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Abstract: 5th-Generation (5G) and Time-Sensitive Networking (TSN) are regarded as competitive
new technologies for future industrial networks; 5G-TSN collaboration transmission has drawn
more attention because it can provide a guarantee of low-latency, ultra-reliable and deterministic
transmission for time-critical automation applications. However, the methodologies of resource
scheduling mechanisms in 5G and Time-Sensitive Networking (TSN) are quite different, which may
lead to an inefficient Quality of Service (QoS) guarantee for deterministic transmission across 5G and
TSN. Therefore, an efficient 5G-TSN joint scheduling algorithm based on Deep Deterministic Policy
Gradient (DDPG) is proposed and analyzed in this article. The proposed algorithm takes both 5G
radio channel information and the Gate Control List (GCL) state in the TSN domain into consideration,
aiming to provide a latency guarantee for time-triggered applications across 5G and TSN as well
as a throughput guarantee for video applications in 5G systems. The simulation results compare
the latency and throughput performance of the proposed joint scheduling algorithm with several
traditional 5G scheduling algorithms; meanwhile, several GCL setting methods are given to verify
the impacts on latency and throughput performance within the proposed algorithm. The simulation
results demonstrate that the proposed DDPG-based joint scheduling algorithm can significantly
enhance the multi-application-carrying capability of 5G-TSN collaboration architecture.

Keywords: 5G-TSN collaboration; joint resource scheduling; deep reinforcement learning; gate
control list

1. Introduction

With the evolution of cellular mobile communication technology, 5G ultra-reliable low
latency communication (uRLLC) is gradually being applied to factory automation fields
because of its excellent QoS guarantee [1]. Factory automation information is usually time-
sensitive and safety-critical, and is essential for the performance of automation systems,
so it requires carrying networks qualified with capabilities of low latency, high reliability
and deterministic guarantee. Therefore, the integration of 5G and factory automation
applications is creating new technical solutions for Industrial 4.0 while also introducing
more challenges to 5G.

Deterministic communication is usually fulfilled by assuring bounded latency and
low jitter for time-critical applications [2]. TSN is an Ethernet-based networking tech-
nology and is standardized in the IEEE 802.1 task group. With time synchronization
among bridges and stations, TSN proposes several traffic-shaping schemes based on a
Gate Control List (GCL) to send time-critical applications at a precise point in time, and
this time-triggered scheduling paradigm can provide a bounded latency guarantee for
time-critical applications regardless of other ongoing flows competing for the same network
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resources simultaneously [3]. In order to promote the deterministic transmission capability
of 5G, 3GPP has introduced TSN to integrate with 5G systems (5GSs) in Release 16 [4].
According to 3GPP specifications, a set of new functionalities has been incorporated into
5GS architecture to connect TSN with 5G in both control and data planes. There are two
main scenarios of integration between 5GS and TSN: one is 5GSs as a TSN bridge entity
and the other is using TSN in 5G Xhaul networks (e.g., fronthaul, midhaul and backhaul).

The 3GPP Release 16 proposes an integration framework for 5G-TSN as well as new
5G function entities in both control and data planes to support TSN protocols. However,
5G and TSN are completely different networking methodologies in terms of physical layer
techniques, MAC schemes and upper layer protocols. Therefore, how to guarantee time-
critical communication services transmission across 5G and TSN has become a hot topic [5].
It requires making a resource allocation decision in 5G gNB dynamically based on GCL
status. However, to the best of the authors’ knowledge, limited literature addresses the
resource scheduling of 5G radio access networks taking into consideration TSN scheduling.

The remainder of this article is organized as follows. In Section 2, we first overview
the relevant TSN scheduling scheme, and give a detailed description of architecture and
related research works about resource scheduling schemes in 5G-TSN integration networks.
In Sections 3 and 4, we explain the system model and formulate and analyze the optimal
problem. Then a joint resource scheduling algorithm based on DDPG and corresponding
simulation results are described in Sections 5 and 6. Finally, this article is concluded
in Section 7.

2. Related Work
2.1. Overview of TSN Scheduling Schemes

Standardization within the IEEE 802.1 TSN task group (TG) enables Ethernet-based
networks to be reliable real-time communication networks, which can satisfy the demands
of multiple time-critical and non-time-critical applications simultaneously. TSN standards
define mechanisms in the aspects of time synchronization, bounded low latency, reliability
and resource management to provide deterministic services in local areas. TSN scheduling
schemes play an important role in bounded latency, such as Time-Aware Shaping (TAS) de-
fined in IEEE 802.1Qbv, Cyclic Queueing and Forwarding (CQF) defined in IEEE 802.1Qch,
Frame Preemption (FP) defined in IEEE 802.1Qbu, and Asynchronous Traffic Shaper (ATS)
defined in IEEE 802.1Qcr. Among these TSN scheduling schemes, TAS is widely used
for industrial scenarios due to its technological maturity and “no-waiting” scheduling
character. Therefore, the TSN scheduling method considered in this article is based on TAS.
More details on the standardization efforts of IEEE 802.1 TSN TG can be found in [6,7].

