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Abstract: When doctors are fatigued, they often make diagnostic errors. Similarly, pharmacists
may also make mistakes in dispensing medication. Therefore, object segmentation plays a vital
role in many healthcare-related areas, such as symptom analysis in biomedical imaging and drug
classification. However, many traditional deep-learning algorithms use a single view of an image
for segmentation or classification. When the image is blurry or incomplete, these algorithms fail to
segment the pathological area or the shape of the drugs accurately, which can then affect subsequent
treatment plans. Consequently, we propose the Fuzzy DBNet, which combines the dual butterfly
network and the fuzzy ASPP in a deep-learning network and processes images from both sides of an
object simultaneously. Our experiments used multi-category pill and lung X-ray datasets for training.
The average Dice coefficient of our proposed model reached 95.05% in multi-pill segmentation and
97.05% in lung segmentation. The results showed that our proposed model outperformed other
state-of-the-art networks in both applications, demonstrating that our model can use multiple views
of an image to obtain image segmentation or identification.

Keywords: Fuzzy DBNet; butterfly network; pill; lung X-ray; anteroposterior; posteroanterior

1. Introduction

There have been numerous cases where image segmentation in medicine has been
implemented primarily because interpreting medical images from CT and MRI scans
requires substantial medical knowledge and time. In addition, statistics reveal that medical
errors contribute to the deaths of 7000–9000 people annually in the United States [1]. Hence,
to address these issues, several technological solutions have been proposed. For instance,
the U-Net developed by Ronneberger et al. [2] is used in the segmentation of biomedical
images. The DoubleU-Net employed by Debesh Jha et al. [3] is used in procedures such as
a colonoscopy. It is primarily built upon the U-Net and VGG-19, composed of two encoders
and decoders. Similarly, Chin et al. [4] use the Mask R-CNN deep learning algorithm to
segment the vocal cords and glottis regions from larynx videos, aiding doctors in diagnosis
and treatment.

Among lung image recognition, Jakub et al. pointed out that the results of X-ray images
of disease lesions are easily occluded by blood vessels. Though machine learning methods
for lung image recognition can help reduce the burden on medical personnel, their accuracy
is only 91% [5]. In addition, the deep-learning model for lung disease identification has
proven to be superior than traditional machine learning methods [6,7]. Therefore, we used
deep-learning for image recognition. In the case of pneumothorax thoracostomy, the doctor
needs to look at the chest X-ray image to find the translucent pleural line that overlaps
the ribs. Because this image is prone to blurring from tissue overlap, traditional image
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recognition is not effective [8], especially because air accumulates on the front side of the
body rather than at the top, making it difficult for doctors to interpreting pneumothorax
areas. Due to the fact that initial symptoms of many lung lesions are not obvious and lungs
have complex pathological characteristics [9], many scholars have proposed deep-learning
methods to improve diagnosis accuracy and efficiency [10]. Laura et al. [11] proposed a
complex network for lung image recognition, and their experiment showed a high accuracy
for texture recognition. Accordingly, a complex network method can extract important
features. Alhassan et al. [12] used the ensemble learning method to detect pneumonia
in chest X-ray images with an improved accuracy rate of 93%. Based on the ensemble-
learning characteristics, the method is used to improve model-identification accuracy.
Mohammad et al. [13] proposed a deep-learning model to aid early detection of COVID-19,
which helped medical staff reduce their workload. For lung image segmentation, Feidao
et al. [14] proposed a three-terminal attention mechanism to highlight the target area
automatically and improve the lung-segmentation performance. As a result, an attention-
gate module is used to improve the training effect of the model. However, these models
did not use chest X-ray images fully. There are two modes for taking lung X-ray images:
anteroposterior and posteroanterior. Anteroposterior lung X-rays are taken from the chest
cavity; posteroanterior lung X-rays are taken from the back. Existing deep-learning models
can only input one image at a time for recognition [15]. Therefore, the model may not be
able to identify the location of the lesion since only one side of the X-ray image is input [16].
Consequently, we used deep-learning methods for lung image identification.

