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Abstract: Internet of Things (IoT) is a massive network based on tiny devices connected internally
and to the internet. Each connected device is uniquely identified in this network through a dedicated
IP address and can share the information with other devices. In contrast to its alternatives, IoT
consumes less power and resources; however, this makes its devices more vulnerable to different
types of attacks as they cannot execute heavy security protocols. Moreover, traditionally used heavy
protocols for web-based communication, such as the Hyper Text Transport Protocol (HTTP) are quite
costly to be executed on IoT devices, and thus specially designed lightweight protocols, such as
the Constrained Application Protocol (CoAP) are employed for this purpose. However, while the
CoAP remains widely-used, it is also susceptible to attacks, such as the Distributed Denial-of-Service
(DDoS) attack, which aims to overwhelm the resources of the target and make them unavailable
to legitimate users. While protocols, such as the Datagram Transport Layer Security (DTLS) and
Lightweight and the Secure Protocol for Wireless Sensor Network (LSPWSN) can help in securing
CoAP against DDoS attacks, they also have their limitations. DTLS is not designed for constrained
devices and is considered as a heavy protocol. LSPWSN, on the other hand, operates on the network
layer, in contrast to CoAP which operates on the application layer. This paper presents a machine
learning model, using the CIDAD dataset (created on 11 July 2022), that can detect the DDoS attacks
against CoAP with an accuracy of 98%.

Keywords: denial-of-service; IoT attacks; CoAP security; application layer; DTLS

1. Introduction

IoT is a massive network that connects low power and low resource devices to the
internet and enables them to communicate with each other without human intervention [1].
The number of IoT devices is growing and is expected to reach approximately 75 billion by
the year 2025 [2]. As a result, it can be stated that IoT will lead the development of a smarter
world in the upcoming decades in different fields, such as smart homes, smart industries,
and smart healthcare [3]. IoT relies on different protocols to exchange information between
the devices and the internet, and is composed of three layers, the perception layer which
includes sensors that gather data from the environment, the network layer which receives
data from sensors and processes them accordingly, and finally, the application layer which
receives information from the network layer [4]. In terms of communication protocols,
there are different protocols that operate on the application layer, including CoAP, Message
Queuing Telemetry Transport (MQTT), and Advanced Message Queuing Protocol (AMQP).
Nevertheless, CoAP is preferred over other protocols due to its lightness, its interoperability
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with low power, and low resource devices, in addition to the fact that it can be secured using
DTLS [5]. CoAP is based on the REST model and enables the resources to be addressed from
the server and accessed by the clients with the help of the standard HTTP methods, such as
(GET, PUT, POST, and DELETE). CoAP is preferred over other application protocols due
to its simplicity for developers and for being lightweight in terms of power consumption,
communication, mobility, and portability [6]. As mentioned above, CoAP is targeted
heavily by DDoS attacks. This attack is carried out by a group of infected devices (zombies)
that are controlled by an attacker. When instructed by the latter to launch an attack, the
former overwhelms the victim with a high volume of requests, which results in consuming
the victim’s resources and making it unavailable to legitimate users. Therefore, securing
CoAP against DDoS attacks is important. Employing the DTLS protocol is one way of
securing CoAP; however, DTLS suffers from communication overhead since it sends and
receives six messages for the handshake process, which results in consumption of the
constrained device’s resources. Moreover, DTLS is not designed for constrained devices [6].
Similarly, LSPWSN is used to secure CoAP messages, but this protocol operates on the
network layer while CoAP operates on the application layer. Motivated by the assumption
that it is easier to detect a DDoS attack at the victim’s end and easier to prevent it at the
attacker’s end [7], this work aims to propose a method to detect DDoS attacks against
CoAP in the application layer. This study uses CIDAD dataset, which contains DDoS
attacks (interception, modification, and duplication of CoAP messages). The dataset has
~11,000 samples, of which only 288 are malware. As a result, we extend the dataset to
100,000 samples with ~50% for each category (benign and malware) using Generative
Adversarial Networks (GANs). In addition, four different ML classification models, namely,
Naïve Bayes, Random Forest, SVC, and Decision Tree are employed since these ML methods
have shown impressive results in classifying IoT attacks [8]. The proposed model gains an
accuracy of 98% with the Decision Tree algorithm, which outperforms other algorithms.
The research questions include:

RQ1: Is it effective to secure CoAP in the application layer from DDoS attacks?
RQ2: What are the CoAP-level features that can be dedicated to secure CoAP in its perimeter?
RQ3: What is the best machine learning technique that can be performed well in detecting
DDoS attacks against CoAP?

The research gap is to find a method to secure CoAP in the application layer while
not relying on the lower layers to vet the CoAP message and deliver it to the application
layer. The main aim of this research is to find a dataset containing different DDoS attacks
and build a machine learning model that classifies these packets as DDoS or benign in the
application layer. Therefore, the main contributions of this work are as follows:

1- Extending and balancing the CIDAD dataset using GANs.
2- Focusing on the CoAP level features to ensure the security of CoAP in its vicinity.
3- Build a machine learning model that can classify the benign against malware with an

accuracy of 98% using the decision tree algorithm.

1.1. IoT Overview

The IoT enables the internet-connectivity of small devices allowing them to send and
receive data with little to no intervention by the user [9]. According to the anticipation
of some researchers, 75 billion IoT devices will exist in the communication technology
environment by 2025 [2]. IoT consists of three layers (as depicted in Figure 1): The per-
ception layer that represents the physical sensors and actuators, the network layer that
enables device-to-device and device-to-cloud communication, and the application layer
that delivers the services to other devices or humans [2]. IoT architecture can be extended
to have two more layers, namely, MAC and adaptation layer resulting in the so-called five-
layer architecture [10]. Since IoT devices were heterogeneous and needed to communicate
with different types of other devices, the Institute of Electrical and Electronics Engineers
(IEEE) and the Internet Engineering Task Force (IETF) developed standardized protocols
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for enabling this communication. Figure 2 depicts the five-layer architecture of the IoT
network and the protocols that operate on each layer.
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1.1.1. IoT Protocols

1- IEEE 802.15.4 Protocol

Both physical and MAC layers are ruled by the IEEE 802.15.4 protocol which emerged
in 2003. The physical layer provides functionalities, such as transferring data, detecting
channel energy, and indicating link quality [11], whereas the MAC layer associates network
clients with the access points, acknowledges frame arrival, and validates frames.