As shown in Figure 1, different applications are mapped into various priority queues
in the egress of TSN switches; meanwhile, based on time synchronization achieved among
devices, TAS adopts a time-triggered gate mechanism to enable (OPEN) or disable (CLOSE)
transmission states of priority queues. Furthermore, GCL is used to set the gate state and
accurate eligible transmission period of each priority queue, aiming to decide when and
how many frames are selected for transmission.
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The GCL of each export in the switch is usually pre-configured and operated circu-
larly, so the TAS can transmit frames based on a precise time. Furthermore, the eligible
transmission period defined by GCL determines the amount of network resources that can
be used for each queue, which regulates the transmission rate of each queue. With GCL
settings, the higher priority applications, such as industrial control or real-time multime-
dia, are separated from other non-time-critical applications with lower priority and can
achieve dedicated time slots for transmission. Therefore, TAS can provide a deterministic
behavior that enables predicable and reliable communication over Ethernet for time-critical
applications as well as meeting QoS requirements for other non-real-time applications.

2.2. 5G-TSN Integration Architecture

In order to support TSN protocols smoothly, several function entities are defined in
5G systems in both control and data planes, and the whole 5GS is exposed as a TSN bridge,
which is indicated in Figure 2. In this article, we delve into a 5G-TSN joint scheduling
algorithm under this 5G TSN bridge architecture.
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Centralized User Configuration (CUC) and Centralized Network Configuration (CNC)
are two key elements in the TSN domain for service management and network controlling.
CUC is responsible for service requirement collection and TSN capability discovery for end
stations, while CNC acts as a network controller, which takes responsibility for network
topology discovery, transmission path selection and GCL orchestration.

In order to keep signaling interworking with CNC, a new TSN Application Function
(TSN-AF) is proposed in the 5G control plane. TSN-AF follows IEEE 802.1Qcc, reports
information of the 5G TSN bridge to the CNC; meanwhile, it receives the service information
(period, flow direction, packet, etc.) and QoS requirements of time-triggered applications
from CNC. Then TSN-AF delivers QoS-related information received from the TSN domain
to the Policy Control Function (PCF) in the 5G core network to make appropriate QoS
profiles in 5GSs.

In the data plane, a Network-side TSN Translator (NW-TT) and a Device-side TSN
Translator (DS-TT) act as 5G-TSN gateways to execute protocol translation and data for-
warding between TSN and 5G domains. NW-TT and DS-TT monitor the time-triggered
application status and report to the TSN-AF; meanwhile, they also receive configuration
information from the CNC delivered through TSN-AF. In NW-TT and DS-TT, TAS is
adopted for flow management and resource scheduling. As a result, data forwarding from
NW-TT or DS-TT is based on a precise time, which can eliminate large delay jitter for
time-triggered applications.

2.3. Related Research on 5G-TSN

Scheduling time-critical applications in a 5G or TSN network is challenging, and it
becomes even more difficult in the complicated scenarios of 5G-TSN integrated networks.
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Currently, a few works mainly pay more attention to how to meet latency demands of
time-critical applications using uRLLC in 5G wireless networks.

Particularly to satisfy the strict latency requirements of time-critical applications,
uRLLC has specified a mini-slot with durations of 0.125~0.25 ms to reduce scheduling
delay for those applications. This is different from standard slot level access to radio
resources for eMBB applications which has slot durations of 1 ms or more [8]. Reference [9]
discusses QoS requirements for uRLLC applications and also proposes various methods to
share radio resources among uRLLC and other application types. Reference [10] studies
resource allocation schemes to maximize admissible uRLLC loads with associated latency
constraints and the influence of retransmission schemes on uRLLC capacity.

Furthermore, there are a few other works addressing how to meet QoS constraints
of uRLLC via preemptive puncturing of resources assigned for eMBB flows in multiple-
application coexistence scenarios; preemption-based methods allow time-critical appli-
cations to interrupt ongoing non-time-critical transmissions, which is appropriate for
transmitting urgent frames. Reference [11] studies a linear rate loss model for uRLLC pre-
emptive overlap to maximize the utility of eMBB applications while immediately satisfying
latency demands of uRLLC. Reference [12] proposes an RAN slicing method to meet the
delay demand of deterministic applications through resource reservation and preemption.

Currently, reinforcement learning has been widely used for wireless resource schedul-
ing problems [13]. In [14], a deep reinforcement learning algorithm is proposed to solve the
channel allocation problem of a multi-beam satellite system, which effectively improved
the spectrum resource efficiency and system capacity. Furthermore, some studies have
paid attention to frequency resource allocation with reinforcement learning. In [15], an
algorithm based on DDPG is proposed for 5G frequency allocation, which can guarantee a
low bit-error rate and low latency for packet transmission, but this literature only considers
a single application type, which makes the optimization problem easier and is not appro-
priate for actual network operation. In [16], a joint scheduling method based on DDPG is
proposed to achieve a long-term QoS tradeoff between eMBB and URLLC services.

However, all the above works only focus on dynamic scheduling schemes in 5GSs to
provide low latency and reliable transmission guarantees for time-critical applications in
5G, and never take the influences of TSN scheduling or TSN features into consideration.