Among pill image recognition, the majority of existing methods for classification rely
only on single-sided information, but in some cases, many types of pills cannot be classified.
For instance, the same type of pill may have different shapes when viewed from different
angles; some pills may have lettering on only one side; and those with similar shapes and
colors can also pose a challenge. In such cases, the model may not be able to classify a group
of pills accurately. Because of the pandemic, large numbers of people flock to hospitals
every day, leading to a substantial increase in pill usage and medical errors [17,18]. To
address these problems, Ou et al. [19] proposed a two-stage deep-learning architecture
for detecting and subsequently classifying 1000 types of pills. In addition, improving
medication knowledge and providing patients with adequate information has become
important issues for avoiding medication waste and harmful side effects [20]. However,
appearance-based pill identification remains a daunting task for patients. Wang et al. [21]
used the GoogLeNet Inception Network to train deep-learning architecture and image
enhancement techniques by focusing on color, shape, and markings, but it can only identify
a single type of pill, which is its big flaw. The simultaneous identification of multiple types
of pills can meet the needs of the public better. In the field of pill image segmentation,
Kwon et al. [22] used Mask R-CNN, and the training datasets they used contained only
27 types of pills, each of which had different shapes and colors. In reality, though, many
more types of pills have a similar appearance. To suit real-world needs, 93 types of pills
were used to train our model. They had similar shapes and colors and varied mainly
in different imprints, making our model more applicable to clinical needs. In pill object
detection, Lu et al. [23] proposed many object detection methods. Although these models
detected the position of pills, the map is only 87%. Additionally, previous scholars have
not effectively addressed issues in pill identification, including their random placement
and the presence of multiple pills in an image. The rotation angle of the pill is also difficult
to determine and standardize for each pill class.

For computer vision, other cases use unmanned aerial vehicles (UAVs) combined
with deep learning, Keiller et al. [24] studied plant classification from spatial and spectral
perspectives using RGB and spectral UAV images based on 2D-CNN technology.

Current methods for image segmentation mostly use a single image as input. When a
single low-quality image is input into the model, issues with imprecise object segmentation
and classification arise. In the medical field, due to the complex characteristics of images,
Akinobu et al. [25] proposed BtrflyNet to identify bone metastases, which can accept two
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input images simultaneously. The experimental results indicated that it can enhance the
success rate of model training. However, this model is only applicable to bone metastasis
images. Based on this paper, we improved the BtrflyNet to propose Fuzzy DBNet, which
has achieved excellent results in pill image and lung image recognition.

2. Materials and Methods
2.1. Datasets

In this paper, chest X-ray and pill datasets were used. Chest X-ray data were obtained
from the NIH chest X-ray dataset [26] containing 112,120 images, from which we extracted
72,324 of both the anteroposterior (AP) and posteroanterior (PA) views of the same patients.
We then paired the AP images with their corresponding PA images, resulting in a total of
267,105 AP–PA pairs after augmentation.

The pill dataset comprises 93 categories having a total of 1238 images: round, oval,
rectangular, triangular, and of different colors. To capture both sides of each pill, images
were taken after pills were scattered on a transparent board and photographed from directly
above and below. The dataset was then divided into 80% for training, 10% for testing and
10% for validation. To improve the model’s accuracy, we applied the AutoAugment
scheme [27] to discretize each operation magnitude (M) from [0, 10] for data augmentation,
resulting in an increased dataset of 2476 images.

The dataset was the most significant limitation to our model. First, our input images
had to be dual-sided, not only general images but also images that penetrated objects, such
as X-rays. Second, fixed correspondences of object positions in the images were required.
To address this, our team made efforts to align the positions of the pills between their
dual-sided images during the collection of the dataset.

It is important to note that the lung X-ray dataset used in this study was provided by
the NIH, while the pill dataset was captured by our team’s own photography.

2.2. Data Pre-Processing

To assist pharmacists in pill classification, 93 types of pills were annotated. We used
VGG image Annotator [28] to label each one with its name in 93 different categories. We
labeled the edge of the pill and converted the labeled data into a JSON file as the ground
truth of the training data. The pre-processing algorithm can be found in Algorithm A1.