2- The 6LoWPAN protocol

Low-Power Wireless Personal Area Network (6LoWPAN) emerged in 2007 to meet
the demand for a low-energy IoT protocol [10]. It allows for a direct connection to the
internet and defines encapsulation and header compression mechanisms. The 6LoWPAN
is considered as a replacement for IPv6. This protocol supports addresses with different
lengths, low bandwidth, and low costs.

3- Routing—RPL protocol

The IETF proposed the Routing Protocol Layer (RPL) for Low Power and Lossy
Networks (LLNs), which provide IPv6 connectivity to LLNs [12]. This protocol is used
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in multiple networking facilities, such as automated homes, automated industry, and
automated buildings.

4- CoAP Protocol

The Constrained Application Protocol (CoAP) is a proper web transfer protocol for
low resource devices and LLNs [13]. The IoT nodes often have 8-bit microcontrollers and
limited RAM and ROM. The protocol supports Machine-to-Machine (M2M) applications,
such as automated smart homes. CoAP emerged due to the demand for a generic web
protocol that is suitable for all constrained devices.

1.1.2. CoAP Architecture

CoAP relies on the client/server model, such as the HTTP and uses the request/response
model for exchanging messages. A CoAP request is similar to an HTTP request which asks
for a resource on a server. Then, the resource is identified by an URI and a response code
from the server is sent back with the representation of the resource. The CoAP architecture
includes the message layer and the request/response layer as the main layers, see Figure 3.
The former enables message delivery using the UDP protocol which supports optional
reliability, and the latter removes outdated and duplicate messages using the request and
response codes.
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Messaging Model

Messaging model of CoAP is based on sending and receiving messages over UDP
between two nodes. CoAP has a 4-byte header, options, and payload. Each message has
a message ID for duplication check and a reliable connection if desired. Four types of
messages that are supported by CoAP are as follows:

1- Confirmable Message (CON): In this mode, all messages are marked as confirmable
messages (reliable mode). The message is resent using a default timeout until an ACK
(acknowledgement) is received from the recipient with the same message ID as the
sender. If the recipient fails to process the confirmable message, it will send an RST
(reset) message rather than ACK to reset the communication. Figure 4 shows the
confirmable mode between the client and the server.



Electronics 2023, 12, 2563 5 of 29Electronics 2023, 12, x FOR PEER REVIEW 5 of 30 
 

 

 
Figure 4. Confirmable message transmission. 

2- Non-Confirmable Message (NON): If reliable delivery is not desired, the message can 
be sent as a non-confirmable message (unreliable mode). For duplication checking 
purposes, each message is assigned an ID even though its receival is not to be 
acknowledged. Figure 5 depicts the NON-message between the client and the server. 

 
Figure 5. NON-Confirmable message transmission. 

Request/Response Model 
Request and response semantics which include method/response code are carried out 

by the CoAP message. The request and response code can include additional information, 
such as the URI and payload media type. 

To check the identity of requests and responses, a “token” is used to connect re-
sponses with their corresponding requests. Conceptually, a token is different from a mes-
sage ID. Following are the three types of messages used in the request/response model: 

Piggyback message: A CON- or NON-message carries a request and if instantly en-
forced, the response is carried in the resulting ACK message. Figure 6 shows two exam-
ples of a basic GET request with a piggyback response, one for success and the other re-
sulting in a 4.04 (Not Found) response. Therefore, the code [0x00] is the message ID. 

Empty Message: If the server is not able to respond immediately to a request carried 
out on the CON-message, an empty acknowledgement is sent.  

Figure 4. Confirmable message transmission.

2- Non-Confirmable Message (NON): If reliable delivery is not desired, the message
can be sent as a non-confirmable message (unreliable mode). For duplication check-
ing purposes, each message is assigned an ID even though its receival is not to be
acknowledged. Figure 5 depicts the NON-message between the client and the server.
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Request/Response Model

Request and response semantics which include method/response code are carried out
by the CoAP message. The request and response code can include additional information,
such as the URI and payload media type.

To check the identity of requests and responses, a “token” is used to connect responses
with their corresponding requests. Conceptually, a token is different from a message ID.
Following are the three types of messages used in the request/response model:

Piggyback message: A CON- or NON-message carries a request and if instantly
enforced, the response is carried in the resulting ACK message. Figure 6 shows two
examples of a basic GET request with a piggyback response, one for success and the other
resulting in a 4.04 (Not Found) response. Therefore, the code [0x00] is the message ID.



Electronics 2023, 12, 2563 6 of 29Electronics 2023, 12, x FOR PEER REVIEW 6 of 30 
 

 

 
Figure 6. Two GET requests with piggyback responses. 

This empty acknowledgement response prevents the clients from re-transmitting the 
request. If the response is ready, the server sends it in a new confirmable message as de-
picted in Figure 7. 

Non-Confirmable Message: If a Non-Confirmable mode has been used to send a mes-
sage, then a new Non-Confirmable or a Confirmable message is sent back as a response 
as illustrated in Figure 8. 

 
Figure 7. A GET request with separate responses. 

Figure 6. Two GET requests with piggyback responses.

Empty Message: If the server is not able to respond immediately to a request carried
out on the CON-message, an empty acknowledgement is sent.

This empty acknowledgement response prevents the clients from re-transmitting the
request. If the response is ready, the server sends it in a new confirmable message as
depicted in Figure 7.
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Non-Confirmable Message: If a Non-Confirmable mode has been used to send a
message, then a new Non-Confirmable or a Confirmable message is sent back as a response
as illustrated in Figure 8.
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Message Format

CoAP uses UDP for sending and receiving messages and encodes its messages in a
simple binary format. A fixed-size 4-byte format appears in the header of the message,
then it is followed by a Token value of 0–8 bytes in length. After the Token value, CoAP
Options in Type-Length-Value (TLV) format appear or a sequence of zeros for non-option is
displayed. Finally, an optional payload appears that takes up the rest of the datagram. Fig-
ure 9 depicts the CoAP message format. Table 1 shows the header fields can be elaborated
as follows:

(1) Version (V): Unsigned integer (2-bit) that represents the CoAP version number. This
field takes (01 binary), and other values are reserved for future versions. If the message
comes with unknown version numbers, it must be ignored.

