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Abstract: In scenarios with insufficient structural features, LiDAR-based SLAM may suffer from de-
generacy, resulting in impaired robot localization and mapping and potentially leading to subsequent
deviant navigation tasks. Therefore, it is crucial to develop advanced algorithms and techniques
to mitigate the degeneracy issue and ensure the robustness and accuracy of LiDAR-based SLAM.
This paper presents a LiDAR–inertial simultaneous localization and mapping (SLAM) method based
on a virtual inertial navigation system (VINS) to address the issue of degeneracy. We classified
different gaits and match each gait to its corresponding torso inertial measurement unit (IMU) sensor
to construct virtual foot inertial navigation components. By combining an inertial navigation system
(INS) with zero-velocity updates (ZUPTs), we formed the VINS to achieve real-time estimation
and correction. Finally, the corrected pose estimation was input to the IMU odometry calculation
procedure to further refine the localization and mapping results. To evaluate the effectiveness of
our proposed VINS method in degenerate environments, we conducted experiments in three typical
scenarios. The results demonstrate the high suitability and accuracy of the proposed method in
degenerate scenes and show an improvement in the point clouds mapping effect. The algorithm’s
versatility is emphasized by its wide applicability on GPU platforms, including quadruped robots
and human wearable devices. This broader potential range of applications extends to other related
fields such as autonomous driving.

Keywords: virtual IMU construction; simultaneous mapping and localization technology; attention-based
convolutional; neural network; ResNet-gated recurrent unit neural network; LiDAR–inertial navigation

1. Introduction

Simultaneous localization and mapping (SLAM) technology plays a critical role in
perception-based supporting path planning, obstacle avoidance, and other practical appli-
cations in autonomous robot navigation. In recent years, LiDAR–inertial SLAM systems
have demonstrated higher accuracy and stronger environmental adaptability than systems
based on single-type sensors [1].

Currently, classic algorithms for LiDAR–inertial SLAM are mainly represented by
loosely coupled LiDAR odometry and mapping (LOAM) [2] and tightly coupled Laser–
inertial odometry and mapping (LIOM) [3]. However, using LiDAR as the primary sensor
presents certain limitations because LiDAR–inertial SLAM heavily relies on the quality of
the point cloud data obtained from LiDAR. In sparsely structured scenarios with geometri-
cally repetitive patterns, certain directional constraints may be missing, making it difficult
to estimate motion in certain degrees of freedom. This can result in degenerate accuracy or
even failure of the SLAM system. In scenes with unidirectional sparse structures such as
long tunnels, single-sided walls, and bridges, laser matching has an additional degree of
freedom in one direction. When moving forward along a tunnel, the acquired laser point
cloud is the same, making it difficult for the matching algorithm to accurately estimate the
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motion in this direction. Similarly, this situation occurs when the machine moves around a
cylindrical object in a circle. In scenarios featuring unidirectional sparse structures such as
lengthy tunnels, walls on a single side, and bridges, laser matching encounters an addi-
tional challenge regarding motion estimation in one particular direction. Specifically, when
progressing forward along a tunnel, the gathered laser point cloud remains unchanged,
creating difficulties for the matching algorithm in accurately estimating the motion in
that specific direction. Likewise, a similar circumstance arises when the machine circum-
navigates a cylindrical object in a circular path. In multidirectional sparsely structured
scenarios such as plazas or airports, using only ground point clouds for matching may
lack constraints from surrounding directions, leading to drift and random variations in
the odometry. These issues can result in deteriorating drift correction and a significant
cumulative error over time.

As intelligent mobile platforms are being increasingly deployed in diverse scenarios,
SLAM systems are required to deliver higher levels of precision and robustness. Masaki et al.
proposed a method that utilizes the Fisher information matrix to determine the level of
degeneracy. By redefining the Fisher matrix based on the robot’s motion state information,
the reliability of the robot’s localization on a known map can be assessed by analyzing the
matrix’s eigenvalues [4]. Ji Zhang et al. designed degeneracy factors to characterize the level
of degeneracy in each direction for optimization-based state estimation [5]. Additionally,
due to the inherent difficulty faced by LiDAR in overcoming degeneracy in scenarios with
sparse structures, solely relying on LiDAR and inertial information may not be sufficient
to correct errors. To improve SLAM performance in degenerate environments, multiple-
sensor fusion is commonly adopted to provide additional constraints for pose estimation,
compensating for the inherent lack of constraints of LiDAR.