2.3. Fuzzy DBNet

This paper proposes a new deep-learning architecture, Fuzzy Double-Butterfly Net-
work (DBNet), in which two images with complementary properties can be input to
perform image segmentation. It is mainly composed of three parts: double-butterfly
encoder–decoder architecture, Fuzzy Atrous Spatial Pyramid Pooling (ASPP) block and an
attention gate, as shown in Figure 1.

A pretrained VGG 19 was used to encode of the first butterfly architecture to extract
image features for saving training time and preventing overfitting. Between the two
butterfly-shaped encoders and decoders, there were two concatenate blocks that connected
two sets of Fuzzy ASPP blocks, thereby exchanging the different characteristics of the
images. Then, the initial result output by the first butterfly-shaped architecture was
multiplied with the original image as shown in the multiply block in Figure 1. This
enhanced the specific gravity of the feature to achieve a more precise segmentation. The
Fuzzy DBNet algorithm can be found in Algorithm A2.

Fuzzy ASPP combined ASPP with fuzzy theory and was placed between the en-
coder and decoder of the two butterfly-type networks. Figure 2 shows the structure of
Fuzzy ASPP.
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In the Fuzzy Pooling part, a bell-shaped membership function was used to complete
the operation, and the results of each pooling patch were dynamically adjusted. Algorithm
A3 shows the dynamic adjustment algorithm. The main purpose was to reduce the pro-
portion of the feature influenced by uncertainty factors. The Fuzzy ASPP algorithm can be
found in Algorithm A4.

In the skip connections, an attention mechanism was used to eliminate noisy and
irrelevant responses by using features extracted from coarser feature maps. It effectively
reduced noise and unnecessary features in the model and improved its performance and
accuracy. Figure 3 shows the structure of the attention gate.
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3. Result
3.1. Experiment Setting

The training validation and testing of the proposed model was done on a computer
with an 8-core CPU (Intel Xeon W-3223), 64 GB memory, a GPU (RTX 3090) with 24 GB
graphics memory, and 10,496 CUDA cores. Implementation was done using the PyTorch
framework. Table 1 shows the hyperparameters used for all experiments.

Table 1. Hyperparameters for training.

Hyperparameter Selected Value

Loss function LDC
Optimizer Adam

Learning rate 8× 10−5

Batch size 4
Epoch 500

The total loss function (LDC) combines of the averaged Dice Loss (LavgDice) with the
Categorical Cross-Entropy Loss (LCCE) and is calculated as follows:

LDC = LavgDice + LCCE (1)

LavgDice =

∑N
i=1 1−

2×∑ PNtrue×PNpred

∑ P2
Ntrue

+∑ P2
Npred

+ε

N
(2)

LCCE = − 1
N

N

∑
i=0

C

∑
c=0

Ppredc ·log(Ptruec) +
(

1− Ppredc

)
·log(1− Ptruec) (3)

where N is the number of samples and C is the number of classes. Since the output of the
network was multi-classes images, we calculated the LCCE using Equation (3). Then, we
calculated the LDice for each class using Equation (2). It was possible to zero out all pixels in
the Ppred that were not active in the Ptrue. For activated pixels, low-confidence predictions
were mostly penalized, while higher prediction values obtained higher Dice coefficients.
Therefore, the model learned objects of different classes and sizes through LDice and LCCE.

3.2. Performance Evaluation Index

In this study, we used three metrics to evaluate model performance: pixel-wise ac-
curacy, averaged Dice coefficient (Dice), and mean Intersection over Union (mIoU). These
indicators are shown in the following formula.
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Pixel−wise Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Dice =
1

k + 1

k

∑
i=0

2 ∗ |Xi ∩Yi|
|Xi|+ |Yi|

(5)

mIoU =
1

k + 1

k

∑
i=0

|Xi ∩Yi|
|Xi ∪Yi|

(6)

where Xi denotes the ground truth values, and Yi denotes the predicted values. The TP,
FP, TN, and FN depict the case numbers of true positives, false positives, true negatives,
and false negatives, respectively. Pixel-wise accuracy measured the percentage of correctly
identified pixels in the image; the Dice score measured the overlap between the predicted
segmentation and ground truth; and mIoU measured the predicted segmentation with the
ground truth. These metrics were chosen because they provided a comprehensive view of
the model’s performance and allowed for meaningful comparisons with other models in
the field. Higher values for these metrics indicated better model performance.