(2) Type (T): Unsigned integer (2-bit) that represents 0 for Confirmable, 1 for Non-Confirmable,
2 for Acknowledgement, or 3 for reset as illustrated in the previous section.

(3) Token Length (TKL): Unsigned integer (4-bit) with a length of 0 to 8 bytes. Length of
9–15 bytes is specialized for message format errors.

(4) Code: Unsigned integer (8-bit) that is further divided into the most significant bits
(3-bit) and the less significant bits (5-bit). It is represented as “c.dd” (“c” can be 0–7
as a digit for the 3-bit, and “dd” can be two digits in the range from 00 to 31 for the
5-bit). The most significant bits view 0 for a request, 2 for a successful response, 4 for
a client error response, or 5 for a server error response. The other most significant bits
are reserved. The code 0.00 represents an empty message as a special case.

(5) Message ID: Unsigned integer (16-bit) used for duplicate vetting purposes. It is also
used to match Acknowledgement/Reset messages to messages of type Confirmable
or Non-Confirmable, respectively.

(6) Token: It is used to correlate requests and responses and can range from 0 to 8 bytes,
based on the length stated in the TKL field.

(7) Options: The value can be 0 by another option or by the payload.
(8) Payload: If it exists, it is prefixed by a (0xFF) marker as a benchmark for payload start.

To calculate the length of the payload, it is counted from the end of the marker until
the UDP datagram end.
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Table 1. Message header of CoAP.

Version (V) Type (T) Token Length
(TKL) Code Message ID

Token (if any)

Options (if any)

Payload (if any)

Method Definitions

Similar to HTTP, CoAP uses methods (GET, POST, PUT, and DELETE) to take any
action on an URI resource. CoAP message follows RESTful architecture, which makes
it appropriate for constrained devices as a lightweight protocol. A request that carries
the fault method code results in a 4.05 (Unallowed method) piggyback response. We will
briefly elaborate on each method.

GET
The GET method retrieves the information’s representation that belongs to the resource

identified by the request URI. If the GET method succeeds, a 2.05 (Content) is presented or
a 2.03 (Valid) response code appears.

POST
The POST method’s functionality is to process the representation retrieved by the

request. The origin server performs the main functionality of the POST method depending
on the target resource. This action results in the creation of a new resource or an update of
the target resource. In the case of the creation of a new resource, the response should have
a 2.01 (Created) code with the corresponding URI of the created source. However, if POST
is processed but the creation of a new source on the server fails, then a 2.04

(Changed) response code is generated. If POST is processed and results in a deletion
of a resource, the response should have a 2.02 (Deleted) response code.

PUT
The PUT method functionality is confined to creating or updating the resource identi-

fied by the request URI. The enclosed representation format is specified by the media type
and content coding provided in the Content-Format option (if it is given). In the case of
existing resources at the request URI, the enclosed representation is a modification copy,
and a 2.04 (Changed) response code is issued. Otherwise, a new resource should be created
by the server and aligned to that URI, and then, a 2.01 (Created) response code is issued. In
the case of modifying or creating failure, the error response code is returned.

DELETE
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The DELETE method requests to drop the resource that is identified by the request
URI. If the deletion is a success, a 2.02 (Deleted) is issued. The same message is returned if
the resource does not appear before the request.

CoAP URIs

The CoAP uses “coap” and “coaps” URI schemes to identify and locate resources. A
CoAP server hierarchically organizes and governs these resources, and it waits to receive
CoAP requests on a specified UDP port number. Therefore, the CoAP methods discussed
above are used to access the resources on the CoAP server. Therefore, the “coap” and
“coaps” URI schemes are similar to those of “HTTP” and “HTTPS”, which are used with
the HTTP protocol.

2. Related Technologies

It is a complicated task to secure IoT [1], as every layer in the IoT architecture, namely,
(Application layer, Network layer, and Infrastructure layer) is susceptible to different kinds
of attacks. Nevertheless, these attacks need to be identified and prevented by developing
security models to ensure a secure IoT environment.

These attacks are caused by inherent vulnerabilities in the IoT environment. A vulner-
ability is a loophole that attackers exploit to penetrate the network. These vulnerabilities
result in serious threats to the IoT network if ignored, and consequently, can lead to an
attack. This work focuses on vulnerabilities that lead to DDoS attacks.

2.1. DDoS Attacks in IoT

A large amount of data flooding the network can result in the bandwidth being
overwhelmed and the data server becoming inaccessible for serving new requests. This
overflow of data is called a DDoS attack, in which legitimate users cannot access the server.
While IoT is hailed as a revolution in technology, it can now also be considered as a bane
since it attracts Botnets-based-DDoS attacks [9]. Botnets are defined as the process of
infecting a massive number of IoT devices with malware to compromise these devices
and bring them under the control of an attacker who can exploit them to launch an attack
by ordering them to simultaneously send massive amounts of requests to the victim, and
thereby consume its resources.

These infected IoT devices are called Bots. Normal IoT devices can be converted into
Bots without the awareness or consent of their owners, and act as controlled slaves for the
attacker or Master Bot Controller. Networks of these Bots are referred to as Botnets and
are widely used for devious purposes these days and Master Controllers make profits by
selling their “attack services”. Following are four types of IoT botnets.

A- Mirai

Mirai is a Japanese word meaning the future. It is a malware that can be injected in
over 500.000 non-secured IoT devices and can be used to overload a target server with
massive traffic, with a flooding speed of 1 Tbps (Terabyte per second).

Mirai was designed to target Linux-running systems and, in 2016, it targeted the
famous Dyn DNS (French hosting provider) service, causing major websites, such as
Twitter, Amazon, and Netflix to go down. Subsequently, newer variants of Mirai emerged
that were used to launch attacks on IoT devices.

B- Wirex

Wirex is a botnet used for launching DDoS attacks on multiple Content Delivery
Networks (CDNs) and content providers. Wirex has infected an enormous number of
Android devices using applications that appear to be benign applications but were malware.
Consequently, Google banned some of these Wirex applications from its Play Store.

C- Reaper
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This botnet is stronger than Mirai since the latter can only penetrate devices with
default credentials. This malware created a large number of bots, including Cisco routers
and other brands by brutally adding them to its botnet. Reaper can also exploit other
vulnerabilities in IoT devices.