Reference [17] introduces 5G-TSN developments in 3GPP standardization and identi-
fies open issues in future research, such as time synchronization, session continuity and
scheduling. In [18], a simulation model based on OMNet++ is addressed, including trans-
mission procedures in 5G-TSN and analysis of several simulation results to prove that
5G-TSN can provide bounded latency for time-sensitive applications, but no joint schedul-
ing scheme is proposed. Reference [19] takes both TSN shaping and 5G radio resource
scheduling into consideration; the network constraints in the TSN and 5G domains are
described, respectively, and the semi-persistent scheduling mechanism is adopted in 5GSs,
which means that the 5G resources in each TTI for time-triggered applications are prede-
fined. The problem in this work is formulated as multi-objects optimization to minimize
the resource loss rate (the ratio of unused and total resources in 5G and TSN, respectively),
subject to the deadline constraints of time-triggered applications and resources constraints
in both 5G and TSN, and finally constraint programming is applied to determine feasible
scheduling solutions. In [20], the authors present a system-level simulator integrated with
5G and TSN, and then investigate the impacts of GCL setting in TSN (consecutive transmis-
sion or uniformly distributed transmission) and radio channel quality of 5G on end-to-end
latency of time-triggered applications and system throughput, but this work does not
present any dynamic joint scheduling schemes. In [21], the authors propose a 5G-TSN joint
scheduling mechanism based on radio channel information; the TSN scheduling considers
the impacts of channel quality in 5G, and the flows bearing on radio channels with worse
quality could be processed as priority. A transmission time budget in 5GSs is proposed,
considering the maximum retransmission times in the correspondence channel quality, and
this time budget in 5GSs is set as the constraints for scheduling. However, this work still
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does not research dynamic 5G scheduling considering TSN shaping state. Reference [22]
investigates how to achieve low-latency communication in a 5G-TSN integration network
by considering non-real-time communication services with high-throughput requirements,
and a two-step approach is proposed to solve the resource allocation problem and develop
priority metrics for the TSN and eMBB streams according to their characteristics, respec-
tively. However, this work also only considers 5G scheduling with latency constraints of
time-triggered applications, and does not consider the impacts of TSN scheduling on 5G
resource allocations. Reference [23] makes use of the network function virtualization (NFV)
technique to implement QoS-aware mapping and scheduling in 5G-TSN networks; it first
designs an incremental greedy algorithm to map VNFs to resources of 5G and TSN, and
develops a preemption-based 5G resource scheduling scheme to offer no-wait transmis-
sion for higher priority applications. This work mainly focuses on the dynamic priority
configuration, which aims to improve the resource preemption capability for time-critical
applications in both 5G and TSN domains. However, this work does not pay attention to
the collaboration of 5G and TSN scheduling schemes, and the 5G scheduling scheme is
related in too simple a manner.

The above related research status on 5G dynamical scheduling and 5G-TSN resource
allocation indicates that there is limited literature taking both 5G and TSN resource schedul-
ing states into consideration. Therefore, a dynamic 5G-TSN joint scheduling algorithm is
studied in this article; the proposed algorithm takes GCL setting status, features of multiple
applications, available resources and radio channel quality in 5G into consideration, and the
object of the optimization is to satisfy the latency requirements for time-critical application
across 5G-TSN as well as to guarantee throughput requirements for other applications
in 5GSs. Considering the optimization problem of 5G-TSN joint scheduling is more com-
plex and cannot be solved with the convex optimization method directly; a reinforcement
learning model is proposed to learn the optimal resource allocation policy from complex
network environments.

3. System Model and Problem Formulation
3.1. System Model

Usually, there are several applications transmitted simultaneously in industrial net-
works, such as video monitoring, data collections from Programmable Logical Controller
(PLC) and control information among PLCs or between PLCs to field devices. In our system
model, the industrial network is composed of 5G and TSN, and applications are separated
into two categories: time-triggered applications and video applications, which are de-
noted as Ftt and Fvi, respectively. The active applications in the 5G system are denoted as
i = {1, 2, 3, . . . , N} (i ∈ F, F ≡ Ftt ∪ Fvi).

Furthermore, 5G-TSN industrial networks should satisfy various QoS requirements
for different applications, such as end-to-end maximum latency requirements (EMLR) for
both time-triggered and video, and minimum data rate requirements for video. The QoS
requirements for various applications are described as follows:

di < dqos
i , i ∈ F (1)

Rj ≥ Rmin
j , j ∈ Fvi (2)

where di is the queueing delay and transmission delay in a 5G system of the ith active flow,
and dqos

i is the latency requirement of the corresponding flow. Rj denotes the average data
rate achieved by the jth video flow, and Rmin

j denotes the minimal throughput requirement
of the corresponding video flow.

Figure 3 illustrates the procedures of 5G and TSN joint scheduling for downlink
data transmission based on an artificial intelligence agent, where the agent is a logical
entity in gNB to make dynamic resource scheduling decisions in each Time Transmission



Electronics 2023, 12, 2686 6 of 18

Interval (TTI); the agent can learn from the environment and make the appropriate “action”.
Detailed procedures are described as follows.
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Figure 3. System model of joint scheduling in 5G-TSN architecture.