3.3. Segmentation of Lung X-ray Images

We conducted experiments to train the proposed method and validated the model
by using a validation set. As shown in Figure 4, the training loss of Fuzzy DBNet on the
lung X-ray dataset reached convergence at around the 100th epoch and achieved complete
convergence at approximately the 300th.
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On the lung X-ray dataset, we selected a set of images as examples for model testing.
It comprised six images: anterior–posterior and posteroanterior raw images, the corre-
sponding ground truth images and the segmented results. These images are displayed in
Figure 5.
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Figure 5. A patient’s lung: (a) anteroposterior and posteroanterior lung X-rays images, (b) their
corresponding ground truth images and (c) segmentation images.

We compared the outputs of Fuzzy DBNet and its ground truth on the testing data
using average Dice coefficient, mIoU and pixel-wise accuracy to measure the performance
of the model. The results are shown in Table 2.

Table 2. Averaged Dice coefficient, mIoU, and pixel-wise accuracy in lung testing dataset.

Evaluation Metrics Front Image Back Image

averaged Dice coefficient 0.963± 0.012 0.978± 0.019
mIoU 0.930± 0.011 0.957± 0.021

pixel-wise accuracy 0.961 ± 0.007 0.977± 0.009

We selected two sets of lung X-rays from the segmentation results of our test set as
examples. In Figure 6, the segmentation completeness of our model was much better than
that for BtrflyNet. In Figure 7, when the original lung images were blurry, the segmentation
performance of DoubleU-Net was poor, while our model accurately segmented the lungs.
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3.4. Segmentation of Pill Images

Fuzzy DBNet performed well among the pill datasets. To verify the generalization of
the model further, we also conducted experiments on the lung dataset. Figure 8 shows the
validation loss.
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On the pill dataset, we chose a group of images to test the model. This set contained six
images: raw images from top to bottom and bottom to top and the corresponding ground
truth images and segmented results. These images are shown in Figure 9.

In order to evaluate the performance of our proposed model, we compared the output
of Fuzzy DBNet and its ground truth on the testing dataset using averaged Dice coefficient,
mIoU and pixel-wise accuracy. The results are shown in Table 3.
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Table 3. Averaged Dice coefficient, mIoU, and pixel-wise accuracy evaluation results in pill test-
ing dataset.

Evaluation Metrics Front Image Back Image

averaged Dice coefficient 0.933± 0.012 0.968± 0.019
mIoU 0.874± 0.011 0.939± 0.021

pixel-wise accuracy 0.903 ± 0.008 0.953± 0.010

We selected two sets of images from the pill test dataset segmentation results as
examples. In Figure 10, the segmentation performance of BtrflyNet was inferior. On the
other hand, when DoubleU-Net recognized pills without text, it was prone to classification
error. Figure 11 shows test cases with intentionally incorrect image inputs, where images
of pills were captured at different angles instead of the front and back views. This led
not only to the poor classification performance of DoubleU-Net but also a decrease in
classification accuracy for our model and BtrflyNet because they were affected by the
misplaced drug features.
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4. Discussion

We compared the performance of our proposed method with that of BtrflyNet on
the pill and lung datasets and demonstrated that our approach achieved better segmenta-
tion results.

Referring to Figures 6, 7 and 10, it can be observed that our model trained by integrat-
ing dual-sided images. Our model achieved more a complete segmentation and had higher
classification accuracy compared to other models. Conversely, our model also had limita-
tions. For instance, as shown in Figure 11, it lacked advantages in non-dual-sided images
or dual-sided images with misaligned positions, and it was prone to misclassify segmented
objects. From these two cases, it was inferred that the model combined important features
from both sides of the input images during training. Therefore, two input images of the
same target object should overlap as much as possible to leverage the advantages of our
model fully.

