2.2, where the protocol allows each process to not take a forced checkpoint based on
Equation (5). Suppose two consecutive messages m1 and m2 form an NC-pattern, where
sending m2 to r after Ckk

r before Ckk+1
r precedes receiving m1 from p after Cki

p before Cki+1
p
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in the same checkpoint interval CIj
q.

Case 2.1: m1.cl ≤ m2.cl.
In this case, as Cki

p.cl ≤ m2.cl < Ckk+1
r .cl, delivering m1 does not make any checkpoint

useless, even if a forced checkpointing action is not performed.
Case 2.2: m1.cl ≤ clr(r) right after m2.

In this case, as Cki
p.cl ≤ m1.cl < Ckk+1

r .cl, Theorem 2 is always satisfied, without taking
any forced checkpoint.

Therefore, our protocol always prevents any checkpoint from being useless. This
contradicts the hypothesis.

Theorem 4. Our protocol results in fewer or the same number of forced checkpoints being taken
as HMNR.

Proof. Our protocol instructs each process receiving a message to perform a forced check-
pointing action based on Equations (4) and (5), while for HMNR, Equations (3) and (4) are
used. As Equation (4) is common to both our protocol and HMNR, Equations (3) and (5)
need only be compared in terms of the number of forced checkpoints taken. Based on
Lemma 1, Equation (5) leads to fewer or the same number of forced checkpoints being
taken as Equation (3). Therefore, the protocol has each process generate fewer or the same
number of forced checkpoints as HMNR.

4. Simulations
4.1. Experimental Environment

In this section, the effectiveness of the proposed protocol, LightweightCIC, is evaluated
in comparison to the three most recent CIC protocols by using a well-known simulation
language [23]. The first is the most recent protocol, LazyHMNR [8], overcoming the limita-
tion of HMNR [7] where, if a few processes take their local checkpoints more frequently
than the others, the checkpoint timestamps of the former may increase much faster than
those of the latter. In this case, if the latter processes receive messages from the former,
they may take quite a few of the unnecessary forced checkpoints due to the difference in
their timestamps. In order to alleviate the negative effects on the high overhead caused by
forced checkpointing, LazyHMNR balances the growing rates of checkpoint timestamps of
processes by temporarily ceasing the increase in the timestamps of outliers. The other two
are our recently presented CIC ones, S-CIC [10] and EsbmlCIC [9], mentioned in Section 2.2.

The protocols are compared using two primary performance indices, FCoverhead and
Executiontime. First, FCoverhead means the total number of additional checkpoints needed to
ensure that no basic checkpoint become useless. Second, Executiontime represents the total
execution time of each distributed application, assessed in minutes. The numerical values
presented in this experiment are the averages of the results obtained through multiple runs.

For simulation, a system has n hosts which send or receive messages to and from
each other. Its communication network is operated with a link capacity of 100 Mbps
and a propagation delay of 1 ms. Every process in the system begins its execution on an
individual host and ends together. The size of each application message destined to another
process is in range of 1 KB to 1 MB. The inter-arrival time of sent messages to each process
follows an exponential distribution with the average amount of time equal to three seconds.
The basic checkpointing interval of each process has an exponential distribution, with the
average amount of time equal to five minutes.

4.2. Experimental Outcome

As stated in Section 2.2, EsbmlCIC [9] should be operated under the piecewise deter-
ministic execution model only. Due to this limitation, EsbmlCIC is eliminated from the
first experiment, shown in Figures 16 and 17, performed in the environment where unlog-
gable non-deterministic events are generated together with loggable non-deterministic or
deterministic ones. The second experiment, indicated in Figures 18 and 19, is conducted