Step 1: Environment information collection. At the beginning of each TTI, environ-
mental information is collected by an agent. The environment information includes the
radio channel quality of each User Equipment (UE), the GCL state of the time-triggered
queue in DS-TT, and the queue state of each activate flow in gNB, such as queueing packet
number and queueing delay of each flow. The agent is physically located in the gNB, and is
responsible for environment information collection, so the queue state in gNB is delivered
to the agent with an internal interface, but the channel quality and GCL state should be
reported from the UE to the agent using radio signaling.

Step 2: Decision-making and configuration. Packets of all applications are buffered
for downlink scheduling in 5G gNB. Based on information collected from UEs, gNB
and DS-TT, the agent makes decisions depending on the number of packets waiting for
transmission, service priority, obtained average data rates, queueing time and deadline of
the flow, and selects which flow can be scheduled and how many resources are allocated
for packet delivery. After resource decision-making, the corresponding allocated resources
are configured for packet delivery of each eligible flow. To avoid impacting the scheduling
in the next TTI, resource decision-making, configuration and packet delivery with allocated
resources should be implemented in a TTI.

After the agent allocates the radio resources for the corresponding flow, the environ-
ment, including GCL state in DS-TT, queue state in gNB and channel state of the user
terminal, will be changed, and the agent will learn all these new states and make the
appropriate action in the next TTI, which means that step 1 and step 2 will be executed
cyclically in each TTI.

Furthermore, the GCL pre-defined in DS-TT is demonstrated in Figure 3; the packets
of time-triggered flows are mapped into queue 7 in DS-TT, and the promised transmission
duration for the time-triggered queue is 1 TTI, which means that the ON/OFF state is
changed alternately in each TTI.
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3.2. Problem Formulation

For a time-triggered application, its QoS requirement is to satisfy end-to-end latency;
meanwhile, the QoS requirement of video is to guarantee transmission rate. Therefore,
the agent, acting as a scheduler, aims to achieve a QoS tradeoff between time-triggered
and video applications by jointly optimizing radio resource allocation. In this article, the
purpose of scheduling is to provide a solid latency guarantee for time-triggered applications
as well as to improve the throughput for video. In order to achieve this goal, the utility
function of flow i at the tth TTI is defined as follows.

Ui(t) =
pi(t)

dqos
i − dgnb

i + Ids−tt(t) + ∆
(3)

where pi(t) is the resource allocation indicator of flow i at the tth TTI. pi(t) ∈ {0, 1},
pi(t) = 1 denotes the flow i has been scheduled at this TTI; otherwise, pi(t)= 0. dqos

i

and dgnb
i are the EMLR and queueing and processing delay in gNB of flow i, respectively.

Moreover, Ids−tt(t) is a latency factor related to the GCL state in DS-TT. GCL(t) = 1
means that the GCL is OPEN for time-triggered queues in DS-TT at the tth TTI; otherwise,
GCL(t) = 0. As shown in Equation (4), this indicates that Ids−tt(t) only affects the utility
value of time-triggered applications. Finally, in order to keep the utility function stable, a
small positive constant ∆ is introduced.

Ids−tt(t) =
{

0, ∀i ∈ Fvi or ∀i ∈ Ftt and GCL(t) = 1
1, ∀i ∈ Ftt and GCL(t) = 0

(4)

As discussed in Equation (2), the video flow is concerned more with the average
throughput, and the average throughput of any video flow j is defined as follows.

Rj =

t
∑

k=1
nk

j ·mk
j

t · TTTI
(5)

This assumes that the scheduling is starting from the first TTI, and the period of each
TTI is TTTI . nk

j represents the allocated Resource Blocks (RBs) for video flow j at the kth TTI,

and mk
j is the bit volume per RB, which depends on the radio channel quality of flow j at

the kth TTI.
In each TTI, the available resources are finite, so the resources allocated to all active

flows should not be larger than the available resources in gNB, which are described as

N

∑
i=1

pi(t)•nt
i ≤ κt, i ∈ F (6)

where κt represents the available RBs at the tth TTI.
As discussed above, the object of 5G-TSN joint scheduling is to ensure end-to-end

latency requirements for time-triggered flows as well as to improve the overall throughput
of video applications in each TTI. The optimization problem is formulated as follows:

max
N

∑
i=1

Ui(t) (7)

subject to Equations (1), (2) and (6).
Based on Equation (3), it can be found that the problem described in Equation (7) is

a non-convex function with integer and continuous variables, which is computationally
complex. Therefore, a reinforcement learning model is proposed to achieve the optimal
resource allocation policy following Equation (7).
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4. Markov Decision Process Modelling

Reinforcement learning is a sequential decision process: it takes an action based on
the state of the current environment, and then the environment generates an instantaneous
reward and moves to a new state with a transition probability. It attempts to achieve an
optimal policy, which can maximize the accumulated rewards from the environment [24].

