
Citation: Yang, C.; Mei, F.; Zang, T.;

Tu, J.; Jiang, N.; Liu, L. Human

Action Recognition Using Key-Frame

Attention-Based LSTM Networks.

Electronics 2023, 12, 2622. https://

doi.org/10.3390/electronics12122622

Academic Editors: Zbigniew

Leonowicz and Michał Jasiński
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Abstract: Human action recognition is a classical problem in computer vision and machine learning,
and the task of effectively and efficiently recognising human actions is a concern for researchers. In
this paper, we propose a key-frame-based approach to human action recognition. First, we designed
a key-frame attention-based LSTM network (KF-LSTM) using the attention mechanism, which can
be combined with LSTM to effectively recognise human action sequences by assigning different
weight scale values to give more attention to key frames. In addition, we designed a new key-frame
extraction method by combining an automatic segmentation model based on the autoregressive
moving average (ARMA) algorithm and the K-means clustering algorithm. This method effectively
avoids the possibility of inter-frame confusion in the temporal sequence of key frames of different
actions and ensures that the subsequent human action recognition task proceeds smoothly. The
dataset used in the experiments was acquired with an IMU sensor-based motion capture device, and
we separately extracted the motion features of each joint using a manual method and then performed
collective inference.

Keywords: action recognition; ARMA; attention mechanism; key-frame extraction; K-means; LSTM

1. Introduction

In recent years, research on human action recognition has developed by leaps and
bounds and is now used in various fields, such as video surveillance, intelligent medical
care, human–machine collaboration, and intelligent human–machine interfaces [1–4]. This
also means that there are increasingly higher requirements for human action recognition
algorithms in terms of performance, which is a classic and challenging topic in computer
vision research. To date, many methods based on hand-crafted feature representations have
been widely used for action recognition due to their advantages, such as simplicity and
robustness [5–7]. However, due to the limitations of human cognitive abilities, the method
is often database-oriented and difficult to apply to real-life scenarios.

With the development of deep learning techniques, deep learning algorithms have
more advantages in the field of human motion recognition than traditional methods [8].
Currently, convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
are frequently used in the field of human motion recognition. The 3D CNN [9] is a typical
algorithm studied in human action recognition tasks. In that work, 3D convolutions are
employed to extract features from the spatial and temporal dimensions of video data.
This works well for capturing spatial information and has a better performance in image
recognition at the moment, but temporal information is inevitably lost when sequences are
encoded into images, and temporal motion plays a key role in human action recognition.
This problem can be mitigated with RNNs, in particular long short-term memory (LSTM),
which has been shown to effectively model long-term cues of motion sequences [10]. The
gate unit in LSTM can choose whether to update specific information or not while ensuring
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long-term memory of valid data and forgetting or discarding useless information, thereby
maximizing the utilization of data information.

Based on these facts, the accurate recognition of actions in the real world remains
challenging. Current human action recognition methods solve the sequence learning
problem with LSTM and gated recurrent units but do not focus on the selective information
in the sequence in the selection of features. In a human action sequence, not all frames in
the sequence are equally important, and there are often repetitive or redundant frames [11]
that are not so important for the recognition of the action. To solve this problem, some
researchers [12] introduced a key-frame mechanism to increase the information difference
among motion frames. The key frames of a motion sequence are extracted using clustering,
and the redundant frames of the motion sequence are discarded to reconstruct the motion.
The method can effectively improve the recognition efficiency of the model.

Therefore, in this work, we combine the above problems and propose a human action
recognition method based on LSTM with key-frame attention. The key frames of different
actions are extracted using clustering. They are combined with attention mechanisms to
further improve the recognition efficiency and accuracy of LSTM networks. However, most
key-frame extraction methods do not take into account the time-series information between
frames [13]. When confronted with long-term motion sequences containing multiple
actions, there are often large errors in the localisation of action intervals [14]. This prevents
the uniform processing of inter-class similarities in different actions of the motion sequence
and tends to cause inter-frame confusion in the timing of key frames of different actions.
This has an impact on the accuracy of subsequent action recognition tasks.

To this end, we combine our previous work [15] and propose a new method for key-
frame extraction. The automatic segmentation model based on the autoregressive moving
average (ARMA) algorithm was combined with the K-means clustering algorithm. This
method allows the automatic segmentation of different movements in a motion sequence
to be performed in advance. The possibility of inter-frame confusion in the timing of key
frames of different actions is effectively avoided. This method ensures that subsequent
human movement recognition tasks are carried out smoothly.

Combining these two modules, we propose a key-frame-based human action recogni-
tion system. In this work, we trained the model using a 3D skeleton sequence reconstructed
from MoCap (motion capture device) data based on IMU sensors. In the recognition of
human movement types, 18 representative joints throughout the human body were selected
to build the skeleton model of the human body. The motion sequence was constructed
from the extracted human pose feature vectors.

The main innovations and contributions of the present study are as follows:

1. We propose a human action recognition model with an LSTM network based on
the key-frame attention mechanism. The issues of the accuracy and efficiency of the
recognition model are fully considered. The recognition performance of the LSTM
network is effectively improved by the attention mechanism combined with the key
frames of the action.

2. We propose an unsupervised learning-based [16] key-frame extraction method. This
method can accurately distinguish and extract key frames that can represent different
action types from a long motion sequence containing multiple complex action types.

The rest of the paper is structured as follows: Section 2 provides related work on
human action recognition. Section 3 describes the structure of the human action recognition
method proposed in this paper and its associated components. Section 4 evaluates and
compares the recognition accuracy of this paper’s model with that of other human action
recognition-related models. Finally, Section 5 draws conclusions.

2. Related Work

In the field of artificial intelligence, human action recognition is an important part of
research in this area, making human interaction with the external environment possible.
While human communication can be conveyed with words, facial expressions, written text,



Electronics 2023, 12, 2622 3 of 20

etc., the relationship between computers and sensors to understand human intentions and
behaviour is now a popular area of research. As a result, more and more researchers are
devoting their time and experience to the study of human action recognition.