Weizhao Shao et al. proposed variational inference learning-based simultaneous
localization and mapping (VIL–SLAM), which utilizes tightly coupled visual–inertial
odometry as prior information to aid LiDAR-based SLAM and further improves LiDAR
information with visual-LiDAR loop closure detection [6]. However, this method still
has shortcomings in terms of system complexity and potential losses. Weikun Zhen et al.
evaluated the performance of LiDAR-based localization by comparing the constrained
equations after perturbation. They proposed an ESKF-based LiDAR–inertial navigation
SLAM fused with ultra-wide band (UWB) information, providing valuable insights for
multisensor fusion solutions [7].

To address the issue of the poor performance of LiDAR–inertial SLAM in degenerate
environments, this paper proposes a LiDAR–inertial SLAM method based on a virtual
inertial navigation system to provide additional constraints during free direction. This
approach uses a convolutional neural network (CNN) with attention mechanisms to classify
robot torso IMU information corresponding to each gait. Then, a residual network–gated
recurrent unit (ResNet–GRU) hybrid model is employed to extract the nonlinear mapping
relationship between the torso and foot IMU information and construct the virtual IMU
and VINS corresponding to each gait. A zero-velocity update is applied to estimate
and correct the position, velocity, pose error, and virtual IMU errors in real time. The
corrected pose information is then input into the LiDAR–inertial odometry calculation
process to maintain the odometry’s accuracy over short periods. When the robot operates
in degenerate environments where its mapping and localization performance is reduced,
the VINS system can assist in correcting the robot’s estimated state parameters to optimize
the accuracy of the constructed map.

2. System Overview

This paper proposes a method for LiDAR–inertial SLAM based on a virtual inertial
navigation system to address the navigation problem of degeneracy with quadruped robots.
Figure 1 shows the detailed implementation process. The proposed LiDAR–inertial SLAM
method based on VINS was designed with a convolutional neural network (CNN) model
based on the attention mechanism trained to classify the robot’s motion patterns. This
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model is used to build corresponding models for each gait. The torso IMU data are classified
into different gaits, and the relationship between the torso IMU data and foot IMU data is
modeled using a ResNet–GRU hybrid network to build a virtual foot IMU for each gait. The
virtual inertial information from the torso IMU mapped to the foot, along with the collected
inertial information from the torso, is processed by an inertial navigation algorithm with
a zero-velocity update to calculate the robot’s pose. The algorithm then outputs the pose
estimation. This approach eliminates the need to install inertial sensors on the feet of the
robot during navigation.
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Following timestamp alignment, the missing pose data that are not from laser scan
matching are inferred by means of timestamps and other LiDAR data. Both are continuously
updated and initialized to minimize the errors accumulated during the pose fusion step.
All data are then cached; the algorithm constantly polls and optimizes the fused pose, IMU
data, and odometer data, updating these three data based on virtual IMU data. Ultimately,
the fused pose is obtained to complete the localization and mapping process.

Based on the constructed LiDAR constraints equation, the system constraint weight
is evaluated to calculate the degenerate direction. If the locomotion direction of the
quadrupedal robot aligns with the environment’s degenerate direction, or when the re-
liability of the LiDAR localization information gradually decreases, the performance of
the LiDAR–inertial navigation system is deemed to be insufficient, and the system tran-
sitions to a SLAM solution assisted by a VINS to continue operation. Otherwise, if the
LiDAR–inertial navigation system operates normally, the computation of the virtual inertial
information is not activated, and the system state remains unchanged, referring to LINS.

When the VINS is activated, feature points are extracted through curvature calculation,
and the distortion caused by uniform motion is removed during point cloud matching using
the obtained average velocity to obtain rough pose transformation. Nonuniform motion
distortion is then removed using the torso IMU data, and the updated pose information
from both the LiDAR feature point extraction and IMU data are utilized to obtain a more
accurate interframe pose transformation. The error-state Kalman filter model (ESKF) is
used to minimize the impact of nonlinear constraints, and the relative pose estimates
between two consecutive local frames are compared to update the global pose estimate,
outputting pure odometer data and features of undistorted point clouds. The feedback from
the unmapped odometer data is used to re-estimate the pose. When the VINS is activated,
the foot IMU information is calculated and combined with the torso IMU data to update the
pose information using the VINS. The virtual inertial odometer feedback is used to improve
the mapping process and preserve positioning accuracy in degenerate environments. The
resulting map is refined by processing pure odometer data and undistorted point clouds
features to obtain global pose information and generate a global map. The proposed
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approach maintains the authenticity of the mapping and prevents significant drift in
sparsely featured environments.