A Markov Decision Process (MDP) provides a mathematical framework for reinforce-
ment learning [25], and a MDP model is usually composed by state space S, action space A,
instantaneous reward γ and transition probability P, which are represented mathematically
by the tuple (S, A, P, γ). As a result, we should provide an appropriate MDP model for the
problem formulated in Equation (7).

4.1. State Space

Usually, the state is an abstraction of the current environment, and the agent acts as
an intelligent decision-maker, and makes decisions only according to the state observed
from the environment. In this article, the agent makes scheduling and resource allocation
decisions based on the state of each application queue in gNB, channel quality of each
UE and GCL setting for a time-triggered queue in DS-TT. Therefore, the state space S is
defined as:

S =
{

G, L, D , ITT
GCL

}
(8)

Vector G denotes the radio channel quality of all activate flows in a 5G system. Vectors
L and D indicate the queueing packet number and queueing delay of each flow in 5G
gNB, respectively. Meanwhile, variable ITT

GCL ∈ {0, 1} denotes the GCL state in DS-TT for
a time-triggered application, ITT

GCL = 1 means the GCL state of a time-triggered queue in
DS-TT is “OPEN” and ITS

GCL = 0 means “CLOSED” correspondingly.
In order to facilitate the training process of neural networks, some simplification and

normalization works are made for the elements in state space. Generally, the Signal-to-
Interference-and-Noise Ratio (SINR) denotes the radio channel quality. However, the value
of the SINR is consecutive and not suitable for training; it is preferable to choose the discrete
variables with a finite value as the environment state. Therefore, we translate the SINR to
the required RB numbers of flow i in each TTI. As shown in Equation (9), the maximum
bits that can be transmitted in one RB is calculated [10].

mi = B log2(1 + gi)−Q−1(ε)
√

V(gi) (9)

where ε is the tolerable bit error rate, Q−1(ε) = 1√
2π

∫ ∞
ε e−

t2
2 dt, V(gi) = (log2(e))

2(
1− 1

(1+gi)
2

)
, and B is the frequency bandwidth of one RB. According to Equation (9), the

required RB numbers of flow i can be obtained from Equation (10).

rexpt
i =

si × li
mi
∀i ∈ F, li ∈ L (10)

where rexpt
i indicates the required RB numbers of flow i; si and li are the packet size and

packet number in the queue of flow i, respectively. Then, the radio channel state G can be
replaced by the required RB numbers of all flows denoted as Rexpt. Furthermore, in order
to reflect the relationship between queueing delay in gNB and EMLR, di ∈ D is normalized
as follows,

dnor
i =

dgnb
i

dqos
i

(11)

Finally, the state space can be expressed as

S =
{

Rexpt, L, Dnor, ITT
GCL

}
(12)
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4.2. Action Space

If the output action of the agent is the required RB numbers of each flow, it may lead
to a high-dimension action space, which is computationally complex and not conducive
to model training. Therefore, the action space is limited to binary, where “1” means the
corresponding flow is scheduled in the current TTI, otherwise the output action is set to
“0”. Then the reinforcement learning model only needs to output whether to schedule the
corresponding flow. As a result, the action space is defined as follows.

A = {pi}N∗1 pi ∈ {0, 1}, i ∈ F (13)

However, the output action does not consider the available RB amount in the tth TTI;
the actual allocated resources for each flow are recalculated with the following formula.

ract
i =


pi · r

expt
i

N
∑

i=1
pi · r

expt
i

∗ κt

 (14)

4.3. Reward Function Design

For reinforcement learning, the agent observes the current environment and selects an
action, and then the environment moves to the next state and the agent receives a reward
value simultaneously. The reward is very important, because the reward is the quantitative
description of the optimization goal for the reinforcement learning mode, which can guide
the agent to learn a better policy.

The optimization goal of the proposed scheduling algorithm in 5G-TSN architecture is
to provide a latency guarantee for time-triggered flows as well as to improve throughput
of video flows. Hence, the reward function is designed as follows.

ψt(γi) =


(1 + λ1) ∗ γi i ∈ Ftt and GCL(t) = 1
(1− λ2) ∗ γi i ∈ Ftt and GCL(t) = 0

γi i ∈ Fvi

(15)

γi =

{ 1
dqos

i −dgnb
i +∆

Ri ≥ Rmin
i , i ∈ Fvi or i ∈ Ftt

0 Ri < Rmin
i , i ∈ Fvi

(16)

In Equation (15), ψt(γi) is the reward function, which adopts the formulation of the
potential function; it takes the GCL state at the tth TTI into consideration for time-triggered
applications. As shown in Figure 4, in order to reflect the relationship between queueing
delay of time-triggered flow in gNB and reward, λ is introduced as a self-adaption factor
to adjust the reward. First of all, the rewards are different for the gated open and closed
states. Therefore, λ1 and λ2 are introduced to adjust the reward value in different states.
In addition, when the dgnb

i of the time-triggered flow at the base station is close to dqos
i ,

the reward value of scheduling the flow will be larger. Therefore, λ1 will increase with an
increase in dgnb

i , and λ2 is the opposite. The purpose of the reward function setting has
two aspects: the first is encouraging time-triggered applications to be scheduled near the
latency deadline, which leaves more opportunities for video flow transmission. The second
is trying to schedule time-triggered flows when the GCL state of the time-triggered queue
in DS-TT is “ON” as much as possible.