2.1. Traditional Machine Learning and Hand-Crafted Feature-Based Action Recognition

In traditional recognition methods based on machine learning and manual features,
hand-crafted feature extractors and action classifiers based on traditional machine learning
algorithms are often used [17]. Action classifiers are used to recognise and classify human
movement actions based on the characteristics of that action. For example, Cho et al. [18]
used joint distance features for feature extraction. The category of each pose is labelled
by an artificial neural network (ANN). Finally, discrete Hidden Markov Models (HMMs)
are applied to classify and recognise action sequences. Meanwhile, in order to effectively
improve the recognition performance of the system, some researchers have adopted a key-
frame-based approach to reduce the processing time of the system [19,20]. A recognition
system for human action sequences was developed using traditional machine learning
algorithms combined with key-frame selection. In past research, action recognition methods
based on traditional machine learning and manual features were combined with great
success. However, for the construction and extraction of features [21], they need to rely on
human cognition. Moreover, based on human expertise, only superficial features can be
learned, making it difficult to cope with the needs of real environments.

2.2. Deep Learning-Based Action Recognition

In recent years, a number of new methods have been developed, especially regarding
the application of deep learning methods in action recognition [22]. The main representative
works can be summarized as discussion methods based on convolutional neural networks
and discussion methods based on LSTM.

Traditional CNN models are currently limited to processing 2D inputs and are not
suitable for the feature capture of 3D skeleton data. To shift CNNs from images to temporal
motion sequences, Tran et al. [23] extended traditional CNNs to 3D CNNs, which are more
suitable for spatio-temporal feature learning. Related experiments have shown that this
scheme outperforms traditional 2D CNNs in terms of analytical functionality. Another
common strategy is to employ two-stream CNNs to deal with the problem of capturing
motion information between consecutive frames. Zhu et al. [24] proposed a CNN architec-
ture based on a two-stream approach that implicitly captures motion information between
adjacent frames and uses an end-to-end CNN approach to learn optical streams. Task-
specific motion representations can be obtained while avoiding expensive computation and
storage. Since then, many improved models have been proposed, and the two-stream CNN
has made significant contributions to the development of motor action recognition [25].
It can even be referenced to realistic and complex real-world environments; for example,
Hu et al. [26] introduced a video triple model to obtain additional timestamp information,
thus extending behaviour recognition to workflow recognition. Moreover, with extensive
simulation experiments, it was shown that the algorithm is robust and efficient in the
recognition of real environments.

However, these algorithms have been shown to be only effective for short-term tem-
poral feature learning and are not applicable to long-term temporal feature encoding. With
the development of RNNs, LSTM networks suitable for long-term motion sequences have
been developed. They have been gradually applied to human action recognition, demon-
strating their ability to effectively alleviate the recognition problem of long-term motion
sequences [27,28]. Wang et al. [29] introduced long short-term memory (LSTM) to model
the high-level temporal features generated by a kinetically pretrained 3D CNN model, with
satisfactory results in the recognition and classification of long-term motion sequences.
However, the traditional frame-skipping pattern of LSTM [30] also limits performance in ac-
tion recognition. The problem of data redundancy accompanies the task of the recognition
of long-term motion action data.
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2.3. Action Recognition Based on Joint-Aware and Attention Mechanisms

In recent years, many researchers have turned their attention to joint-aware and atten-
tion mechanisms and have achieved good recognition performance in long-term temporal
reasoning tasks. Regarding joint-aware-based recognition methods, Oikonomou et al. [31]
argue that each action in real life can be effectively perceived by observing only a specific set
of joints and associate a specific joint with each action to point out the joint that contributes
the most; Shah et al. [32] separately extracted the motion features of each joint using a
motion encoder and then performed collective reasoning and selected the most discrimi-
native joint for the recognition task. Regarding recognition methods based on attention
mechanisms, Dai et al. [30] proposed an LSTM network based on end-to-end two-stream
attention, which can selectively focus on the effective features of the original input image
and give different levels of attention to the output of each depth feature map to effectively
improve the recognition performance of the model by adopting a visual attention mecha-
nism to address the problem that features of different frames have different learning roles;
Li et al. [33] proposed a spatio-temporal attention (STA) network to learn discriminative
feature representations of actions by representing useful information at the frame level and
channel level, which can be inserted into state-of-the-art 3D CNN architectures for video
action detection and recognition with better recognition performance; in the article [34], the
authors proposed a bi-directional long short-term memory (BiLSTM)-based attention mech-
anism. The attention mechanism is used to improve performance and extract additional
high-level selective action-related patterns and cues, thereby obtaining a high-performance
recognition model.

3. Keyframe-Based Human Action Recognition Method

We propose a key-frame-based human action recognition method, which consists of
two main components: a key-frame extraction method and a recognition model:

1. Unsupervised learning-based key-frame extraction method. An unsupervised seg-
mentation model based on the ARMA algorithm is used to automatically segment
complex motion sequences containing multiple actions into multiple sub-motion
sequences. The K-means clustering algorithm is then used to separately extract the
key motion frames from the segmented sub-action sample sequences. Finally, the
human action pose feature matrix is labelled and encoded by combining the temporal
features of the human motion sequences.

2. Selection and construction of recognition models. In this chapter, three models, HMM,
3D CNN, and LSTM, are employed for the recognition task, and the LSTM network
is improved by combining the attention mechanism and by designing an LSTM
network based on the key-frame attention mechanism, which further optimises the
LSTM network by redistributing the weights of the motion feature sequences using
the attention method based on key action frames. The network structure is further
optimised to improve the accuracy of human action recognition.

3.1. Construction of Skeletal Models and Feature Sequences

The primary task of recognition algorithms for human movements is to collect and
process the motion data of different behavioural actions. During human limb movements,
the angular information and spatial location information of the limb bones can be obtained
according to the different semantics and postures of the movements.

3.1.1. Structural Characterisation of the Human Body

The motion data collected using a MoCap device was processed in this study in a
manner consistent with previous work [15]. As shown in Figure 1 [15], the human skeleton
model is a tree-like hierarchical model that consists of a root node and multiple subtrees.
The entire skeleton model can be roughly divided into 18 bone segments, each of which has
a parent segment and a number of subsegments, with the parent segment and subsegments
being connected by joints. When the human body moves, the movement of individual limbs
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can be described as the movement of the bone segment of that limb relative to the joints of
its parent segment; human limbs periodically switch between flexed and extended postures,
and the limbs then show periodic changes that form correlations among limbs. For this
reason, limb segmentation angles are introduced to improve the semantic description of
motion sequences. In human model building, the hip node is usually chosen as the root
node of a tree human skeleton model, which constrains its children. The skeleton model is
represented by the coordinates of the spatial position of each joint point; therefore, data
on the rotation angle of each joint point need to be converted to the coordinates of the
joint point. xc

yc
zc

 = Mr ∗

Mr−1 ∗

. . . ∗

M2 ∗

M1 ∗

x0
y0
z0

, (1)

P = Proot + Or−1 + . . . + O2 + O1 + O0, (2)

where Mr is the rotation matrix of the joint point, Proot is the location of the root node,
and Or is the position of the child node relative to the parent node.