D- Torri

Torri is considered as a new botnet nowadays [15]. It can target most of today’s
recent computers, tablets, and smartphones due to its architectural design that has (64-bit),
x86, etc.

2.2. CoAP Security Overview

This section introduces the DTLS binding for CoAP. Indeed, CoAP is equipped with
the security demands, such as keying materials and an access control list during the
provisioning phase or RawPublicKey mode. After the RawPublicKey mode finishes, the
IoT device should be in one of the following security modes:

A- NoSec Mode: No security protocol is engaged (DTLS disabled). Alternatively, assum-
ing that the lower-layer protocol will implement the security mechanism; therefore,
the messages are transferred with no security.

B- Pre-sharedKey Mode: DTLS is enabled. This mode has a list of pre-shared keys and
there is a list of nodes that is assumed to engage in the communication for every key.
For instance, in a significant scenario, every node has its key if it engages in CoAP
communication. In contrast, if a specific pre-shared key is shared with two entities or
more, the entities are authenticated as a group by that key and would no longer be
considered as specific peers.

C- RawPublicKey Mode: DTLS is enabled. This mode is used for device authentication.
It provides each device with an asymmetric key that helps them in identifying and
communicating with other devices without a certificate.

D- Certificate Mode: DTLS is enabled. In this mode, the asymmetric key paired with an
X.509 certificate is reserved for a given device. The certificate is validated by a CA
(Certification Authority).

2.2.1. Proposed Defense Mechanisms for Securing CoAP against DDoS Attacks

Some of the existing methods for securing the IoT network from DDoS attacks include
the following. Saveetha et al. (2022) claimed that the intruder needs to discover the
mapping of a network and it is hard to track all the scanning processes due to large network
implementations [16]. Consequently, the authors developed an intrusion detection system
(IDS) integrated with blockchain to detect the intrusions. Katib et al. (2023) claimed that
blockchain has a significant role in IoT-based applications. Blockchain is used in many
aspects, such as security and privacy in IoT-enabled deployment [17]. The authors proposed
a hybrid Harris Hawks with sine cosine and a deep learning-based intrusion detection
system to detect DDoS attacks against the IoT network. The BoT-IoT dataset was used to
test their method and the model shows an impressive accuracy of 99.05%. However, these
works are comprehensively dedicated for detecting attacks against IoT networks, while our
focus is securing CoAP specifically from DDoS attacks since DDoS can target any layer on
the IoT network architecture.

DTLS for CoAP Security

Some research proposed that DTLS can be used for CoAP security purposes.
Maleh et al. (2016) stated that the Datagram Transport Layer (DTLS) handshake suffers
from DDOS attacks based on IP spoofing [14]. To mitigate this threat, the DTLS handshake
is expanded with a cookie exchange technique. According to this technique, the capability
and threshold for receiving packets must be declared with the IP address to the server,
thereupon the server reserves resources for new communication. Due to the high energy
cost of this technique, the authors moved it to Proxy AC Server with no energy constraints.



Electronics 2023, 12, 2563 11 of 29

Their method is depicted in Figure 9, and they claim that it reduces the resource occupancy
of ROM by 23% compared to the standard DTLS. Haroon A. et al. (2017) proposed an
enhancement to DTLS to make it resistant to DDoS attacks [18]. The authors claim that their
method can reduce the overhead of handshaking time, packet size, and energy consump-
tion compared to other works. The authors’ system, named E-lithe, relies on Trusted Third
Party (TTP) to reduce the overhead on the server-side. Compared to Lithe and other works,
E-lithe outperforms others in terms of running time and reduced packet size. Later, this
work was enhanced by Kajwadkar et al. (2018) who claimed that their work outperforms
E-Lithe [19]. The authors’ work essentially focuses on the comparison between the payload
of benign and malicious packets, defining a threshold, which if exceeded, the source IP
is blocked. They evaluated their work based on the malicious packet delivery ratio and
legitimate packet drop ratio which outperforms the work carried out by Haroon et al.

SDN for CoAP Security

Alzahrani et al. (2020) implemented a software-defined networking scheme (depicted
in Figure 10) to authorize the messages over the CoAP protocol [20]. The authors argue
that the distributed approach, in which IoT devices employ powerful gateways attached
to them, may not be sufficient, making the access control decisions accomplished by the
controller render the security of CoAP messages more efficient and can help in avoiding
DDoS attacks.
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Machine Learning for CoAP Security

Machine Learning is also proposed for detecting and mitigating DDoS attacks against
CoAP. Granjal et al. (2018) developed a framework that employs a threshold to mitigate
DDoS attacks [21]. The authors define a limit for messages of CoAP, and after the limit is
exceeded, extra messages are dropped. The authors enhanced their work and proposed
an anomaly-based detection system to protect the 6LoWPAN and CoAP protocols from
DDoS attacks [22], as depicted in Figure 11. SVM is used as an ML-Classifier and gains
an accuracy of 93%. However, the system generates a high false-positive rate of around
20%. Doshi et al. (2018) developed a machine learning pipeline (depicted in Figure 12) that
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is employed on middleboxes, such as routers or firewalls to detect IoT DDoS attacks [23].
They claim that IoT traffic is distinct from other traffic coming from other internet-connected
devices since IoT traffic is repetitive and often communicates with a small finite of endpoints.
After testing this method, it gains an accuracy of 99% using RF, KNN, and Neural Networks.
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Other Methods for CoAP Security

Other works propose different methods to cope with DDoS attacks against CoAP.
Anirudh et al. (2017) [24] proposed a honeypot to lure the attacker and log his information
for future verification or block purposes as depicted in Figure 13 and IoT-CoAP defense
mechanisms in Table 2.
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Table 2. IoT-CoAP defense mechanisms.

Research Objective Methodology Used Results Limitation

Detect and mitigate DDoS
attack against CoAP (2016)

DTLS handshake is extended
with a cookie exchange
technique to check the

authentication of a message.

Low computation time by
delegating all handshake to a

third party.

The assumption of third party
(Proxy AC server) is

trustworthy all the time.

Secure DTLS for IoT
(2017)

Trusted Third Party (TTP) is
used to avoid DDoS attack

and reduce overhead on the
server side.