3. Virtual Inertial Navigation System Based on Deep Learning
3.1. Reliability Evaluation of LiDAR Based on Geometric Degradation Modeling

To improve the robustness of the LiDAR–inertial navigation system for positioning and
mapping in degenerate environments [8], we employed a geometric degenerate modeling
method to assess the impact of such environments on LiDAR-based positional estimation.
The specific calculation method is described in the literature [7]. The strength of the
LiDAR’s constraint in degenerate environments was evaluated by constructing geometric
constraint equations as follows:

c(x, R, ρi) = nT
i (x + Rriρi) + di = 0 (1)

In this equation, x and R represent the robot position and orientation, respectively; i
represents the point index in the laser scan; ρi represents the LiDAR measurement distance;
ni and di represent the normal vector and distance, respectively, which are estimated
by fitting a local plane to the neighboring one; and ri represents the unit range vector
represented in the robot body frame.

By taking the partial derivative of the constraint equation ρi with respect to x and R,
the LiDAR sensitivity measure is obtained. The sensitivity measures from each geometric
constraint equation in the LiDAR frame are combined to create a matrix. This matrix is
then subjected to eigenvalue decomposition, and the eigenvector direction corresponding
to the eigenvalue that has a significantly smaller magnitude than the other eigenvalues in
the decomposition result represents the environmental degenerate direction.

FFT = UFDFUT
F , TTT = UT DTUT

T (2)

where F= [− n1
nT

1 r1
· · · − nm

nT
mrm

]
;T = [− ρ1r1×n1

nT
1 r1
· · · − ρmrm×nm

nT
mrm

]
; and UFDFUT

F and UT DTUT
T ,

respectively, represent the decomposition result of the eigenvalues of the information matrix.
The calculation method describes the reliability of the LiDAR odometry information,

where a smaller eigenvalue in the matrix decomposition result indicates a greater impact
of environmental degeneracy on the LiDAR odometry. When the walking direction of
the quadruped robot is consistent with the direction of environmental degeneracy or the
reliability of the LiDAR odometry gradually decreases, the VINS can be used to assist in
improving the positioning accuracy of the quadruped robot in degenerate environments.
The reliability assessment can be manually adjusted during experiments.

3.2. Construction of Virtual Inertial Navigation System

To optimize the mapping and localization performance of the quadruped robot in
degenerate environments, this paper proposes an auxiliary positioning scheme based on
virtual inertial sensors. When the performance of the LiDAR inertial navigation system
decreases in degenerate environments, the VINS is used to assist in correcting the pose
information of the LiDAR’s inertial odometer.

The data collection and construction of the virtual inertial sensor of the quadruped
robot involve a deep learning computer and two distributed inertial sensors installed on the
torso and feet of the quadruped robot, as shown in Figure 2. The foot-mounted IMU should
be located 1.97 inches away from the bottom of the foot, and the torso should be located
in the center of the torso. These two distributed inertial sensors synchronously collect the
motion inertial data of the quadruped robot. The deep learning network model classifies
the inertial sensor information of the torso and constructs the virtual inertial sensor of the
foot of the quadruped robot [9].
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3.2.1. Construction of Virtual Inertial Sensor Based on Deep Learning

In this study, we employed the squeeze-and-excitation network (SENet) as the attention-
based CNN model for gait classification training. Compared with traditional CNN mod-
els [10], SENet employs a weakly labeled dataset for model training [11]. By learning the
weights of each channel, it enhances the ability to identify various channel features and im-
proves the accuracy of gait classification from torso’s inertial sensor data [12]. The detailed
working process and mathematical model algorithm of the SENet model are described in
the literature [13].
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Through gait classification, we used a hybrid ResNet–GRU model to extract the
nonlinear mapping relationship between the inertial sensor data of the torso and feet and
to construct a virtual inertial sensor of the feet, The detailed flow is shown in Figure 3. The
model trains virtual inertial sensor models for each gait type, which reduces the difficulty of
fitting the mapping relationship of the inertial sensor and improves the regression accuracy
of the hybrid model.
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This is shown in Figure 4, the hybrid ResNet–GRU model captures the local correlation
features in the inertial sensor data using ResNet [14,15], learns and extracts the motion
feature data hidden in the input data, and employs the GRU neural network to further
extract the temporal features of the inertial data by receiving the feature fragments from
ResNet [16]. The features extracted by the model are all input into the fully connected
layer to establish a nonlinear mapping relationship between the inertial sensor data of
the torso and feet, constructing a virtual inertial sensor of the foot based on the hybrid
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ResNet–GRU model. The detailed structure of the hybrid ResNet–GRU model is described
in the literature [17].
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3.2.2. Virtual Inertial Navigation System Based on Zero-velocity Update

After the foot virtual inertial sensor is constructed, the VINS calculates and estimates
the state parameters of the foot robot using the strapdown inertial navigation algorithm.
To address the cumulative error of the inertial navigation system, the system uses the
corrected state parameters via the zero-velocity detection algorithm to assist the system
to complete the state estimation. The detailed flow is shown in Figure 5. The flow of the
strapdown inertial navigation and zero-velocity detection algorithm and related formulas
are described in the literature [18].