Equation (16) defines the basic reward expression for both time-triggered and video
applications. We can see that when the queueing delay is closer to the EMLR, more
reward value may be achieved. Furthermore, the throughput constraint of video flows
is also considered in Equation (16); if the throughput of video flow cannot satisfy the
minimum threshold, the reward value is set to zero, which aims to train the agent to
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avoid making scheduling decisions leading to exceeding latency requirements during the
training procedure.
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5. DDPG-Based Resource Scheduling Algorithm

Based on the above elaboration, we have designed an MDP model with the appropriate
state space, action space and reward function according to the optimization problem
described in Equation (17) with constraints in Equations (1), (2) and (6). Utilizing the
reinforcement learning model for resource scheduling, the best policy achieved from the
training process can maximize the expected reward value, which is defined as follows.

A∗t = argmax
At

L

∑
k=t+1

N

∑
i=1

ψk(γi) (17)

In DQN, the general output consists of multiple dimensions of Q-values for each
action. For example, when scheduling users, it outputs Q-values for both scheduling and
not scheduling each user. However, DDPG combines the advantages of both policy-based
and value-based methods. The actor network in DDPG learns a deterministic policy that
directly maps states to actions, allowing for fine-grained control and explicit action outputs.
In the case of scheduling users, it can directly output the actions for each individual user.
Therefore, in this section, a DDPG-based resource scheduling algorithm is proposed to
achieve the optimal action from the above formula, which is more suitable for multi-
user tasks.

DDPG includes two neural networks: the actor network is denoted as π(S; Θ), which
takes the state S as input and outputs actions A. The critic network is denoted as Q(S,A; W),
and it takes the state S and actions A as inputs and outputs the evaluation Q-value of
actions A. Besides this, Θ and W indicate the parameters of the actor and critic networks,
respectively.

The training process of DDPG is to make the actor achieve an action maximizing the
approximate Q-value given by the critic network, as well as to make the critic evaluate
an approximate Q-value for the actions learnt from the actor closer to the true Q-value
calculated by the Bellman Equation in Equation (18).

Qtrue
t = ψt(γi) + µQt+1 (18)

where µ is the discount factor.
Once the number of transition sets (St,At, ψt(γi), St+1) meets the training require-

ments, the parameters of the actor and critic networks are updated according to
Equations (19)–(23).
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The critic calculates Qt of action At in state St:

Qt = Q(St,At; W) (19)

The critic ranks the Qt+1 of the state St+1 and action At+1:

Qt+1 = Q(St+1,At+1; W), where At+1 = π(St+1; Θ) (20)

Calculation loss is defined as the difference between true Q-value and predicted
Q-value by the critic with Equation (20):

δt = Qt −Qtrue
t (21)

Then the critic parameters are updated using gradient descent:

W = W− α ∗ δt ∗
∂Q(St,At; W)

∂W
(22)

The goal of the actor network is to achieve an action-maximizing approximate Qt
given by the critic network. Since At = π(St; Θ), Equation (23) is obtained to calculate the
gradient of parameter Θ by the chain rule,

∇ =
∂Q(St,At; W)

∂Θ
=

∂π(St; Θ)

∂Θ
∗ ∂Q(St,At; W)

∂At
(23)

Then the actor parameters are updated with gradient ascent:

Θ = Θ + β ∗ ∇ (24)

The specific process of training the resource allocation model based on DDPG is shown
in Algorithm 1.

Algorithm 1: Resource scheduling based on DDPG

1. Initialize the channel model parameters and DDPG model parameters
2. For episode = 1, 2, . . . E do
3. Initialize the packet model parameters
4. For t = 1, 2, . . . Step do
5. Given the current state St.
6. Get action At from π(St; Θ).//determine which flows are scheduled in this TTI
7. Calculate the numbers of allocated RB for each scheduled flow with Equation (14).
8. Execute the At and allocate RB numbers got in step 7 and get reward ψ(γi) with Equation (15).
9. Transit to the next state St+1.//After an action execution, the environment state will be updated
10. Store (St,At, ψ(γi), St+1 ).//this message is stored for DDPG model training
11. Trainset num+ = 1.//calculate the size of train set
12. if train set num > min trainset num do//When the size of the training set meets the training conditions, it begins to

train the model.
13. Qt = Q(St,At; W)//calculate Qt of action At in state St
14. Qt+1 = Q(St+1,At+1; W)//Output the Qt+1 with the state St+1 and action At+1.
15. δt = Qt − (rt + ψ(γi) ∗Qt+1)//Get the calculation loss

16. W = W− α ∗ δt ∗ ∂Q(St ,At ;W)
∂W //update the critic parameters using gradient descent

17. ∇ =
∂π(St ;Θ)

∂Θ
∗ ∂Q(St ,At ;W)

∂At

18. Θ = Θ + β ∗ ∇//update the actor parameters with gradient ascent
19. do end
20. For end
21. For end
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6. Results
6.1. Simulation Parameters