Figure 1. Basic human skeleton structure.

3.1.2. Construction of Feature Sequences

When the human body moves, the movement of each limb can be described as the
movement of that limb segment relative to the joints of its parent segment. In human body
modelling, the hip node is usually chosen as the root node of a tree human skeleton model,
which constrains its child nodes.

Before we can perform motion analysis, we need to construct the feature matrix. The
feature matrix is a prerequisite in machine learning and data analysis. It is a matrix made
up of the fusion of several features that contain key information of the data, with each row
representing a sample and each column representing a feature, and is one of the important
steps in machine learning and data analysis. In Tables 1–3, the calculation of each of the
three parts of a feature is expressed.

Table 1. Calculation of angle characteristics between adjacent bone segments.

Lower Limbs Upper Limbs

`ab:RHI to RK→RK to RA `e f :RUA to RDA→RDA to RH
`cd:LHI to LK→LK to LA `gh:LUA to LDA→LDA to LH
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Table 2. Calculation of the angle characteristics between limb bone segments and the central bone
segment.

Lower Limbs Upper Limbs

`a:RHI to RK→Central `e:RUA to RDA→Central
`b:RK to RA→Central ` f :RDA to RH→Central
`c:LHI to LK→Central `g:LUA to LDA→Central
`d:LK to LA→Central `h:LDA to LH→Central

Central:R→S

Table 3. Calculation of the spatial distance characteristics from the midpoint of each bone segment to
the central node (hip node).

Lower Limbs Upper Limbs

d1:Midpoint (RHI to RK)→Central d5:Midpoint (RUA to RDA)→Central
d2:Midpoint (RK to RA)→Central d6:Midpoint (RDA to RH)→Central
d3:Midpoint (LHI to LK)→Central d7:Midpoint (LUA to LDA)→Central
d4:Midpoint (LK to LA)→Central d8:Midpoint (LDA to LH)→Central

Central node:R

The angular characteristics of the movement of the different bone segments are de-
termined by the variation in the size of the angle between the individual bone segments.
The calculation of the size of the angle between the bone segments of the limbs and the
central bone segment, and that of the size of the angle between adjacent bone segments of
the limbs are as follows:

θAB =< θA, θB >= arc cos(
θA ∗ θB
|θA||θB|

),

θB =< θi, θj >= arc cos(
θi ∗ θj

|θi||θj|
),

(3)

where θ ∈ [0, 180◦], θA is the direction vector on the central spinal bone segment partition,
and θB = {θa, θb, . . . , θh} is the direction vector on each limb partition of the body.

The three-dimensional spatial characteristics of the movement of the different bone
segments are determined by the variation in the magnitude of the spatial position distance
between the individual limb bone segments and the central node. The calculation of the
spatial position distances between the nodes is as follows:

d =
√(

xi−xj
)2

+
(
yi−yj

)2
+
(
zi−zj

)2, (4)

where Xi = (xi, yi, zi) and Xj =
(

xj, yj, zj
)

are the 3D spatial position coordinates of the
central node of the human skeleton (hip node) and the 3D spatial position coordinates of
each limb bone segment in the Cartesian coordinate system, respectively.

3.2. Key-Frame Extraction Method Based on Unsupervised Learning Model

The key-frame extraction technique [35] is a technique used to extract the most infor-
mative frames and eliminate pose redundancy. Various types of motion capture devices
often use high sampling frequencies for sampling human motion pose data, with the ac-
companying disadvantage of generating a large number of repetitive redundant frames
when data are collected for certain simple movements. This also has a negative impact on
the efficiency of the execution of the subsequent model processing part. Therefore, it is
essential to extract key frames from human motion data.
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3.2.1. Segmentation of Human Limb Movement Sequences

In our previous work [15], we proposed an unsupervised segmentation algorithm
based on the structural representation of the angle between limb bone segments and the
fitting of an autoregressive moving average (ARMA) model. We combined the predictive
and fitting properties of the ARMA model in time series with the regularity of human
motion in time series. Temporal inflection points in human motion sequences are calculated,
and inflection points are identified and extracted using an adaptation algorithm to achieve
motion sequence segmentation. The method overcomes the limitation that the ARMA
model is only applicable to short-term sequence prediction and allows the ARMA model to
perform long-motion-sequence segmentation.

Firstly, regarding the ARMA model, it is an important model for the study of time
series. It consists of an autoregressive (AR) model and a moving average (MA) model. In
the ARMA model, the data of variable Yt at any time t is represented as its observation
sequence Yt−1, Yt−2, . . . , Yt−p and historical random disturbance sequence εt−1, εt−2, . . ..
The linear combination of εt−q.. ARMA(p, q) is given in Equation (5).

Yt = AR + MA,

AR = c + β1Yt−1 + β1Yt−2 + . . . + βpYt−p,

MA = λ1εt + λ2εt−2 + . . . + λqεt−q + c,

(5)

where p and q are the orders of AR and MA, respectively; βp and λq are the calculated
coefficients of AR and MA, respectively; and c is the residual constant.

Secondly, the angle characteristics between each limb bone segment and the central
spinal bone segment in the human limb movement sequence are combined in the ARMA
model [15]. The ARMA model for clip angle series is represented by Equation (6).

θit = βi0 + βi1 θi(t−1)
+ βi2 θi(t−2)

+ . . . + βin θi(t−n)
+ Zit , (6)

where θi are the fitted data of the limb bone segment angle, βin is the linear approximation
factor, and Zit is the residual.

After ARMA model fitting is completed for the motion sequence, a suitable segmen-
tation window is selected, and the segmentation points of the limb bone angle feature
sequence are calculated according to the ARMA model. In this work, the limb bone angle
information sequence of human skeletal posture is extracted, and the median filtering
method is used to obtain the final set of segmentation points.

Si = [Sa, Sb, Sc, Sd] =


Sa1 Sb1 Sc1 Sd1

Sa2 Sb2 Sc2 Sd2

Sa3 Sb3 Sc3 Sd3

Sa4 Sb4 Sc4 Sd4

,

s = median(Si).