In the lung X-ray dataset, our model outperformed BtrflyNet in segmentation accuracy.
Due to the incorporation of fuzzy ASPP and the use of dual-sided images as input, our
model produced more complete lung segmentations even for blurry images, compared to
DoubleU-Net.
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In the pill dataset, our model outperformed both BtrflyNet and DoubleU-Net in
segmentation accuracy and classification precision, particularly when the text on the back
of pills was present. By leveraging features from the backside images, our proposed method
achieved accurate classification.

After consulting with medical centers, we learned that many pathological conditions
require information from dual-sided medical imaging for an accurate diagnosis. For
instance, physicians typically use AP and PA views from radionuclide bone scanning to
diagnose metastatic lesions, as well as images from different perspectives in knee X-ray
data to diagnose arthritis. Concurrently, based on the aforementioned analysis, it can be
inferred that our model could achieve superior results when applied to datasets containing
this type of dual-sided imaging.

Overall, as shown in Table 4, our proposed method achieved a higher mIoU score,
dice coefficient, and pixel-wise accuracy compared to BtrflyNet and DoubleU-Net. These
results demonstrated that our proposed method improved image segmentation accuracy
from dual-sided images.

Table 4. Comparison of various indicators between Fuzzy DBNet and BtrflyNet in the pill dataset
and the lung X-ray dataset.

Dataset Model Averaged Dice
Coefficient mIoU Pixel-Wise

Accuracy

Pill Dataset
Fuzzy DBNet 0.951 0.907 0.928

BtrflyNet 0.887 0.843 0.859
Double U-Net 0.949 0.881 0.824

Lung X-ray
Dataset

Fuzzy DBNet 0.971 0.944 0.969
BtrflyNet 0.909 0.883 0.897

Double U-Net 0.965 0.922 0.941

5. Conclusions

In this paper, we proposed the Fuzzy DBNet, which takes two input images to solve the
issue of one side of an object being blurry or incomplete. Our proposed model achieved a
pixel-wise accuracy of 92.8% on a drug dataset, which was 10.4% more accurate than Double
U-Net and 6.9% compared to BtryflyNet, effectively solving the problem of inconsistent
text on both sides of a drug that cannot be accurately classified based on a single image.
On a chest X-ray dataset, pixel-wise accuracy reached 96.9%, which was 2.8 and 7.2% more
accurate than for Double U-Net and BtryflyNet, respectively. This improved the issue of
obscured or noisy regions in image segmentation.

Future work mainly consists of two parts. First, we aim to apply our model to various
disease lesion recognitions that require dual-sided medical images, such as bone metastasis
and knees. Following this, we plan to develop a network architecture that can integrate
multi-angle images that go beyond the current scope of double-sided images. This would
allow for the creation of a multi-view model to simulate stereoscopic vision. By leveraging
depth information captured from different angles, the effectiveness of the model can be
further enhanced.

This advancement would facilitate the collection and preparation of more varied
datasets and increase the applicability of the proposed approach to a broader range of fields.
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Appendix A

Algorithm A1 Data pre-processing Algorithm

Require: annotations, original images, the label of images
Ensure: training dataset, testing dataset, validation dataset

1 : Loading images, labels, annotations;
2 : for label, annotation, image in images do
3 : mask ← AnnotationToMask(image, annotation) ;
4 : newData ← OneHotEncode(image, mask, label);
5 : end for
6 : newData ← Random(newData) ;
7 : counts ← Count(newData);
8 : for Iter, data in newData do
9 : if Iter < (counts× 0.8):
10 : trainval dataset append data;
11 : else :
12 : testing dataset append data;
13 : end for
14 : trainvalCounts ← Count(trainval dataset);
15 : for Iter, data in trainval dataset do
16 : if Iter < (trainvalCounts× 0.8):
17 : training dataset append data;
18 : else :
19 : validation dataset append data;
20 : end for
21 : return training dataset, testing dataset, validation dataset;

Algorithm A2 Fuzzy DBNet Algorithm

Require: annotations, images, labels, batch size N, epoch k
Ensure: Fuzzy DBNet model