Electronics 2023, 12, x FOR PEER REVIEW 6 of 15 
 

 

torso and feet, constructing a virtual inertial sensor of the foot based on the hybrid Res-
Net–GRU model. The detailed structure of the hybrid ResNet–GRU model is described in 
the literature [17]. 

 
Figure 4. Flowchart of ResNet–GRU hybrid model structure. 

3.2.2. Virtual Inertial Navigation System Based on Zero-velocity Update 
After the foot virtual inertial sensor is constructed, the VINS calculates and estimates 

the state parameters of the foot robot using the strapdown inertial navigation algorithm. 
To address the cumulative error of the inertial navigation system, the system uses the 
corrected state parameters via the zero-velocity detection algorithm to assist the system 
to complete the state estimation. The detailed flow is shown in Figure 5. The flow of the 
strapdown inertial navigation and zero-velocity detection algorithm and related formulas 
are described in the literature [18]. 

 
Figure 5. Flowchart of zero-velocity update process of virtual inertial navigation system. 

Due to the differences in the distribution of zero-velocity intervals across different 
motion modes of the quadruped robot, the accuracy of zero-velocity correction can be 
affected. To reduce the misjudgment rate of zero-velocity intervals and improve the accu-
racy of the correction algorithm, the system introduces gait classification constraints and 
adjusts filtering parameters based on the motion mode. 

In the zero-velocity detection algorithm, angular velocity is filtered and partitioned 
into search units using a sliding window averaging method. When the system detects a 
zero-velocity state during motion, the Kalman filter is activated to estimate and correct 
output error. More details on the error mathematical model and the Kalman filter algo-
rithm can be found in the literature [19]. 

3.2.3. Virtual Inertial Navigation System Performance Verification 
In this study, we first tested the accuracy of gait classification. It can be seen from 

Table 1 that the attention-based CNN model could achieve a gait classification rate of ap-
proximately 97.6%. Considering that the hybrid ResNet–GRU model has the ability to tol-
erate faults, the gait classification accuracy achieved in the experiment was adequate for 
the further construction of virtual inertial sensors. 

Figure 5. Flowchart of zero-velocity update process of virtual inertial navigation system.

Due to the differences in the distribution of zero-velocity intervals across different
motion modes of the quadruped robot, the accuracy of zero-velocity correction can be
affected. To reduce the misjudgment rate of zero-velocity intervals and improve the
accuracy of the correction algorithm, the system introduces gait classification constraints
and adjusts filtering parameters based on the motion mode.

In the zero-velocity detection algorithm, angular velocity is filtered and partitioned
into search units using a sliding window averaging method. When the system detects a
zero-velocity state during motion, the Kalman filter is activated to estimate and correct
output error. More details on the error mathematical model and the Kalman filter algorithm
can be found in the literature [19].

3.2.3. Virtual Inertial Navigation System Performance Verification

In this study, we first tested the accuracy of gait classification. It can be seen from
Table 1 that the attention-based CNN model could achieve a gait classification rate of
approximately 97.6%. Considering that the hybrid ResNet–GRU model has the ability to
tolerate faults, the gait classification accuracy achieved in the experiment was adequate for
the further construction of virtual inertial sensors.

We also collected torso and foot inertial sensor data to validate three typical gaits of the
quadruped robot: walking, running, and uphill/downhill walking. Figure 6b,d and f show
the acceleration output curves; and Figure 6a,c and e show the gyroscope output curves
of the virtual IMU for different walking motions of the quadruped robot. A comparison
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between the virtual inertial sensor data constructed using the hybrid ResNet–GRU network
model and the actual foot inertial sensor data is shown in Table 1.

Table 1. Classification accuracy of attention-based CNN model gait types.

Walking Running Uphill Downhill

Walking 343 2 2 1

Running 4 341 1 1

Uphill 1 3 340 1

Downhill 2 1 1 342
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Figure 6. Virtual inertial sensor outputs of the quadruped robot during different gaits using the
virtual IMU constructed in this study. (a) The virtual IMU’s gyroscope outputs during uphill and
downhill motion. (b) The virtual IMU’s accelerometer outputs during uphill and downhill motion.
(c) The virtual IMU’s gyroscope outputs during walking motion. (d) The virtual IMU’s accelerometer
outputs during walking motion. (e) The virtual IMU’s gyroscope outputs during running motion.
(f) The virtual IMU’s accelerometer outputs during running motion.
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The virtual inertial sensors constructed using the hybrid ResNet–GRU network model
were compared with the actual foot inertial sensor data. Figure 6 shows the fitting curves,
and we do not present the actual collected curves as the errors between the two were too
small to distinguish. During motion, the amplitude of motion information is much larger
than the order of magnitude of the fitting error, making it difficult to identify the fitting
error on the curve.