(7)

After automatically segmenting a complex motion sequence containing multiple
actions into multiple sub-action sequences using the above segmentation method, a K-
means clustering algorithm is used to extract key frames from the sub-action sequences.
The K-means algorithm is an unsupervised learning algorithm [36] that is characterised by
its simplicity of implementation and good clustering effect. The algorithm has a wide range
of applications, and secondly, the K-means algorithm can effectively categorise similar
frames in the motion sequence to achieve the purpose of key-frame extraction.

The K-means algorithm works by dividing the dataset into k class clusters, with the
motion frames in each class cluster being the closest to the centroid of that cluster. For a
sequence of features of motion U = [u1, u2, . . . , un] as input to the model, let each of these
samples be of the same dimension and have the set of class clusters C = [c1, c2, . . . , cn]. The
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K-means algorithm can partition these n samples into k class clusters, where 1 < k < n, such
that the intra-class sum of squared errors E is minimized.

E =
k

∑
i=1

∑
x∈Ci

‖x− µi‖2, (8)

where µi is the mean vector of class cluster Ci, i.e., the centre of mass of the class cluster,
and the calculation of µi is given by Equation (9).

µi =
∑x∈Ci

X
|Ci|

. (9)

During the execution of the algorithm, k points are randomly selected as the initial
clustering centres; then, for each point in the dataset, it is calculated which centroid it is the
closest to. In research, the Euclidean distance is one of the most commonly used measures
of spatial distance, and the method is universal and applicable in all three dimensions.

dij =
∥∥µi − µj

∥∥2
2 (10)

where µi and µj are the mean vectors of class clusters Ci and Cj, respectively. All sample
points in C are recalculated with a new centre of mass, µj, until all the centre-of-mass vectors
no longer change and the final output is the reclassified class cluster C = [ĉ1, ĉ2, . . . , ĉk]. The
determined k centre of mass is extracted as the key frame of this motion feature sequence.

3.2.2. Feature Coding Based on Motion Timing Features

In this chapter, the dimensionality of the motion feature matrix is reduced using label
coding, and the key gestures of the extracted human actions are coded and assigned, so
that the original sequence of feature vectors representing the action gestures is transformed
into a sequence of digital codes, reducing the computational complexity to improve the
rate of recognition of human actions. In the process of building the code table, we need
to analyse the temporal characteristics of the movements in order to better encode them,
as they have temporal characteristics. Taking walking as an example, Figure 2 shows the
temporal angular characteristics of the human limbs during walking, from which it can
be observed that the bone partitions of the same limb have a cyclical and causal nature
in the temporal sequence. This can be used as a basis for determining the type of key
gesture features.

For codebook building, a feature vector of key action gestures is first defined as Fak,
where a denotes the a action type and k denotes the k class of key gestures. The code table
(codebook (CB)) contains the feature vectors of all action-critical poses, so the code table is
also defined as CB = {Fik}, i = 1, . . . , I. The feature vectors of key action gestures in the
code table are arranged according to the temporal order of the training sample data and
include a total of k feature vectors. These key gestures are assigned as 1,2,. . . ,K. The key
gestures of different action types are converted into numerical sequences {c1, c2, . . . , cr},
thus achieving the purpose of encoding and allowing the human motion analysis method
of this paper to be better generalised to various behavioural tasks.
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(a) Right leg angle feature (b) Left leg angle feature

(c) Right arm angle feature (d) Left arm angle feature

Figure 2. Confusion matrix of recognition accuracy for each model.

3.3. LSTM Based on Key-Frame Attention Module

After the processing of human movement data using the modules mentioned above,
we combined LSTM networks and introduced an attention mechanism to build a human
dynamic action pose recognition model, named KF-LSTM (key-frame LSTM).

In this work, we used the LSTM network structure shown in Figure 3. A sequence
of sample motion features of length N and dimension 20 was fed into the Bi-LSTM layer
along with a sequence of labels of length N and dimension 1 containing 20 classes of action
states. Feature sequences with 128 hidden states were obtained. The fully connected layer
(FC) was then used to output a trained state matrix of length N and dimension 20. The
output of the network was converted into a probability vector for each type of action state
using a softmax layer. Finally, the relevant parameters of the different action types were
obtained using a classification layer.

When training samples using LSTM networks [30], we have found that many action
frames provide the same useful information on a large number of motion data and that
some impressive action frames may contain the most discriminative information capable of
recording the main action. We, therefore, used a key-frame-based attention mechanism for
attention allocation and aggregated motion feature representations with different weights
to reduce information fragmentation. Introducing attention into the human action model so
that it gives more attention to key frames allows more effective human motion recognition
to be achieved. Figure 4 shows a walking action sequence after extracting the key frames.

In the recognition task based on the KF-LSTM network, 11 representative human bone
segments throughout the human body were selected in this paper to build the skeleton
model of the human body, and the feature sequences were built according to this method.
In this paper, the attention mechanism was applied to assign weights to the key frames gen-
erated under different types of motion. The attention mechanism is a weighted summation
and a weighting mechanism that filters and extracts frames in the sequence that are more
similar to the key frames and then reallocates the weights of these frames according to the
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weighting values based on the attention mechanism. Specifically, the similarity of different
frames to key frames in the feature sequence is used to determine their weighting in the
reallocated weighting ratio.

Figure 3. LSTM network architecture.

Figure 4. Note the walking action sequence after key-frame extraction.

The black skeleton image in Figure 4 is a normal frame in the walking sequence,
and the red skeleton image is a key frame given a higher weight with the addition of the
attention mechanism.

Assuming that the total number of frames of feature sequence U is n, the transformed
feature sequence U′ is obtained according to Equation (11) as

U′ = [α1U1,α2U2, . . . , αiUi,, . . . αnUn], (11)

where Ui is the feature sequence before processing and αi is the weight of each action frame.
The key to the method is to calculate the appropriate αi.

Qi is the degree of correlation between each frame in the feature sequence and the
key frame. When the degree of relevance is higher, the corresponding frame is assigned
a higher weight value; when the degree of relevance is lower, the corresponding frame is
assigned a lower weight value. The relevant calculation is given in Equation (12).

Qi =
cov(Ui, Lj)

σUσL
, i ∈ [1, n]; j ∈ [1, 4], (12)

where cov(•, •) is the covariance between the normal frames and the key frames in the
feature sequence, σU is the standard deviation of the normal frames in the feature sequence,
and σL is the standard deviation of the key frames. After obtaining correlation degree Qi
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between each frame in the feature sequence and the key frame, the weight value is assigned
to each frame in the final step.