1 : Loading images, labels, annotations;
2 : trainData, testingData, valData ← pre-processing(annotations, images, labels);
3 : n ∈ Count(train data)÷N + 1;
4 : Define Fuzzy DBNet ( f rontInput, backInput):
5 : VGG19 ← LoadVGG19Block();
6 : Encoder ← LoadEncoderBlock();
7 : VGG19Decoder ← LoadVGG19DecoderBlock();
8 : FixDecoder ← LoadDecoderBlock();
9 : FuzzyASPP ← LoadFuzzyASPP();
10 : ModelF, ModelB add VGG19, FuzzyASPP
11: Concatenate(ModelF,ModelB)
12 : ModelF, ModelB add VGG19Decoder
13 : ModelF, ModelB add Encoder, FuzzyASPP;
14: Concatenate(ModelF,ModelB)
15 : ModelF, ModelB add FixDecoder ;
16 : frontOnput ← ModelF( f rontInput);
17 : backOnput ← ModelB(backInput);
18 : return frontOnput, backOnput;
19 : for Iter = 1 to k do
20 : for step = 1 to n do
21 : frontInput, backInput ← ImageSplit(trainData);
22 : ŷ f , ŷb ← Fuzzy DBNet ( f rontInput, backInput);
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Algorithm A2 Cont.

23 : Update the Fuzzy DBNet by Adaptive Moment Estimation :

∑N
i=1 1−

2×∑ yNf
×ŷNf

∑ y2
Nf

+∑ ŷ2
Nf

+ε
−

2×∑ yNb
×ŷNb

∑ y2
Nb

+∑ ŷ2
Nb

+ε

N

− 1
N

N
∑

i=0

J
∑

j=0
ŷ f j
· log

(
y f j

)
+

(
1− ŷ f j

)
· log

(
1− y f j

)
+

ŷbj
· log

(
ybj

)
+

(
1− ŷbj

)
· log

(
1− ybj

)
24 : end for
25 : frontVal, backVal ← ImageSplit(valData);
26 : ŷ f , ŷb ← Fuzzy DBNet ( f rontVal, backVal)
27 : Pixel − wise Accuracy ← Evaluate (ŷ f , ŷb)
28 : save checkpoint _Iter
29 : end for

Algorithm A3 Genetic Algorithm

Require: Fuzzy Set
Ensure: new Fuzzy Set

1 : Define Genetic Algorithm (FuzzySet, epochs, r_mutate, set_size, r_elitism):
2 : for epoch in epochs do:
3 : elitism ← set_size× r_elitism
4 : newSet1 ← select the best elitism in FuzzySet
5 : crossovers ← FuzzySet−elitism

2
6 : for co in crossover do:
7 : XA , XB ← Randomly select from
8 : XC , XD ← generate by one− point crossover to XA , XB
9 : newSet2 append XC , XD
10 : end for
11 : for co in crossover do:
12 : Xco ← Randomly select from newSet2
13 : X′co ← mutate each bit of Xco under the rate r_mutate
14 : newSet2 update Xco , X′co
15 : end for
16 : return newSet1 + newSet2

Algorithm A4 Fuzzy ASPP Algorithm

Require: featureMap
Ensure: newFeatureMap

1 : Define FuzzyPooling ( f eatureMap):
2 : for patch in featureMap do:
3 : for n, pixel in patch do :
4 : Calculate πn

v by bell shaped:

πn
pixel = bell(piexln) = 1

σpixel
√

2π
e
−

(x−µpixel )
2

2σpixel
2

5 : end for
6 : for k, pixel in patch do:
7 : Calculate the scores sk

πpixel
:

sk
πpixel

=
k
∑

i=1

k
∑

j=1
πk

pixeli,j
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Algorithm A4 Cont.

8 : end for
9 : Calculate π′ then Calculate patch′ ;
10 : FuzzyPoolingFM ← Concate(FuzzyPoolingFM, patch′ );
11 : end for
12 : return FuzzyPoolingFM
13 : FuzzyPoolingFeatureMap ← FuzzyPooling( f eatureMap);
14 : covFeatureMap ← Convolution(FuzzyPoolingFeatureMap);
15 : atrousFeatureMap ← AtrousConvolution (covFeatureMap)
16 : newFeatureMap ← Concate ( f eatureMap, atrousFeatureMap)
17 : return newFeatureMap
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