Energy consumption, reduced
packet size, and reduced

running time outperforms
similar works.

DTLS is computationally
heavy for IoT devices.

Deploy a honeypot to detect
DDoS attack

(2017)

Deploy a honeypot with two
phases, first to log the

anomalies and second to
verify or block the client.

Sixty percent efficiency when
a honeypot is implemented.

Anomaly-based detection may
result in high

false-positive rate.

Detect DDoS against IoT
(2018)

Compare the payload of
benign and malicious packet,

define a threshold and if
exceeded, the source IP is

blocked.

Evaluate malicious packet
delivery ratio and legitimate

packet drop ratio.

Focuses on packet payload
feature only.

Prevention framework from
intrusion and DDoS attack

(2018)

Relies on threshold by
limiting the incoming request

to a fixed number and if
exceeded, the source request

is blocked.

Fair energy and memory
consumption when running

the proposed system.
Susceptible to spoofing attack.
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Table 2. Cont.

Research Objective Methodology Used Results Limitation

Protect 6LoWPAN and CoAP
from DDoS attack

(2018)

Employ anomaly-based
detection system to protect
CoAP from DDoS attack.

SVM classifies the anomalies
with accuracy of 93%.

High false-positive rate
of 20%.

Detect IoT DDoS attack (2018) Machine learning DDoS
detection framework.

RF, KNN, Neural Networks
gain approximately

99% accuracy.

Some IoT devices have
different regular patterns but

not distinct patterns.

Defend IoT against DDoS
while maintaining benign

traffic (2018)

Leverage the fast retransmit
and flow control mechanism
of TCP to retransmit benign
packets at fastest rate and

malicious packet at
harmless rate.

Compared to D-WARD,
FR-WARD performs better in
retransmission, duration, and

energy consumption.

Susceptible to other kinds
of attacks.

Test CoAP MITM attack
which results in spoofing,
sniffing, and DDoS attack

(2019)

Set up a client/server
architecture to check whether
the communication between
the two devices using CoAP

is secure.

Burp suite tool is used to
intercept the communication

between the client and
the server.

Susceptible to sniffing attack.

Securing CoAP messages
(2020)

SDN-based approach is
developed to authorize the

messages of CoAP.

Decrease overhead to the
controller and CoAP

responses become faster.
N/A

Design blockchain enabled
IDS with deep learning (2022)

(IDS)-based deep learning
integrated with blockchain to
detect abnormal behavior in

big networks.

The proposed model
outperforms the conventional
system in terms of accuracy.

N/A

Blockchain-Assisted Hybrid
Harris Hawks

Optimization-Based Deep
DDoS Attack Detection in the

IoT Environment (2023)

Hybrid Harris Hawks with
sine cosine and a deep

learning-based intrusion
detection system to detect

DDoS attacks against
IoT network.

Obtain accuracy of 99.05%
with BoT-IoT dataset. N/A

3. Materials and Methods

To secure CoAP in its vicinity, we focus on finding the dataset that contains CoAP-level
packets only. As stated in Section 1.1, our target is to secure the CoAP in the application
layer level. The CIDAD dataset is available on the Github.com [25], which is mainly
generated to attack the CoAP in its vicinity. However, this dataset has fewer samples of the
attacks and ~10,000 samples of the benign packets. Machine learning algorithms are always
greedy for decent samples of data that can be learned. In the next section, we elaborate on
how to extend the dataset to gain ~100,000 samples of DoS and benign packets.

3.1. Dataset Collection

The CIDAD dataset is targeting the CoAP with three different DDoS attacks: Dupli-
cation, interception, and modification of the CoAP message with a total of 288 malware
samples. Interception means intercepting stochastically sent packets before reaching the
destination, whereas duplication is changing the content of the CoAP message, and mod-
ification is increasing the number of tokens. The rest of the ~10,000 packets are benign
packets. This poses an imbalance in the dataset since only 0.02% of the dataset is malware.
Therefore, we extended the dataset to 100,000 samples, of which ~50% are benign and
~50% are malware. We used the Generative Adversarial Network (GAN) to extend the
288 malware samples to ~50,000 samples. To perform this, we used the Google Colab
platform since the generated data needed a high-performance machine to be manipulated.
The time to generate the fake data from the malware was higher, which took around 1
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h since we had only 288 samples and we aimed to obtain ~50,000. However, the benign
sample was adequate to generate the fake samples which took around 10 min. The gener-
ated samples were then compared with the original data to ensure the similarity between
them by training each sample and calculating the Root Mean Square Error (RMSE). Our
finding is surprising in that the RMSE is ~0.005 for original data, whereas for the generated
data, it is ~0.09. This indicates a coherent similarity between the original malware and
the generated ones. On the other hand, for the benign samples, we repeated the process
and found that the RMSE for both the original samples and the generated ones is ~0.03.
Figure 14 illustrates the general structure for GANs and Figure 15 shows the distribution of
the collected dataset.
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3.2. Feature Extraction

CoAP has a total of 86 features that can be extracted from the pcap file as shown
in Table 3. However, most of them have a large number of missing values due to the
optionality in the communication and since GANs cannot generate fake data for empty
values of the features. Only 10 features have fewer missing values (less than 10% of the
column data) in the dataset. Therefore, we focused only on these features as depicted
in Figure 16. Then, we used the Pearson Correlation method formula (1) to achieve the
relevant features to the labels (benign and malware).

rxy =
n

∑
i=1

(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(1)

where rxy is the Pearson correlation between two features x and y, n represents the total
number of samples, xi and yi are the individual sample points indexed with i, x and y are
the sample mean.

Table 3. Features associated with CoAP.