αi = f (Qi, Ui), (13)

where f (•) is the weight assignment function between frames based on correlation Qi
and α denotes the output probability of the current sequence. It represents the final state
of the action in the motion sequence and is used as the attention weight value for each
action frame.

After assigning different weight scales to the action frames in the motion sequence,
the action sequences with the noted weight values and the corresponding label numbers
are fed into the LSTM network for training; the action frames with larger weight values
receive a larger proportion of network training, and the action frames carrying more useful
information are more likely to be output as recognition results. This greatly improves data
utilisation and the performance of the recognition model.

4. Experimental Results and Analysis
4.1. Experimental Platform and Data Acquisition

This study used the Matlab-based data analysis programming language for network
construction and algorithm design, and Axis Neuron Pro motion capture software (V2.10)
for BVH data file exporting. A Perception Neuron Pro inertial motion capture device by
Noitom was also used for data acquisition.

In order to design and evaluate the proposed action recognition system, MoCap data
were measured on four subjects, including three males and one female. MoCap data [15]
were collected with the Perception Neuron Pro model IMU MoCap device by Noitom Co.
(Beijing, China). This device contained 17 IMUs and was located at the reference locations
in Figure 5 [37]. Each IMU included internal adaptive filters and was calibrated before each
measurement. Then, for motion segmentation analysis, the measurements were considered
to contain negligible noise and bias effects. The sampling frequency of the measurements
was configured to 100 Hz to cover the bandwidth of the body’s major joint movements.
Figure 6 shows the different types of action postures measured, including walking, running,
hand raising, squatting, and leg lifting. In this work, the MoCap data we used referred
to the human body as the experimental subject. The work in this paper is non-medically
related research work; all the sensors were simply mounted on the body surface, and the
human pose was recorded with the work of the sensor algorithm.

Figure 5. Diagram of the sensor wearing positions.
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(a) Walking (b) Running (c) Raising hands (d) Squatting

(e) Leg raising

Figure 6. Different motion postures in motion sequences.

4.2. Analysis of Motion Sequence Segmentation Point Results

Figure 7 shows the waveforms of the angular features between adjacent bone segments
in the human motion sequence in the time sequence. According to the variation in the
angular magnitude, we can observe that this is a complex motion sequence containing
multiple actions and that there are similar signal waveforms for different types of actions.
There are often large errors in the localisation of action intervals, leading to the problem of
confusion between frames in the time sequence on the subsequent clustering task, which
has a serious impact on the clustering effect of the model. This has a serious impact on the
clustering effect of the model. Therefore, we need to segment complex motion sequences
before clustering and feature coding.

Figure 7. Characteristics of the angle between adjacent bone segments in the human motion sequence.

Figure 8 shows the segmentation points obtained after the calculation of the motion
sequence performed by the ARMA-based automatic segmentation model, the segmentation
of the motion sequence conducted by observing the presence of inflection points in the
sequence, and finally the segmented segment-by-segment action sequence.
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Figure 8. Determination of the segmentation points of the motion sequence.

4.3. Analysis of Clustering Results

Figure 9 shows the clustering results of the K-means algorithm on which this ex-
periment was based. We used the pre-set parameters shown in Table 4 to cluster the
motion sequences.

Table 4. K-means clustering parameter settings.

Parameter Value

Input data dimension 20
Number of samples (frames) 234,000

Number of clusters 4
Action type 5

In this part of the work, we used the elbow method [38] to measure the cohesion
of clusters and thus evaluate the clustering effectiveness of the K-means algorithm. The
cohesiveness of a cluster is a key indicator of how closely related data are in the cluster.
The core idea of the elbow method is that the larger the number of k class clusters is and
the finer the sample division is, the more clustering each class gradually increases, and the
progressively smaller the sum of squared errors naturally becomes. In the elbow method,
the WSS derived from Equation (14) is used as an assessment indicator of the cohesiveness
of class clusters.

WSS = ∑
i

∑
x∈Ci

(x− µi)
2, (14)

The results of the elbow method on the five movements of walking, running, hand
raising, squatting, and leg lifting are shown in Figure 10, where the y-axis labels are the
WSS values and the x-axis labels are the values of the number of class clusters, k. It can be
noted that there is a clear point of inflection for individual movements when the number of
class clusters, k, is four. By continuing to increase the value of k after this point, there is no
longer a significant change in intra-class error.
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Figure 9. Distribution of clustering results for sample action sequences.

 

 

(a) Walking

 

 

(b) Running

 

 

(c) Raising of the hand

 

 

(d) Squatting

 

 

(e) Leg raising

Figure 10. Results of the elbow method based on various types of movements.

4.4. KF-LSTM Parameter Setting

In general, the parameters of a network training model need to be set before training
is considered. The selection of a reasonable set of parameters often enables the learning
efficiency and training results of the network model to be optimized. The parameter settings
for the network model in this paper are shown in Table 5 below.

Table 5. Training parameter setting.

Parameter Value

Input size 20
Number of label categories 20

Max epochs 200
Input data number (frames) 234,000

Number of test sets 40
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For training, we combined the processed motion data into a total training packet of
approximately 234,000 frames, which was fed into the network for training. In order to
improve the efficiency of data utilisation, a strategy of extracting 1 frame every 5 frames
was used, resulting in a total training packet of approximately 46,700 frames. For the tests,
the total number of test sets was 40, and the length of each test sequence was between 500
and 1600 frames. After the frame-drawing strategy, the length of each test sequence was
between 100 and 400 frames.

4.5. Setting and Analysis of Correlation Recognition Models

To verify the recognition effectiveness of the proposed recognition method in this
study on five action types, we compared it with an HMM-based approach [39], a 3D CNN-
based approach [9], and a dual-stream attention-based LSTM approach [30] on human
action recognition tasks for experimental and analytical discussion.

4.5.1. Identification Method Based on HMM Algorithm

In this study, the traditional HMM algorithm [39] was used in conjunction with a
motor action database to perform the task of action recognition on test samples containing
five types of actions: walking, running, hand raising, squatting, and leg lifting. For the
human action recognition task, we used a left-to-right polymorphic Markov model. For a
finite number of different pose states S = {S1, S2, . . . SN}, N is the number of states in the
model, and the state at moment n can only be one of {S1, S2, . . . SN}. For a random vector
O = [O1, O2, . . . OT ], where T represents the length of the time series, each observation
vector has a corresponding output probability for a different state. Each action can be
effectively modelled by a set of Hidden Markov Model parameters as λ = (A, B, π).
The Bayesian rule P(Oi|λ) (where parameter A is a matrix representing the state transfer
probabilities, parameter π is the initial state distribution probability, and parameter B
represents the output probability of all states) is used as a way to calculate the probability
of the actions generated by this model.