In the comparison results presented in Table 2, it can be seen that the fitting curves of
the virtual inertial sensor have a similar identification accuracy and a small curve error to
the actual foot inertial sensor in the case of relatively intense movements such as the uphill
and downhill movement of the quadruped robot. As in the previous study, the results meet
the positioning accuracy requirements of the inertial navigation system.

Table 2. Virtual inertial sensor output fitting error, where a and w, respectively, represent accelerome-
ters and gyroscopes; M is the output deviation of the IMU; and S is the output noise of the IMU.

Mw (◦/s) Sw (◦/s) Ma (m/s2) Sa (m/s2)

Walking 0.0009 0.0010 0.046 0.088

Running 0.0021 0.0037 0.072 0.121

Uphill 0.0011 0.0019 0.050 0.092

Downhill 0.0014 0.0020 0.058 0.098

The experiment was conducted on a three-dimensional route with a total distance of
about 350 m, involving gait types such as walking and traveling uphill and downhill. The
red and green lines represent the output of IMU and VIMU, respectively. By comparison,
the positioning error of the VIMU output was about 4.3% compared with that of the IMU.
From the experimental results, it can be seen that the VIMU cannot completely replace
the IMU. Therefore, the VIMU is only used to rebuild the inertial navigation system when
it fails.

Based on the virtual inertial sensor outputs, the proposed system effectively ensured
range integrity and showed strong adaptability in complex environments [20]. The VINS
employs a virtual inertial sensor constructed based on a deep learning network model.
Through zero-velocity detection, it utilizes zero-velocity detection to estimate and correct
the pose error outputted by the strapdown inertial navigation algorithm, and the corrected
state parameters are used to assist the system in completing the pose estimation.

The corrected state parameters generated by the VINS are used to adjust the state
parameters of the LiDAR’s inertial odometer. The corrected state parameters are then trans-
mitted to the LIDAR mapping module to enhance the accuracy of global map construction,
as shown in Figure 7.

As shown in Figure 8, we utilized the walking gait to navigate around a building and
validate the positioning accuracy of the VIMU in comparison with that of the IMU system.
Despite encountering potential external interference during the data acquisition process,
the VIMU still satisfactorily fulfilled the system’s positioning accuracy requirements when
compared with the positioning effect of IMU.
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4. Analysis of LINS Performance in Degenerate Environments

This study analyzed the localization and mapping performance of a LiDAR–inertial
fusion system in degenerate environments based on the LINS algorithm [21]. LINS is
a well-established LIDAR inertial fusion algorithm that estimates pose information and
generates maps by fusing LiDAR point clouds with inertial sensor data. The detailed
flowchart is shown in Figure 9.
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First, the LiDAR point clouds are segmented and feature points are extracted using the
feature extraction module. To uniformly extract features from all directions, the range image
is divided into several equal subimages, and different types of features are distinguished
based on the curvature c [22].

c =
1

|S|‖ri‖

∥∥∥∥∥ ∑
j∈s,j 6=i

(
rj − ri

)∥∥∥∥∥ (3)

where S represents the point cloud composed of point i as the center, ri and rj are the point
in S. When the LiDAR–inertial navigation system is used for localization and mapping in
degenerate environments, the calculated curvature c values are often small or even close to
zero, resulting in fewer detected feature corner points in degenerate environments.

Next, the features extracted from the feature extraction module are inputted to the LIO
module for pose estimation [23]. The module utilizes the point cloud matching method to
calculate the relative transformation relationship between LiDAR point cloud frames by
computing the distance d between corner points.
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d =
|(X2 − X1)× (X1 − X0)|

|X2 − X1|
(4)

where X2 represents the position of the point on the current frame in the point cloud
coordinate system of the previous frame; X1 and X0 represent the positions of each point in
the previous frame’s point cloud.

Due to the limited number of feature corner points that can be extracted in degenerate
environments by the feature extraction module, the distance between feature points is large, and
the error in calculating the distance is significant. This leads to lower optimization performance
in point cloud matching and larger cumulative error in the pose estimation of the LIO module,
even for the points affecting the optimization of motion distortion in the point clouds.