Field Name Description Type Versions

coap.block Block Frame number 3.4.0 to 4.0.5

coap.block.count Block count Unsigned integer (32 bits) 3.4.0 to 4.0.5

coap.block.error Block defragmentation error Frame number 3.4.0 to 4.0.5

coap.block.multiple_tails Block has multiple tails Boolean 3.4.0 to 4.0.5

coap.block.overlap Block overlap Boolean 3.4.0 to 4.0.5

coap.block.overlap.conflicts Block overlapping with
conflicting data Boolean 3.4.0 to 4.0.5

coap.block.reassembled.in Reassembled in Frame number 3.4.0 to 4.0.5

coap.block.reassembled.length Reassembled block length Unsigned integer (32 bits) 3.4.0 to 4.0.5

coap.block.too_long Block too long Boolean 3.4.0 to 4.0.5

coap.block_length Block Length Unsigned integer (32 bits) 3.4.0 to 4.0.5

coap.block_payload Block Payload Byte sequence 3.4.0 to 4.0.5

coap.blocks Blocks Label 3.4.0 to 4.0.5

coap.code Code Unsigned integer (8 bits) 1.6.0 to 4.0.5

coap.invalid_option_number Invalid Option Number Label 1.12.0 to 4.0.5

coap.invalid_option_range Invalid Option Range Label 1.12.0 to 4.0.5

coap.length Length Unsigned integer (32 bits) 3.2.0 to 4.0.5

coap.mid Message ID Unsigned integer (16 bits) 1.12.0 to 4.0.5

coap.ocount Opt Count Unsigned integer (8 bits) 1.10.0 to 1.10.14

coap.opt.accept Accept Character string 1.8.0 to 4.0.5

coap.opt.block_mflag More Flag Unsigned integer (8 bits) 1.6.0 to 4.0.5

coap.opt.block_number Block Number Unsigned integer (32 bits) 1.6.0 to 4.0.5

coap.opt.block_size Encoded Block Size Unsigned integer (8 bits) 1.6.0 to 4.0.5

coap.opt.ctype Content-type Character string 1.6.0 to 4.0.5

coap.opt.delta Opt Delta Unsigned integer (8 bits) 1.6.0 to 4.0.5

coap.opt.delta_ext Opt Delta extended Unsigned integer (16 bits) 1.12.0 to 4.0.5

coap.opt.desc Opt Desc Character string 1.10.0 to 4.0.5
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Table 3. Cont.

Field Name Description Type Versions

coap.opt.end_marker End of options marker Unsigned integer (8 bits) 1.12.0 to 4.0.5

coap.opt.etag Etag Byte sequence 1.6.0 to 4.0.5

coap.opt.hop_limit Hop Limit Unsigned integer (8 bits) 3.4.0 to 4.0.5

coap.opt.if_match If-Match Byte sequence 1.8.0 to 4.0.5

coap.opt.if_none_match If-None-Match Byte sequence 1.8.0 to 1.8.15

coap.opt.jump Opt Jump Unsigned integer (8 bits) 1.10.0 to 1.10.14

coap.opt.length Opt Length Unsigned integer (8 bits) 1.6.0 to 4.0.5

coap.opt.length_ext Opt Length extended Unsigned integer (16 bits) 1.12.0 to 4.0.5

coap.opt.location Location Character string 1.6.0 to 1.6.16

coap.opt.location_path Location-Path Character string 1.8.0 to 4.0.5

coap.opt.location_query Location-Query Character string 1.8.0 to 4.0.5

coap.opt.max_age Max-age Unsigned integer (32 bits) 1.6.0 to 4.0.5

coap.opt.name Opt Name Character string 1.10.0 to 4.0.5

coap.opt.object_security_expand Expanded Flag Byte Boolean 2.6.0 to 3.2.18

coap.opt.object_security_kid Key ID Byte sequence 2.6.0 to 4.0.5

coap.opt.object_security_kid_context Key ID Context Byte sequence 2.6.0 to 4.0.5

coap.opt.object_security_kid_context_len Key ID Context Length Unsigned integer (8 bits) 2.6.0 to 4.0.5

coap.opt.object_security_kid_context_present Key ID Context Present Boolean 2.6.0 to 4.0.5

coap.opt.object_security_kid_present Key ID Present Boolean 3.0.0 to 4.0.5

coap.opt.object_security_non_compressed Non-compressed
COSE message Boolean 2.6.0 to 3.2.18

coap.opt.object_security_piv Partial IV Byte sequence 2.6.0 to 4.0.5

coap.opt.object_security_piv_len Partial IV Length Unsigned integer (8 bits) 2.6.0 to 4.0.5

coap.opt.object_security_reserved Reserved Boolean 3.4.0 to 4.0.5

coap.opt.object_security_signature Signature Present Boolean 2.6.0 to 3.2.18

coap.opt.observe Observe Unsigned integer (32 bits) 2.0.0 to 4.0.5

coap.opt.payload_desc Payload Desc Character string 1.10.0 to 2.2.17

coap.opt.proxy_scheme Proxy-Scheme Character string 2.0.0 to 4.0.5

coap.opt.proxy_uri Proxy-Uri Character string 1.8.0 to 4.0.5

coap.opt.size1 Size1 Unsigned integer (32 bits) 2.0.0 to 4.0.5

coap.opt.subscr_lifetime Lifetime Unsigned integer (32 bits) 1.6.0 to 1.12.13

coap.opt.token Token Character string 1.6.0 to 1.10.14

coap.opt.unknown Unknown Byte sequence 1.10.0 to 4.0.5

coap.opt.uri_auth Uri-Authority Character string 1.6.0 to 1.6.16

coap.opt.uri_host Uri-Host Character string 1.8.0 to 4.0.5

coap.opt.uri_path Uri-Path Character string 1.6.0 to 4.0.5

coap.opt.uri_path_recon Uri-Path Character string 2.4.0 to 4.0.5

coap.opt.uri_port Uri-Port Unsigned integer (16 bits) 1.8.0 to 4.0.5
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Table 3. Cont.