Let us suppose that the frequency count of the sample transfer from hidden state Si to
Sj is Aij; then, the calculation of the state transfer matrix is given by Equation (15).

A =
[
aij
]
,

aij =
Aij

∑N
s=1 Ais

.
(15)

Let us suppose that the sample hidden state is Sj and the frequency count of observa-
tion state ok is Bjk. We compare the similarity between each action frame in the observed
state O = [O1, O2, . . . OT ] and the 20 types of key action frames extracted before using (14)
to obtain the output probability of all states.

r = ∑m ∑n (Amn−Ā)(Bmn−B̄)√(
∑m ∑n (Amn−Ā)

2
)(

∑m ∑n (Bmn−B̄)2
) , (16)

where m and n represent the rows and columns of each action frame, and Ā and B̄ are the
mean values of the state matrix and observation matrix, respectively.

Let us suppose that the frequency count of all samples with initial hidden state Si is
C(i); then, the initial probability distribution is Equation (17).

π(i) =
C(i)

∑N
S=1 C(s)

. (17)
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4.5.2. Recognition Method Based on 3D CNN

When using the 3D CNN approach [9] for recognition tasks, 3D convolution is achieved
by convolving 3D kernels into a cube formed by superimposing multiple consecutive frames
on top of each other. As shown in Figure 11, the input data dimension of each network
layer is N × C× T ×V ×M, where N is the batch size of the data entering the network, C
refers to the dimensional size of the features in each node, T refers to the maximum number
of frames per sample sequence input, V refers to the number of nodes, and M refers to
the number of coordinates. The input initial dimensions are 4× 1× 400× 18× 3, and the
features in spatial and temporal dimensions are extracted using four convolutional layers
with convolutional kernel size (3, 3, 1) and convolutional kernel step (1, 1, 1), pooled, and
then connected to a linear layer for classification, using cross-entropy as the loss function,
finally obtaining a 4× 5 category probability matrix; the maximum value of this dimension
is taken as the final classification result.

Figure 11. Three-dimensional CNN architecture for human action recognition.

4.6. Experimental Results and Analysis of the Recognition Tasks

This experiment separately tested each recognition method using the test set, and the
results are shown in the confusion matrix plot in Figure 12.

Figure 12 shows the confusion matrix for the recognition accuracy of the HMM-based
method, the 3D CNN-based method, the dual-stream attention-based LSTM method, and
our method on five types of action: walking, running, hand raising, squatting, and kicking.
The numbers on the diagonal are the accuracy rates for each type of action. We take the
average of the numbers on the diagonal of each confusion matrix as the average recognition
accuracy of each recognition model. Table 6 demonstrates average recognition accuracy
rates of 72.0% for the HMM-based method, 80.0% for the 3D CNN-based method, 91.6%
for the dual-stream attention-based LSTM, and 94.0% for our method. It can be found that
the recognition system constructed in this paper has high accuracy in the recognition task.
Compared with past LSTM-based methods, it has gained some performance improvement
and achieved the expected recognition results.

The HMM-based method has good results in the recognition tasks of walking, running,
and hand raising. However, the recognition of the squatting and leg-lifting movements
is too poor. This is due to the fact that HMM is an algorithm that relies entirely on the
statistical characteristics of the data, and the parameters need to be set in the context of
an existing action database, which may have a large bias towards the real environment.
Moreover, the calculation of the probability distribution matrix relies on the judgement of
similarity. In particular, for the leg-lifting action, there is an excessive correlation with the
walking action. This also leads to the fact that purely statistical features cannot correctly
determine the action category as a motion sequence of leg lifting. Regarding the 3D
CNN-based approach, it has good recognition results in the recognition tasks of the action
categories of hand raising, squatting, and kicking. However, in the recognition of the
two movements of walking and running, there is a problem of mutual interference. This
is also due to the high similarity between the two types of movement, and the model
misidentified some of the test datasets as walking or running movements. The dual-
stream attention-based LSTM approach worked well for the recognition of each action type.
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However, relatively speaking, the method is slightly less effective than our method in the
recognition of leg-lifting movements. Regarding our proposed recognition method, it can
be found that the method has the highest recognition accuracy in the walking action type
and has better recognition performance than other models in other actions. By comparing
the overall recognition accuracy, it can be found that our method outperforms several
other recognition methods in all recognition tasks, better recognises human action posture
features in different motion states, and improves recognition accuracy.
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Figure 12. Confusion matrix for recognition accuracy of different recognition methods.

Table 6. Comparison of average recognition accuracy.

Method Average
HMM 72.0%

3D CNN 80.0%
LSTM 91.6%

KF-LSTM 94.0%

5. Conclusions

Performance improvement has always been a concern in human action recognition
research. For our proposed recognition method, we first designed a key-frame extraction
method based on the automatic segmentation model and the K-means clustering algorithm,
which can accurately extract key frames of different actions and avoid inter-frame confusion
between different key action frames and provides a reliable guarantee for the accuracy
and robustness of the subsequent action recognition task of the KF-LSTM network. At the
same time, we further optimised the network structure by combining the key-frame-based
attention mechanism with the previous LSTM-based recognition method to construct a
key-frame-based attention LSTM network. In the experimental section, we analyse and
discuss the calculation of segmentation points, the clustering effect, and the comparison
of the recognition accuracy of different recognition models. In this section, the calculation
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process and results of the segmentation points are analysed; the variation in model per-
formance and the rationality of K-means clustering with different K values are verified;
finally, the recognition accuracy of our method is compared with that of several other
methods using a test dataset containing five different motion states. The experimental
results demonstrate that our method outperforms similar recognition models in terms of
recognition performance and has better results in human motion recognition.

In the present work, only five different types of movement were used for the task of
action recognition for experimentation and analysis, and in future work, additional types
of movement will be considered to further improve research on relevant methods.