Finally, the LiDAR mapping module builds a global map by integrating the pose
information provided by the LIO module with the current frame of point clouds. However,
due to the cumulative error in the pose estimation of the LIO module in degenerate
environments and the decreased performance in optimizing the motion distortion of
the point clouds, the global map constructed by the LiDAR mapping module may have
significant errors.

Considering the significant localization and mapping errors of the LiDAR inertial
navigation system in degenerate environments, this paper proposes a VINS-assisted local-
ization method, which effectively improves the robustness of quadruped robot localization
and mapping in degenerate environments.

4.1. Performance Verification Experiment of Sparse and Degenerate Scene of Unidirectional
Structural Features

LINS and other LiDAR–inertial navigation systems have effectively improved the
robustness of robot localization and mapping in complex environments by calculating
fused state parameters. However, in some degenerate environments, such as featureless
areas, significant errors may arise due to missing feature points in the LiDAR–inertial
odometry. Based on the extent of degeneration areas, the system accumulates errors in the
LiDAR–inertial odometry operation for longer durations.

Experiment 1 was conducted in a degenerate environment consisting of a long straight
corridor, as shown in Figure 10a. The corridor exhibited a one degree of freedom direction
(1DOF) degeneration characteristic along its axis. Additionally, the presence of interference
from lighting and reflective ground led to significant LINS localization deviation. The
quadruped robot equipped with a LiDAR and the inertial sensor started the experiment at
the center of the starting segment, and we conducted localization and mapping experiments
along its axis for the entire corridor. We used the floor tile joints as our movement route
and reference points. The positioning and mapping of the LINS and VIMU with LINS for
point clouds are shown in Figure 10.

Based on the experimental results shown in Figure 10b, the LINS method yielded
gradually increasing offset errors in the sparse feature points of the corridor’s middle
section, resulting in a significant discrepancy between the output localization trajectory
and the actual path at the end of the corridor. The resulting point cloud map failed to
accurately reflect the actual shape of the model. Furthermore, the positioning output
results of the LINS method appeared stationary and moved in the opposite direction as the
robot advanced along the corridor axis, leading to the accumulation of errors and eventual
positioning failure in the corresponding LiDAR point clouds.

Figure 10 compares the performance between the proposed method and LINS. The
former exhibited high accuracy in the middle section of the corridor without any point
cloud overlap issue. Using the middle line of the corridor as the reference path, the relative
errors between the two methods’ positioning trajectory output and the actual value could
be computed. The relative error of LINS was 46%, while the relative error of the proposed
method was 15%. Thus, in degenerate scenario 1, the positioning trajectory output and the
point clouds map agreed well with the scene model.
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4.2. Performance Verification Experiment of Sparse and Degenerate Scene of Multidirectional
Structural Features

The degenerate environment in Experiment 2 was a standard basketball court in an
open outdoor environment, as shown in Figure 11a. The actual route was the real trajectory
collected by GPS, which served as our route basis. The central area of the basketball
court was an open space with sparse feature points, which resulted in a multidirectional
degenerate scenario due to the lack of surrounding directional constraints. LiDAR–inertial
navigation system can only use ground point clouds for matching. In this experiment, the
quadruped robot was controlled to start walking from a rich-feature area at one end of
the basketball court from a stationary position, following the standard court boundary, as
shown in Figure 11a. A comparison between LINS and the assisted navigation system with
the VINS of the point clouds and localization is shown in Figure 11b.

As shown in Figure 11c,d, the trajectory at the start of the localization output from
the LINS method without the degradation analysis process roughly matched the robot’s
trajectory. Because of the sparse point cloud data in the central open area and the tendency
of inertial sensors to exceed their range during sudden changes in motion, the LINS
method experienced repeated point clouds and positioning errors at corners, resulting in a
cumulative increase in error over time. As shown in Figure 12a, the point cloud density of
the assisted navigation system with the VINS was much higher, and there was no overlap
of the point clouds at the corners due to repeated map building. The VINS system uses a
virtual inertial sensor for positioning, making it more robust in dealing with over-range
issues due to abrupt motion. As a result, it can maintain good positioning accuracy in sharp
corners and achieve high accuracy in both positioning and map building in multidirectional
degenerate environments.
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4.3. Overall Performance Verification Experiments

Experimental scenario 3 involved a building complex on campus. The actual scene of
the building is shown in Figure 12a. There were open areas in part of the scene, leading to
environmental degeneration, and the quadruped robot walked around the building in a circle
to test the performance of the LiDAR–inertial navigation system for positioning and mapping.