Field Name Description Type Versions

coap.opt.uri_query Uri-Query Character string 1.6.0 to 4.0.5

coap.optcount Option Count Unsigned integer (8 bits) 1.6.0 to 1.8.15

coap.option_length_bad Option length bad Label 1.12.0 to 4.0.5

coap.option_object_security_bad Invalid Object-Security
Option Format Label 2.6.0 to 3.2.2

coap.option_oscore_bad Invalid OSCORE
Option Format Label 3.2.3 to 4.0.5

coap.oscore_kid OSCORE Key ID Byte sequence 2.6.0 to 4.0.5

coap.oscore_kid_context OSCORE Key ID Context Byte sequence 2.6.0 to 4.0.5

coap.oscore_piv OSCORE Partial IV Byte sequence 2.6.0 to 4.0.5

coap.payload Payload Character string 1.12.0 to 4.0.5

coap.payload_desc Payload Desc Character string 2.4.0 to 4.0.5

coap.payload_length Payload Length Unsigned integer (32 bits) 2.4.0 to 4.0.5

coap.request_first_in Retransmission of request in Frame number 3.2.0 to 4.0.5

coap.response_first_in Retransmission of response in Frame number 3.2.0 to 4.0.5

coap.response_in Response In Frame number 2.2.0 to 4.0.5

coap.response_time Response Time Time offset 2.2.0 to 4.0.5

coap.response_to Request In Frame number 2.2.0 to 4.0.5

coap.retransmitted Retransmitted Label 3.2.0 to 4.0.5

coap.tid Transaction ID Unsigned integer (16 bits) 1.6.0 to 1.10.14

coap.token Token Byte sequence 1.12.0 to 4.0.5

coap.token_len Token Length Unsigned integer (8 bits) 1.12.0 to 4.0.5

coap.type Type Unsigned integer (8 bits) 1.6.0 to 4.0.5

coap.unknown_option_number Unknown Option Number Label 3.2.5 to 4.0.5

coap.version Version Unsigned integer (8 bits) 1.6.0 to 4.0.5

We focused only on the features that have ±0.30 correlation to the label. Figure 16
shows the correlation between the features and the label.

The Pearson Correlation for all the features is less than the target value ± 0.30. There-
fore, we used other methods which represent the statistical methods: Lasso Regression and
One-Way ANOVA test. Lasso Regression is a regression analysis that deepens the accuracy
and interpretability by performing regularization alongside the variable selection as shown
in Formula (2). On the other hand, one-way ANOVA checks the significant independence
of two or more samples, where the p-value decides a rejection for the null hypothesis of
samples equality if the score is less than 0.05 as shown in Formula (3):

tM

∑
i=1

(yi − ŷi)
2 =

M

∑
i=1

(
yi −

p

∑
j=0

wj × xij

)2

+ λ
p

∑
j=0

∣∣wj
∣∣ (2)

where M is the total number of samples, P is the feature, and w is the slope.

F =
MSB
MSW

(3)

where F represents the ANOVA coefficient, MSB is the mean sum of squares between the
samples, and MSW is the mean sum of squares within the samples.
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We assume that any feature that is recommended by the two methods (ANOVA and
Lasso) is correlated to the label and will be used for the training phase of the model.
After calculating the Lasso and ANOVA methods, we found a total of six features that are
recommended by both methods as depicted in Figure 17.
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Figure 17. Lasso regression and ANOVA analysis for CoAP features.

The recommended features are coap.mid, coap.opt.disc, coap.opt.location_query,
coap.opt.uri_host, coap.retransmitted, and coap.token. Table 4 shows the description
for each feature. Only the features that are recommended by ANOVA are ignored.
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Table 4. CoAP features description.

Feature Description Type

coap.mid Message ID Unsigned integer (2 bytes)

coap.opt.desc Opt Desc Character string

coap.opt.location_query Location-Query Character string

coap.opt.uri_host Uri-Host Character string

coap.retransmitted Retransmitted Label

coap.code Code Unsigned integer (1 byte)

3.3. Model Training

We chose to test four machine learning classifiers (LinearSVC, Naïve Byes, Random
Forest, and Decision Tree). We split the dataset into 70% for training and 30% for testing.
The model is depicted in Figure 18.
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We used Google Colab platform [16] to perform the experiment and evaluated the
performance for each model. Since our data were ~100,000 samples; therefore, processing
these data and building a model required a high capability computing platform, such as
the Google Colab platform. The steps used to analyze the performance of the model are
as follows:

1- Environment Setup: In this step, we imported the data after cleaning and normalizing
it, as previously discussed in Sections 3.1 and 3.2 .

2- Analyzing the data: We selected only the features that are relevant to the label by
calculating the Lasso regression and ANOVA analysis, which resulted in the selection
of only 6 features from a total of 86 CoAP message features.

3- Data Preprocessing: In this phase, we handled the missing values by calculating the
average of the column, and then filled the missing values with the average. Some of
the features contained large numbers in order to solve this issue and keep the model
calculations simple. Additionally, we normalized these values using the max-min
technique to retain the values between 0 and 1.

4- Model design: For each classifier, we ran the experiment and validated the perfor-
mance for each model using the cross-validation technique to avoid overfitting and
underfitting. We set up the fold to 5 and calculated the accuracy for each round, and
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then compared it to the model performance. Neither overfitting nor underfitting was
observed in our experiment.

5- Evaluating the performance: The performance for each model was calculated in terms
of accuracy, precision, recall, and F1-score. The following section elaborates on the
results of the model performance in detail.

4. Results
4.1. LinearSVC

Linear Support Vector Classifier (SVC) is a type of Support Vector Machine (SVM).
SVM is one of the machine learning algorithms that is used for supervised learning (labeled
data), such as detecting fraud, outliers, and even regression problems. It simply draws a
line between two categories by putting similar data points in one class and the remaining in
the other. The overall result may contain several lines for classifying data points. Compared
to K-Nearest Neighbor algorithm, SVC classifies the data point while mitigating the close
data point to the line. This can be achieved by what is called decision boundary. Therefore,
SVC relies on the features to find the decision boundary and the line can be substituted
by a hyperplane. However, in our work, LinearSVC performs worse with an accuracy
of 59%. The confusion matrix and Receiver Operating Characteristic (ROC) show a large
amount of false-positives and false-negatives (Figures 19 and 20). There are 7843 benign
packets, which are mistakenly classified as malware. In addition, 4387 malware packets
were wrongly classified as benign. It can be inferred that the false-positives are higher than
the false-negatives using the LinearSVC algorithm. To avoid overfitting and underfitting,
we validated the performance of the model using the cross-validation technique with fold
= 5. We applied the model on the training data and compared it to the performance of the
model with testing data as shown in Table 5. The results show that the model does not
suffer from overfitting or underfitting.
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Table 5. Cross-validation for linearSVC.