In this section, several parameters are list in Table 1 for simulation. As for the flow
model, it is assumed that the packet burst obeys a 0–1 distribution, which represents
whether the new packets are produced within each TTI. According to 3GPP TS 22.104, time-
sensitive applications always have small packets, but video streams always generate large
packets, so the packet size of time-triggered flows and video streams are set to 200 Bytes
and 800 Bytes, respectively. The EMLR of time-triggered applications and the deadline of
video flow are 6 ms and 20 ms, respectively. The 5G radio channel model follows a Rayleigh
distribution with a standard deviation of 1.0, and the distance between gNB and mobile
terminal should increase or decrease according to a 0–1 distribution [26]. In addition, the
transmission power of the base station is 20 dbm, and the noise power of the channel is
−90 dbm. κt indicates total resource bands. The subcarrier interval used in this paper is
15 kHz, indicating that the scheduling cycle interval is 1 ms. ∆ is a small positive constant
in Equation (3). Rmin

j indicates the minimal throughput requirement of the corresponding
video flow in Equation (4).

Table 1. Simulation parameters.

The probability of packets arriving within each TTI 0.5

The number of packets arriving within each TTI The number is valued from 1–3, followed by a uniform distribution

Time-triggered application packet size 200 Bytes

Video flow packet size 800 Bytes

gNB transmission power 20 dBm

Channel noise power −90 dBm

κt 100

Subcarrier interval 15 kHz

∆ 0.1

EMLR of time-triggered application (dqos
i ) 6 ms

Deadline of video flow 20 ms

λmax 0.2

β 0.01

α 0.01

Rmin
j , j ∈ Fvi 80,000 Bytes per second

Discount factor µ 0.9

min trainset num 800

In order to improve the learning rate and convergence rate, the structure of the neural
network is designed as in Table 2. Both actor and critic have two hidden layers, and
each hidden layer consists of a fully connected layer, a RELU activation function and a
normalization layer (LN). LN is used to address the problem that the distribution of output
data changes with the updating of neuron parameters [27]. Moreover, α and β indicate the
learning rates for actor and critic, respectively. µ is the discount factor in Equation (18).

6.2. Results Analysis and Discussion

The convergence speed of the proposed model and the final stable reward value are
very important for the reinforcement learning model. In order to accelerate the model con-
vergence process and increase the reward value, several DDPG model related parameters
are fine-tuned, including learning rate, model structure and other hyperparameters.
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Table 2. Network parameters.

Layers Actor Network Critic Network

Input layer

Fully connected layer (40 × 400)

Rectified Linear Unit (Relu) nonlinear activation function

Normalization layer

Hidden layer

Fully connected layer (400 × 400)

Relu nonlinear activation function

Normalization layer

Output layer
Fully connected layer (400,10) Fully connected layer (400,1)

Tanh nonlinear activation function ——

As shown in Figure 5, we optimize model training process by adjusting the learning
rate, using layer normalization and reshaping the reward function with Equation (15).
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As shown in Figure 5, the DDPG model without optimization has serious oscillation
during training, because the learning rate and the step size are too large. When the learning
rate is reduced from 0.1 to 0.01, it alleviates the problem of model oscillation. In addition,
we can see that the reward value appears to decrease during the model training process
when there is no layer normalization, because the distribution of input data may change
continuously due to parameters updating, which leads to less optimal model training.
Therefore, layer normalization is introduced for model training, which makes the reward
value of the DDPT model increase markedly. Finally, the potential function is adopted for
reward function, which makes the convergence process faster and the final obtained stable
reward value larger.

In order to compare 5G system performance under various scheduling algorithms,
Proportional Fairness (PF) and Earliest Deadline First (EDF) are used for resource allo-
cation in 5G-TSN cooperation architecture. PF and EDF are commonly used scheduling
algorithms in 4G and 5G. PF ensures that all applications have the opportunity to be
scheduled. To some extent, PF can provide a throughput guarantee for the required
flows. EDF is a classical scheduling for time-sensitive applications. For the algorithm
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proposed in this article, the objective is to provide latency guarantee for time-triggered
flows as well as to provide throughput guarantee for video flows, so we take these two
schemes as a benchmark to compare the latency and throughput performance with the
proposed algorithm.

As shown in Figures 6 and 7, DDPG with a potential function reward is compared
with DDPG without a potential function reward, EDF and PF. For DDPG with a potential
function reward and without a potential function reward, we use the bootstrap method to
estimate the delay and throughput of 95% confidence interval. The specific practice is to
generate multiple samples from the forecast result data with resamples, and then calculate
the 95% confidence interval indicators based on these resamples.
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As indicated in Figure 6, EDF achieves the best performance for time-triggered applica-
tions, because the EMLR of video is quite a lot more than that of time-triggered applications;
then, the latency of time-triggered applications is closer to the deadline, so time-triggered
applications can achieve the highest priority for scheduling. However, the PF algorithm is
concerned more with the achieved data rate, but does not pay more attention to latency
guarantee. Hence, the 5G system latency with PF increases with an increase in terminal
number (|Ftt| : |Fvi| = 1 : 1), and the 5G system latency even exceeds the EMLR 6ms when
the terminal number reaches 16. The time-triggered application latency of DDPG without
potential function reward can remain stable at around 4.5 ms, because it can achieve a larger
reward value when the queueing delay is 4.5 ms. However, the time-triggered application
latency of DDPG with potential function reward almost remains stable at around 4 ms,
because the potential function not only considers the queueing time as an impact factor
on the reward value, but also takes the gating state of the time-triggered queue in DS-TT
into account.