Electronics 2023, 12, 2702 16 of 19

in the environment where each process executes message send and receive events, using
deterministic processes only. Figures 16 and 17 present the FCoverhead and Executiontime
of the three protocols, LazyHMNR, S-CIC, and LightweightCIC, in executions where the
percentage of the unloggable non-deterministic events per process (UND) is 50% and the
number of processes is in the range of 12 to 24. In Figure 16, the FCoverhead is commonly
proportional to the number of processes. In particular, LightweightCIC results in the
lowest FCoverhead of the three protocols, and their relative differences become greatly higher
according to an increase in the number of processes. The reduction rates of FCoverhead of
LightweightCIC over LazyHMNR and S-CIC are in the range of 75.0% to 84.2% and 50.0%
to 56.0%, respectively. These outcomes tell us that although S-CIC attempts to lower the
number of forced checkpoints of LazyHMNR, it is much slower than LightweightCIC in
acquiring the most recent timestamp-related information of the next checkpoint of each
process when receiving messages. In Figure 17, we can identify that the Executiontime of
each protocol increases as the number of processes grows. Moreover, LazyHMNR has the
largest Executiontime because its excessive forced checkpointing overhead results in high
application execution time. In addition, S-CIC reduces the Executiontime of LazyHMNR
by lowering the overhead with the help of pessimistic message logging and determin-
ism detection mechanisms. However, it performs worse than LightweightCIC due to its
message logging overhead and the slowness of obtaining the most recent information for
decision making. The reduction rates of the Executiontime of LightweightCIC over its two
counterparts are in the range of 8.1% to 11.5% and 4.67% to 4.92%, in order.

Figure 16. FCoverhead of the three protocols in executions (UND = 50%).

Figures 18 and 19 depict the FCoverhead and Executiontime of the four protocols,
LazyHMNR, S-CIC, EsbmlCIC, and LightweightCIC, in executions where UND is 0%
and is in the same range of the number of processes as in Figures 16 and 17. In Figure 18,
LazyHMNR is greatly inferior to the others in terms of FCoverhead for the same reason as
mentioned in Figure 16. On the other hand, as all the executions include loggable events
only, S-CIC can considerably decrease the overhead of LazyHMNR by extending the recov-
erability of each process to the maximum. On the other hand, EsbmlCIC can also reduce
the overhead by collecting the up-to-date local clock of the next checkpoint of every other
process based on sender-based message logging earlier than the first two methods. How-
ever, LightweightCIC performs better than EsbmlCIC by intensifying the up-to-dateness of
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both clp and greaterp of each process p and speeding up their dissemination to others. The
reduction rates of FCoverhead of LightweightCIC over LazyHMNR, S-CIC, and EsbmlCIC are
in the range of 75.9% to 78.6%, 25.0% to 41.2%, and 12.5% to 17.6%, respectively. Figure 19
shows the same cause and effect relationship as stated in Figure 17, i.e., LightweightCIC
incurs the lowest Executiontime of all the protocols. In this figure, EsbmlCIC is the sec-
ond best in terms of Executiontime, but lags behind LightweightCIC because it not only
generates more than a few extra control messages but also greatly lengthens the latency
of message sending due to its behavioral feature. The reduction rates of Executiontime of
LightweightCIC over its three counterparts are in the range of 7.8% to 11.4%, 4.2% to 5.9%,
and 2.5% to 3.2%, in order.

Figure 17. Executiontime of the three protocols in executions (UND = 50%).

Figure 18. FCoverhead of the four protocols in executions (UND = 0%).
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Figure 19. Executiontime of the four protocols in executions (UND = 0%).

5. Conclusions

The proposed protocol LightweightCIC is designed to greatly reduced the forced
checkpointing frequency of each process and shorten the total execution time of distributed
applications by diversifying checkpoint timestamp-related information conveyance paths
and greatly increasing the velocity of their propagation. For this purpose, the protocol
enables each message receiver to piggyback information on the acknowledgment of each
application message and intensify the bilateral up-to-dateness of the information. This
behavioral feature can significantly elevate the accuracy of the awareness of situations in
which forced checkpointing is actually needed for useless checkpoint-free recovery. In
addition, it incurs no extra control messages and no message logging overhead while
significantly reducing the latency of message sending. To verify its scalability, we proved
that LightweightCIC takes fewer or the same number of forced checkpoints as HMNR [7].
Furthermore, the evaluation results in the previous section indicate the reduction rates of
FCoverhead and Executiontime of LightweightCIC over the previous methods are in the range
of 12.5% to 84.2% and 2.5% to 11.5%, in order. The overall outcome confirms our claim
that our protocol can reduce the number of unnecessary forced checkpoints taken to as
few as possible with its immediate update of the most recent checkpoint timestamp-related
information and swift dissemination actions of the information to others.
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