As shown in Figure 12b, the black line is the DGPS reference trajectory, the blue line is
the trajectory of the LINS method, and the red line is the trajectory of the assisted LINS with
VIMU; compared with the LINS, the positioning effect of the VIMU with LINS is closer to
the actual path and demonstrates stable and better performance at turning points. In the
VINS-assisted LINS method, the average positioning error was 1.20 m, and the frame rate
was 30 Hz, which meet the real-time positioning requirements of quadruped robots. At the
same time, the LINS method was measured under the same conditions, and the average
positioning error was 1.08 m, demonstrating the effectiveness of the assisted method. The
point clouds maps of the LINS and VIMU with LINS are shown in Figure 12c,d.

The point cloud map of LINS with VINS achieved an RMSE [24] of 9.33/cm, and the
LINS point cloud map has an RMSE of 11.6/cm. The LINS with VINS had a higher point
cloud density, which could more accurately reflect the actual situation when in open areas.
At the same time, the optimized point cloud map has clearer contours and less deformation
at building corners; the problem of repeated scanning of the same object was also solved.

5. Conclusions

In this paper, we propose a VINS method to assist localization and mapping in degen-
erate environments. This method employs a deep learning network model to construct
virtual inertial sensors and is coupled with a shortcut inertial navigation algorithm and
a zero-velocity correction algorithm to assist the LiDAR–inertial navigation system in
correcting the state parameters obtained from the LiDAR–inertial odometer, improving the
accuracy of the SLAM process.

The experimental results indicate that the robustness of localization and mapping
for quadruped robots in typical degenerate environments is greatly enhanced with the
assistance of VINS and meets the localization accuracy requirements of quadruped robots.
These findings suggest that VINS provides a promising support for the development of
SLAM technology in degenerate environments.

Additionally, the broad applicability of the algorithm across both quadruped robots and
wearable devices for humans underscores its versatility. This wider scope of potential appli-
cations extends beyond quadruped robots and encompasses domains such as autonomous
driving, robot navigation, wearable devices, and other related fields. Consequently, the find-
ings from this research suggest that VINS holds promise in advancing the development of
simultaneous localization and mapping (SLAM) technology in degenerate environments.

Author Contributions: Conceptualization, Y.C., J.Z. and J.D.; Methodology, Y.C.; Software, Y.C.;
Validation, Y.C., J.Z. and K.W.; Formal Analysis, J.D.; Investigation, K.W.; Resources, Y.C.; Data
Curation, J.Z.; Writing—Original Draft Preparation, Y.C. and J.Z.; Writing—Review and Editing, J.D.
and T.S.; Visualization, Y.C.; Supervision, W.Q.; Project Administration, W.Q. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, Present, and Future of

Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Trans. Robot. 2016, 32, 1309–1332. [CrossRef]
2. Ji, Z.; Singh, S. Low-drift and Real-time LIDAR Odometry and Mapping. Auton. Robot. 2017, 41, 401–416.

https://doi.org/10.1109/TRO.2016.2624754


Electronics 2023, 12, 2639 14 of 14

3. Zhao, S.; Fang, Z.; Li, H.; Scherer, S. A Robust Laser-Inertial Odometry and Mapping Method for Large-Scale Highway
Environments. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau,
China, 3–8 November 2019.

4. Koizumi, M.; Nonaka, K.; Sekiguchi, K. Avoidance of singular localization environment using model predictive control for mobile
robots. In Proceedings of the 2017 11th Asian Control Conference (ASCC), Gold Coast, QLD, Australia, 17–20 December 2017;
pp. 2866–2871. [CrossRef]

5. Zhang, J.; Kaess, M.; Singh, S. On degeneracy of optimization-based state estimation problems. In Proceedings of the 2016 IEEE
International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 809–816.

6. Shao, W.; Vijayarangan, S.; Li, C.; Kantor, G. Stereo Visual Inertial LIDAR Simultaneous Localization and Mapping. In Proceedings
of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019;
pp. 370–377. [CrossRef]

7. Zhen, W.; Scherer, S. Estimating the Localizability in Tunnel-like Environments using LIDAR and UWB. In Proceedings of the 2019
International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 4903–4908. [CrossRef]

8. Zhen, W.; Zeng, S.; Soberer, S. Robust localization and localizability estimation with a rotating laser scanner. In Proceedings of the
IEEE International Conference on Robotics and Automation, Singapore, 29 May–3 June 2017; pp. 6240–6245. [CrossRef]

9. Qian, W.; Zhu, Y.; Jin, Y.; Yang, J.; Qi, P.; Wang, Y.; Ma, Y.; Ji, H. A Pedestrian Navigation Method Based on Construction of
Adapted Virtual Inertial Measurement Unit Assisted by Gait Type Classification. IEEE Sens. J. 2021, 21, 15258–15268. [CrossRef]

10. Jetley, S.; Lord, N.A.; Lee, N.; Torr, P.H.S. Learn to Pay Attention. arXiv 2018, arXiv:1804.02391. [CrossRef]
11. Xu, X.; Li, W.; Xu, D.; Tsang, I.W. Co-Labeling for Multi-View Weakly Labeled Learning. IEEE Trans. Pattern. Anal. Mach. Intell.