Author Contributions: Conceptualization, C.Y., F.M. and L.L.; methodology, C.Y. and F.M.; software,
C.Y.; validation, C.Y., L.L. and T.Z.; formal analysis, C.Y. and L.L.; investigation, C.Y.; resources, C.Y.,
F.M. and L.L.; data curation, C.Y.; writing—original draft preparation, C.Y.; writing—review and
editing, C.Y., L.L. and T.Z.; visualization, C.Y. and F.M.; supervision, L.L., J.T., N.J. and T.Z.; project
administration, L.L.; funding acquisition, L.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded by Major Discipline Academic and Technical Leaders Training
Program of Jiangxi Province (grant No. 20225BCJ22012), National Nature Science Foundation of China
(grant No. 61801180), and Jiangxi Provincial Nature Science Foundation (grant No. 20202BAB202003).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All measurement data in this paper are listed in the content of the
article, which can be used by all peers for related research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Antonik, P.; Marsal, N.; Brunner, D.; Rontani, D. Human action recognition with a large-scale brain-inspired photonic computer.

Nat. Mach. Intell. 2019, 1, 530–537. [CrossRef]
2. Kwon, Y.; Kang, K.; Bae, C. Unsupervised learning for human activity recognition using smartphone sensors. Expert Syst. Appl.

2014, 41, 6067–6074. [CrossRef]
3. Wang, P.; Liu, H.; Wang, L.; Gao, R.X. Deep learning-based human motion recognition for predictive context-aware human-robot

collaboration. CIRP Ann. 2018, 67, 17–20. [CrossRef]
4. Barnachon, M.; Bouakaz, S.; Boufama, B.; Guillou, E. Ongoing human action recognition with motion capture. Pattern Recognit.

2014, 47, 238–247. [CrossRef]
5. Xia, L.; Chen, C.C.; Aggarwal, J.K. View invariant human action recognition using histograms of 3d joints. In Proceedings of the

2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, 16–21
June 2012; pp. 20–27.

6. Mozafari, K.; Moghadam Charkari, N.; Shayegh Boroujeni, H.; Behrouzifar, M. A novel fuzzy hmm approach for human
action recognition in video. In Proceedings of the Knowledge Technology Week, Kajang, Malaysia, 18–22 July 2011; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 184–193.

7. Li, X.; Zhang, Y.; Liao, D. Mining key skeleton poses with latent svm for action recognition. Appl. Comput. Intell. Soft Comput.
2017, 2017, 5861435 . [CrossRef]

8. Kansizoglou, I.; Bampis, L.; Gasteratos, A. Deep feature space: A geometrical perspective. IEEE Trans. Pattern Anal. Mach. Intell.
2021, 44, 6823–6838. [CrossRef]

9. Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach.
Intell. 2012, 35, 221–231. [CrossRef]

10. Tang, P.; Wang, H.; Kwong, S. Deep sequential fusion LSTM network for image description. Neurocomputing 2018, 312, 154–164.
[CrossRef]

11. Liu, L.; Shao, L.; Rockett, P. Boosted key-frame selection and correlated pyramidal motion-feature representation for human
action recognition. Pattern Recognit. 2013, 46, 1810–1818. [CrossRef]

12. Jiang, M.; Pan, N.; Kong, J. Spatial-temporal saliency action mask attention network for action recognition. J. Vis. Commun. Image
Represent. 2020, 71, 102846. [CrossRef]

13. Li, Q.; Lin, W.; Li, J. Human activity recognition using dynamic representation and matching of skeleton feature sequences from
RGB-D images. Signal Process. Image Commun. 2018, 68, 265–272. [CrossRef]

http://doi.org/10.1038/s42256-019-0110-8
http://dx.doi.org/10.1016/j.eswa.2014.04.037
http://dx.doi.org/10.1016/j.cirp.2018.04.066
http://dx.doi.org/10.1016/j.patcog.2013.06.020
http://dx.doi.org/10.1155/2017/5861435
http://dx.doi.org/10.1109/TPAMI.2021.3094625
http://dx.doi.org/10.1109/TPAMI.2012.59
http://dx.doi.org/10.1016/j.neucom.2018.05.086
http://dx.doi.org/10.1016/j.patcog.2012.10.004
http://dx.doi.org/10.1016/j.jvcir.2020.102846
http://dx.doi.org/10.1016/j.image.2018.06.013


Electronics 2023, 12, 2622 19 of 20

14. Zhu, G.; Zhang, L.; Shen, P.; Song, J. Human action recognition using multi-layer codebooks of key poses and atomic motions.
Signal Process. Image Commun. 2016, 42, 19–30. [CrossRef]

15. Mei, F.; Hu, Q.; Yang, C.; Liu, L. ARMA-Based Segmentation of Human Limb Motion Sequences. Sensors 2021, 21, 5577. [CrossRef]
16. Cheng, Y.B.; Chen, X.; Chen, J.; Wei, P.; Zhang, D.; Lin, L. Hierarchical transformer: Unsupervised representation learning for

skeleton-based human action recognition. In Proceedings of the 2021 IEEE International Conference on Multimedia and Expo
(ICME), Shenzhen, China, 5–9 July 2021; pp. 1–6.

17. Ramasamy Ramamurthy, S.; Roy, N. Recent trends in machine learning for human activity recognition—A survey. Wiley
Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1254. [CrossRef]

18. Wang, Y.; Sun, S.; Ding, X. A self-adaptive weighted affinity propagation clustering for key frames extraction on human action
recognition. J. Vis. Commun. Image Represent. 2015, 33, 193–202. [CrossRef]

19. Gharahbagh, A.A.; Hajihashemi, V.; Ferreira, M.C.; Machado, J.J.; Tavares, J.M.R. Best Frame Selection to Enhance Training Step
Efficiency in Video-Based Human Action Recognition. Appl. Sci. 2022, 12, 1830. [CrossRef]

20. Cho, T.Z.W.; Win, M.T.; Win, A. Human Action Recognition System based on Skeleton Data. In Proceedings of the 2018 IEEE
International Conference on Agents (ICA), Salt Lake City, UT, USA, 18–22 June 2018; pp. 93–98.

21. Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep learning for sensor-based activity recognition: A survey. Pattern Recognit. Lett.
2019, 119, 3–11. [CrossRef]

22. Zhang, H.B.; Zhang, Y.X.; Zhong, B.; Lei, Q.; Yang, L.; Du, J.X.; Chen, D.S. A comprehensive survey of vision-based human action
recognition methods. Sensors 2019, 19, 1005. [CrossRef]

23. Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal features with 3d convolutional networks. In
Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 11–18 December 2015; pp. 4489–4497.