Unlike the time-triggered application, video is more concerned with the throughput.
Figure 7 shows system throughput performance under the multi-application coexisting
scenario. EDF prefers to schedule time-triggered applications, which means fewer available
resources for video flow. Therefore, the throughput with EDF declines with an increase
in terminal number. However, for DDPG without potential function reward, DDPG with
potential function reward and PF-based scheduling algorithms, the throughput rises with
an increase in terminal number. Because of the designed reward function, the DDPG-based
scheduling algorithm provides more schedule opportunities for video flows with relaxed
latency requirements for time-triggered applications, so the DDPG potential function
reward achieves the best performance and improves by nearly 0.05% throughput compared
with PF and by 0.01% throughput compared with DDPG without potential function reward.
Generally speaking, the proposed algorithm is more versatile and can achieve better balance
between various QoS guarantees in multi-application scenarios compared to EDF and PF.

In addition, in order to fully consider the impact of different GCL setting schemes in
DS-TT on 5G scheduling, three different GCL setting schemes in DS-TT are evaluated. The
first GCL setting scheme for time-triggered queues remains “ON” in one TTI and changes
to “CLOSE” in next TTI; the time during the “ON” state for the time-triggered queue is
one TTI, and the first GCL setting scheme is represented as “0101”. As for the second GCL
setting scheme, the GCL state of the time-triggered queue changes every two TTIs, which
is represented as “0011”. Furthermore, in the third GCL setting scheme, the GCL state of
“ON” for the time-triggered queue is selected with probability 0.5, which is represented as
“random”.

Figures 8 and 9 show the latency and throughput performance of time-triggered
and video flows within three GCL setting schemes in DS-TT, respectively. The bootstrap
method is used to estimate the delay and throughput of the 95% confidence interval. As
shown in Figure 8, it indicates that various GCL setting schemes can achieve nearly similar
throughput performance, because the transmission opportunities of video in all three GCL
setting schemes are the same; meanwhile, the proposed DDPG algorithm can guarantee
throughput for video applications within various GCL setting schemes. However, the
different GCL setting schemes have various impacts on 5G latency. As indicated in Figure 9,
we can see that the first GCL setting scheme achieves the best latency performance of
time-triggered applications in various scenarios, because the GCL state is changed every
TTI interval, so the time-triggered applications can be scheduled in a timely manner, which
leads to less queueing delay in gNB.
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7. Conclusions and Future Works

In this article, a joint resource scheduling problem within 5G-TSN collaboration archi-
tecture in a multi-application scenario is formulated and discussed. In order to solve the
formulated problem efficiently and intelligently, a DDPG-based joint scheduling algorithm
is proposed, which aims to guarantee both latency requirements for time-triggered applica-
tions and throughput requirements for video applications. The proposed reinforcement
learning model combines latency requirement, throughput requirement and GCL state in
DS-TT to design a reward function, which can encourage the agent to learn an optimized
action during model training. Finally, the simulation results indicate that the proposed
reinforcement learning model is convergent and efficient. Meanwhile, compared with EDF
and PF scheduling algorithms at three different gate settings, the proposed DDPG-based
algorithm can achieve a stable latency guarantee for time-triggered applications, as well
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as improving the overall throughput for video. Furthermore, several different GCL set-
ting methods are proposed to verify the latency and performance within the proposed
DDPG-based joint scheduling algorithm; the more discrete GCL settings are more useful for
time-triggered applications. Generally speaking, the proposed DDPG-based joint schedul-
ing algorithm can provide solid QoS guarantee for multiple applications and achieve better
multi-application carrying capability in 5G-TSN collaboration architecture.

However, several key aspects are still not considered in this article. Firstly, the schedul-
ing problems of single base stations are mainly considered in this article, but in reality
there are more scenarios of multiple base stations; secondly, we only consider that the
radio channel quality affects the bits carried in one RB, but ignore the fact that a poor
radio channel also leads to packet loss, so no retransmission procedure is considered in
this algorithm. Finally, the proposed algorithm can only improve the throughput of video
applications, but cannot maximize the throughput of the whole system.

Therefore, in order to solve those problems, there are several aspects to be investigated
in the future. First, a 5G-TSN scheduling algorithm based on the multi-agent reinforcement
learning model needs to be studied for multiple base station scenarios; meanwhile, the
action space should be designed to be more complex. Second, the impact of a retransmission
scheme on resource allocation should be considered. Third, for current 5G-TSN joint
scheduling, we mainly investigate 5G scheduling considering TSN states, but in the future,
how 5G scheduling affects GCL settings in the TSN domain should be studied.
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