2016, 38, 1113–1125. [CrossRef] [PubMed]
12. Wang, L.; Zang, J.; Zhang, Q.; Niu, Z.; Hua, G.; Zheng, N. Action recognition by an attention-aware temporal weighted

convolutional neural network. Sensors 2018, 18, 1979. [CrossRef] [PubMed]
13. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. Available online: http://image-net.org/challenges/LSVRC/2017

/results (accessed on 1 January 2023).
14. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]
15. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. arXiv 2016, arXiv:1603.05027. [CrossRef]
16. Cho, K.; van Merrienboer, B.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation: Encoder-Decoder

Approaches. arXiv 2014, arXiv:1409.1259. [CrossRef]
17. Xiao, X.; Li, K. Multi-Label Classification for Power Quality Disturbances by Integrated Deep Learning. IEEE Access 2021, 9,

152250–152260. [CrossRef]
18. Fan, Q.; Sun, Y.; Sun, B.; Zhuang, X. Pedestrian Indoor Positioning System Based on GLRT Zero Speed Detection. Chin. J. Sens.

Actuators 2017, 30, 1706–1711.
19. Liu, J.Y. Theory and Application of Navigation System; Northwestern Polytechnical University Press: Xi’an, China, 2010.
20. Qin, C.; Ye, H.; Pranata, C.E.; Han, J.; Zhang, S.; Liu, M. LINS: A Lidar-inertial State Estimator for Robust and Efficient Navigation.

arXiv 2019, arXiv:1907.02233. [CrossRef]
21. Zhang, J.; Singh, S. LOAM: LIDAR Odometry and Mapping in Real-time. In Robotics: Science and Systems; Carnegie Mellon

University: Pittsburgh, PA, USA, 2014; Volume 2. [CrossRef]
22. Shan, T.; Englot, B. LeGO-LOAM: Lightweight and Ground-OptimizedLIDAR Odometry and Mapping on Variable Terrain.

In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain,
1–5 October 2018; IEEE: Piscataway, NJ, USA, 2018.

23. Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. LIO-SAM: Tightly-coupled LIDAR Inertial Odometry via Smoothing
and Mapping. arXiv 2020, arXiv:2007.00258. [CrossRef]

24. Zhang, Z.; Scaramuzza, D. A Tutorial on Quantitative Trajectory Evaluation for Visual(-Inertial) Odometry. In Proceedings
of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018;
IEEE: Piscataway, NJ, USA, 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ASCC.2017.8287632
https://doi.org/10.1109/IROS40897.2019.8968012
https://doi.org/10.1109/ICRA.2019.8794167
https://doi.org/10.1109/ICRA.2017.7989739
https://doi.org/10.1109/JSEN.2021.3074392
https://doi.org/10.48550/arXiv.1804.02391
https://doi.org/10.1109/TPAMI.2015.2476813
https://www.ncbi.nlm.nih.gov/pubmed/26353366
https://doi.org/10.3390/s18071979
https://www.ncbi.nlm.nih.gov/pubmed/29933555
http://image-net.org/challenges/LSVRC/2017/results
http://image-net.org/challenges/LSVRC/2017/results
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.1603.05027
https://doi.org/10.48550/arXiv.1409.1259
https://doi.org/10.1109/ACCESS.2021.3124511
https://doi.org/10.48550/arXiv.1907.02233
https://doi.org/10.15607/RSS.2014.X.007
https://doi.org/10.48550/arXiv.2007.00258

	Introduction 
	System Overview 
	Virtual Inertial Navigation System Based on Deep Learning 
	Reliability Evaluation of LiDAR Based on Geometric Degradation Modeling 
	Construction of Virtual Inertial Navigation System 
	Construction of Virtual Inertial Sensor Based on Deep Learning 
	Virtual Inertial Navigation System Based on Zero-velocity Update 
	Virtual Inertial Navigation System Performance Verification 


	Analysis of LINS Performance in Degenerate Environments 
	Performance Verification Experiment of Sparse and Degenerate Scene of Unidirectional Structural Features 
	Performance Verification Experiment of Sparse and Degenerate Scene of Multidirectional Structural Features 
	Overall Performance Verification Experiments 

	Conclusions 
	References