24. Zhu, Y.; Lan, Z.; Newsam, S.; Hauptmann, A. Hidden two-stream convolutional networks for action recognition. In Proceedings
of the Asian Conference on Computer Vision, Perth, Australia, 2–6 December 2018; Springer: Berlin/Heidelberg, Germany, 2018;
pp. 363–378.

25. Sarabu, A.; Santra, A.K. Distinct two-stream convolutional networks for human action recognition in videos using segment-based
temporal modeling. Data 2020, 5, 104. [CrossRef]

26. Hu, H.; Cheng, K.; Li, Z.; Chen, J.; Hu, H. Workflow recognition with structured two-stream convolutional networks. Pattern
Recognit. Lett. 2020, 130, 267–274. [CrossRef]

27. Meng, B.; Liu, X.; Wang, X. Human action recognition based on quaternion spatial-temporal convolutional neural network and
LSTM in RGB videos. Multimed. Tools Appl. 2018, 77, 26901–26918. [CrossRef]

28. Yue-Hei Ng, J.; Hausknecht, M.; Vijayanarasimhan, S.; Vinyals, O.; Monga, R.; Toderici, G. Beyond short snippets: Deep networks
for video classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 4694–4702.

29. Wang, X.; Miao, Z.; Zhang, R.; Hao, S. I3d-lstm: A new model for human action recognition. In Proceedings of the IOP Conference
Series: Materials Science and Engineering, Kazimierz Dolny, Poland, 21–23 November 2019; IOP Publishing: Bristol, UK, 2019;
Volume 569, p. 032035.

30. Dai, C.; Liu, X.; Lai, J. Human action recognition using two-stream attention based LSTM networks. Appl. Soft Comput. 2020,
86, 105820. [CrossRef]

31. Oikonomou, K.M.; Kansizoglou, I.; Manaveli, P.; Grekidis, A.; Menychtas, D.; Aggelousis, N.; Sirakoulis, G.C.; Gasteratos, A.
Joint-Aware Action Recognition for Ambient Assisted Living. In Proceedings of the 2022 IEEE International Conference on
Imaging Systems and Techniques (IST), Kaohsiung, Taiwan, 21–23 June 2022; pp. 1–6.

32. Shah, A.; Mishra, S.; Bansal, A.; Chen, J.C.; Chellappa, R.; Shrivastava, A. Pose and joint-aware action recognition. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 4–8 January 2022; pp. 3850–3860.

33. Li, J.; Liu, X.; Zhang, W.; Zhang, M.; Song, J.; Sebe, N. Spatio-temporal attention networks for action recognition and detection.
IEEE Trans. Multimed. 2020, 22, 2990–3001. [CrossRef]

34. Muhammad, K.; Ullah, A.; Imran, A.S.; Sajjad, M.; Kiran, M.S.; Sannino, G.; de Albuquerque, V.H.C. Human action recognition
using attention based LSTM network with dilated CNN features. Future Gener. Comput. Syst. 2021, 125, 820–830. [CrossRef]

35. Yasin, H.; Hussain, M.; Weber, A. Keys for action: An efficient keyframe-based approach for 3D action recognition using a deep
neural network. Sensors 2020, 20, 2226. [CrossRef]

36. Sinaga, K.P.; Yang, M.S. Unsupervised K-means clustering algorithm. IEEE Access 2020, 8, 80716–80727. [CrossRef]
37. Axis Neuron User Guide. Available online: https://support.neuronmocap.com/hc/en-us/articles/10037078429595-Axis-

Neuron-User-Guide (accessed on 6 June 2023).

http://dx.doi.org/10.1016/j.image.2016.01.003
http://dx.doi.org/10.3390/s21165577
http://dx.doi.org/10.1002/widm.1254
http://dx.doi.org/10.1016/j.jvcir.2015.09.013
http://dx.doi.org/10.3390/app12041830
http://dx.doi.org/10.1016/j.patrec.2018.02.010
http://dx.doi.org/10.3390/s19051005
http://dx.doi.org/10.3390/data5040104
http://dx.doi.org/10.1016/j.patrec.2018.10.011
http://dx.doi.org/10.1007/s11042-018-5893-9
http://dx.doi.org/10.1016/j.asoc.2019.105820
http://dx.doi.org/10.1109/TMM.2020.2965434
http://dx.doi.org/10.1016/j.future.2021.06.045
http://dx.doi.org/10.3390/s20082226
http://dx.doi.org/10.1109/ACCESS.2020.2988796
https://support.neuronmocap.com/hc/en-us/articles/10037078429595-Axis-Neuron-User-Guide
https://support.neuronmocap.com/hc/en-us/articles/10037078429595-Axis-Neuron-User-Guide


Electronics 2023, 12, 2622 20 of 20

38. Saputra, D.M.; Saputra, D.; Oswari, L.D. Effect of distance metrics in determining k-value in k-means clustering using elbow and
silhouette method. In Proceedings of the Sriwijaya International Conference on Information Technology and Its Applications
(SICONIAN 2019), Palembang, Indonesia, 16 November 2019; Atlantis Press: Amsterdam, The Netherlands, 2020; pp. 341–346.

39. Li, N.; Xu, D. Action recognition using weighted three-state Hidden Markov Model. In Proceedings of the 2008 9th International
Conference on Signal Processing, Beijing, China, 26–29 October 2008; pp. 1428–1431.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Related Work
	Traditional Machine Learning and Hand-Crafted Feature-Based Action Recognition
	Deep Learning-Based Action Recognition
	Action Recognition Based on Joint-Aware and Attention Mechanisms

	Keyframe-Based Human Action Recognition Method
	 Construction of Skeletal Models and Feature Sequences
	Structural Characterisation of the Human Body
	Construction of Feature Sequences

	Key-Frame Extraction Method Based on Unsupervised Learning Model
	 Segmentation of Human Limb Movement Sequences
	 Feature Coding Based on Motion Timing Features

	LSTM Based on Key-Frame Attention Module

	Experimental Results and Analysis
	Experimental Platform and Data Acquisition
	Analysis of Motion Sequence Segmentation Point Results
	Analysis of Clustering Results
	KF-LSTM Parameter Setting
	Setting and Analysis of Correlation Recognition Models
	Identification Method Based on HMM Algorithm
	Recognition Method Based on 3D CNN

	Experimental Results and Analysis of the Recognition Tasks

	Conclusions
	References