Fold No. Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Model Accuracy

Performance 0.654 0.651 0.653 0.653 0.645 0.655

4.2. Random Forest

Random Forest Classifier (FR) belongs to the decision tree algorithm family, which
relies on ensemble methods to avoid overfitting and underfitting, which is common in
traditional decision tree algorithms. The bagging methods are used to train RF by splitting
the training data into sets, applying the decision tree for these sets, and for accumulating
the results. Randomness and repetition of samples in RF is common, meaning a single
instance may be used more than once due to recurrent sampling. The Random Forest
Classifier shows better results than LinearSVC with an accuracy of 92%. However, the
false-positive rate is fair with a total sample of 662 as shown in Figure 21. In contrast, the
false-negative rate is higher with 1651 samples. Figure 22 shows the ROC curve for the RF
algorithm. To validate our results, we used the cross-validation technique with fold = 5 as
shown in Table 6.
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Table 6. Cross-validation for RF.

Fold No. Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Model
Accuracy

Performance 0.924 0.924 0.925 0.923 0.923 0.92

4.3. Decision Tree

Decision Tree (DT) is a famous algorithm in machine learning. It is suitable for
classification and regression problems. The DT learning process is based on a sequence
of comparisons between the data attributes (features), which result in more leaves that
branch to the right or the left. When the learning reaches the end node, the decision is
made based on the majority class in the leaf. A pre-learned threshold is set up to avoid the
infinite process for learning. Compared to Neural Networks, DT performs well since it
does not rely on gradient descent and the input normalization is not required. However,
with image data, the neural networks outperform the DT. In our work, DT performs
well with an accuracy of 98%. The number of false-positive rate is 347, while the false-
negative rate is 302. The ROC curve infers the optimism of the decision tree algorithm.
Figures 23 and 24 depict the confusion matrix and ROC curve for the DT, respectively. To
validate the performance of DT, we apply the cross-validation technique with fold = 5 as
shown in Table 7.

Table 7. Cross-validation for DT.

Fold No. Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Model
Accuracy

Performance 0.985 0.985 0.985 0.984 0.987 0.987
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4.4. Naïve Byes

Naïve Byes (NB) originates from the statistical methods based on Byes Theorem. It
is a machine learning classifier that is appropriate for classification problems. Moreover,
it is fast, accurate, and performs well with large datasets. As the name implies, NB
does not search for the relations between the features, assuming that each feature has an
independent impact on the decision. The learning process is based on calculating the prior
probability of a class label, then the likelihood for each feature for each class is calculated.
The result is fed to the Byes formula to find the posterior probability. However, Naïve
byes performs worse on our data and gains an accuracy of 70%. The false-negative rate is
higher than the false-positive. The total number of samples of the false-negative rate is 6415
and 4612 samples for false-positive. We validated the results using the cross-validation
technique as shown in Table 8. Figures 25 and 26 show the confusion matrix and ROC
curve for Naïve Byes performance.
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Table 8. Cross-validation for NB.

Fold No. Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Model
Accuracy

Performance 0.702 0.706 0.707 0.707 0.710 0.70
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From the results shown above, it can be inferred that the decision tree algorithm
beats other algorithms in all the metrics used to calculate the performance of the selected
algorithms. In the field of security, it is important to reduce the false-negative to the lowest
value as the impact of single false-negative packet can cause large damage to the network.
This is also shown by the performance of decision tree algorithm in our proposed model
since only ~300 samples were misclassified as benign from a total of 30,000 samples that
were used for testing. Figure 27 shows the calibration plot between the selected classifiers.
It plots the DT performance with a significant similarity to the perfectly calibrated rather
than the other algorithms. The mean predicted probability is plotted for each algorithm
in Figure 28. The decision tree algorithm shows more impressive results than the other
algorithms. Table 9 represents the performance of each algorithm in terms of accuracy,
precision, recall, and F1-score.
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Table 9. Metrics for the selected algorithms.

Model Accuracy Precision Recall F1-Score

LinearSVC 59% 62% 48% 54%

Decision Tree 98% 98% 98% 98%

Random Forest 92% 90% 96% 93%

Naïve Byes 63% 62% 69% 65%

5. Discussion

The CoAP protocol suffers from the lack of research that can help in implementing and
managing its security [6]. Several works employed DTLS to secure the CoAP protocol from
different threats, including DDoS attacks. However, DTLS is not specially designed for
constrained devices [6] and its heaviness renders it not suitable since they run on low power
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and low energy. Moreover, DTLS is a cryptography-based protocol, and cryptography
cannot detect attackers who use legal keys and act maliciously; therefore, DDoS attacks
that originate from legitimate IPs may go undetected [21]. Consequently, the demand for
new methods to secure CoAP against DDoS attacks is highly required since DTLS cannot
protect CoAP from some of the internal and external attacks [22]. On the other hand,
LSPWSN is also employed to secure CoAP messages. However, this protocol operates on
the network layer, in contrast to CoAP which operates on the application layer. Moreover,
while it is beneficial to mitigate the attack near the attack source, it is pertinent to have the
detection system near the victim [7]. Therefore, this work outperforms DTLS and LSPWSN
in terms of defending CoAP in its vicinity, while DTLS and LSPWSN can only protect
CoAP by vetting the packets in the lower layers of IoT architecture, namely, the transport
and network layers. Motivated by the assumption that it is beneficial to have the detection
system near the victim [7], this work develops a model that can secure CoAP in its vicinity
(the application layer). Another work [22] builds an anomaly-based detection method
in the application layer to secure CoAP from DDoS attacks. However, this work collects
those features from the protocols that work over the lower layers (IEEE 802.15.4 features,
6LoWPAN features, IPv6 features, and CoAP features) and gains an accuracy of 93%. The
proposed method focuses only on the CoAP level features in the application layer and
obtains an accuracy of 98% with the decision tree algorithm.

6. Conclusions

The proposed model defines a method to secure the CoAP in its vicinity from several
DDoS attacks (duplication, modification, and intercepting of CoAP messages). The dataset
used in this work has been extended from ~11,000 samples to 100,000 samples due to the
lack of sufficient malware samples using GANs. The experimental performance was vali-
dated using a detection method in the same layer (application layer) and it is a significant
work that fulfills the assumption of defending the resources in their vicinity. Therefore, this
work discusses the different methods dedicated to detecting DDoS attacks that target CoAP.
The proposed model can detect DDoS attacks with an accuracy of 98% with the decision
tree algorithm. In the future, the performance of the proposed model can be improved by
combining the dataset with other attacks, such as enumeration and amplification attacks,
which will result in a coherent dataset for testing with new methods.
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