
Citation: Huang, H.-Y.; Fanjiang,

Y.-Y.; Hung, C.-H.; Tsai, H.-Y.; Lin,

B.-H. Evaluation of a Smart Intercom

Microservice System Based on the

Cloud of Things. Electronics 2023, 12,

2406. https://doi.org/10.3390/

electronics12112406

Academic Editor: George

A. Tsihrintzis

Received: 23 April 2023

Revised: 22 May 2023

Accepted: 22 May 2023

Published: 25 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Evaluation of a Smart Intercom Microservice System Based on
the Cloud of Things
Hsin-Yu Huang 1,2, Yong-Yi Fanjiang 2,3,* , Chi-Huang Hung 2,4 , Hsing-Yu Tsai 3 and Bing-Hong Lin 3

1 Department of Fashion Business Management, Lee-Ming Institute of Technology, New Taipei 243086, Taiwan;
hyhuang@mail.lit.edu.tw

2 Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei 242062, Taiwan;
allen@mail.lit.edu.tw

3 Department of Computer Science and Information Engineering, Fu Jen Catholic University,
New Taipei 242062, Taiwan; 400085264@m365.fju.edu.tw (H.-Y.T.); 408085143@m365.fju.edu.tw (B.-H.L.)

4 Department of Information Technology, Lee-Ming Institute of Technology, New Taipei 243086, Taiwan
* Correspondence: yyfanj@csie.fju.edu.tw; Tel.: +886-2-2905-2444

Abstract: This research migrates a monolithic smart intercom system to a microservice architecture,
making the system more secure, stable, and scalable. The security mechanisms of the instant messag-
ing platform are combined with microservices to improve the security of the system. The stability
and performance of microservices are shown to be better than those of monolithic services through
experimental tests. Residents can use different instant messaging software instead of the handset to
improve the convenience of using this system. This system also implements community broadcasts,
platform broadcasts, unit broadcasts, and family broadcasts to exchange messages across different
instant messaging platforms. This paper proposes OpenAPI for other smart intercoms to integrate
this system’s services and resources. In addition, this study deploys two microservice architectures
using a native load balancer with a kube proxy and a service mesh load balancer with an istio proxy.
Experiments were conducted during which residents tested the kube proxy and the istio proxy using
stress testing tools on two microservice architectures, and the results showed that the kube proxy
was slightly better than the istio proxy.

Keywords: microservice; OpenAPI; instant messaging software; smart intercom

1. Introduction

Software development typically uses structured analysis and design methods to break
down business processes into modules with a hierarchical structure. Suitable modules
with high cohesiveness and low coupling are designed to enhance the speed and quality
of system development. Due to the popularity of the internet, more web applications are
using web services, which usually consist of application programming interfaces (APIs) to
enhance the speed of software development by executing service requests submitted by
clients through remote servers on the internet.

With the maturity of cloud computing and containerization technology, many system
developers have adopted microservice architecture. Therefore, more monolithic systems
are migrating to microservice architecture. As the scale of a monolithic system increases, it
takes a long time to compile, deploy, and start up the system. As a result, the dependency
on various services increases rapidly. The system’s stability may break down due to the
problems of individual modules, which is difficult for new developers and maintainers to
understand, resulting in a software development crisis and operator nightmare [1].

In the microservice architecture, each function can operate independently. An excep-
tion to one microservice does not affect others. If a microservice is overloaded, it can also be
adjusted by resources to meet the utilization requirements. How many resources are used
will be paid to the cloud platform owner, which can eliminate the work of management

Electronics 2023, 12, 2406. https://doi.org/10.3390/electronics12112406 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12112406
https://doi.org/10.3390/electronics12112406
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2902-7226
https://orcid.org/0000-0001-6787-3517
https://doi.org/10.3390/electronics12112406
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12112406?type=check_update&version=1

Electronics 2023, 12, 2406 2 of 24

and maintenance of the server side. Meanwhile, the integration of cloud services and
the Internet of Things (IoT) technology has recently become an important issue, so the
development of the Cloud of Things (CoT) is also being emphasized. This study proposes
a microservice system architecture based on a monolithic smart intercom system [2]. A
schematic diagram of the CoT-based microservice system is shown in Figure 1.

Electronics 2023, 12, x FOR PEER REVIEW 2 of 24

be adjusted by resources to meet the utilization requirements. How many resources are
used will be paid to the cloud platform owner, which can eliminate the work of manage-
ment and maintenance of the server side. Meanwhile, the integration of cloud services and
the Internet of Things (IoT) technology has recently become an important issue, so the
development of the Cloud of Things (CoT) is also being emphasized. This study proposes
a microservice system architecture based on a monolithic smart intercom system [2]. A
schematic diagram of the CoT-based microservice system is shown in Figure 1.

Figure 1. Schematic diagram of the CoT-based microservice system.

Furthermore, it is common to use a service mesh mechanism to improve the perfor-
mance of microservices due to the complex dependencies and communication between
their pods [3]. However, there are no complex dependencies, and there is a large amount
of data traffic between the pods of microservices in this system. This study used a stress
test tool to test the remote CoT device to confirm that the microservice architecture per-
forms better than the monolithic system. At the same time, two load-balancing micro-
service architectures, kube proxy and istio proxy deployments, were implemented under
the microservice architecture, and the simulations showed that the kube proxy was rela-
tively more stable. The objectives and unique advantages achieved in this study are listed
below.
• The migration of the monolithic smart intercom system to a microservice architecture

was completed, while the security mechanisms of the instant messaging platform and
the microservice architecture were combined to improve the security of this system.

• By extending the system functionality to provide more community and resident ac-
cess, residents can use different instant messaging software to replace the handset of
the intercom. The system enables community broadcast, platform broadcast, unit
broadcast, and family broadcast through instant messaging microservices to enable
residents to exchange messages with each other, even if they use different instant
messaging software.

Figure 1. Schematic diagram of the CoT-based microservice system.

Furthermore, it is common to use a service mesh mechanism to improve the perfor-
mance of microservices due to the complex dependencies and communication between
their pods [3]. However, there are no complex dependencies, and there is a large amount of
data traffic between the pods of microservices in this system. This study used a stress test
tool to test the remote CoT device to confirm that the microservice architecture performs
better than the monolithic system. At the same time, two load-balancing microservice
architectures, kube proxy and istio proxy deployments, were implemented under the mi-
croservice architecture, and the simulations showed that the kube proxy was relatively
more stable. The objectives and unique advantages achieved in this study are listed below.

• The migration of the monolithic smart intercom system to a microservice architecture
was completed, while the security mechanisms of the instant messaging platform and
the microservice architecture were combined to improve the security of this system.

• By extending the system functionality to provide more community and resident
access, residents can use different instant messaging software to replace the handset
of the intercom. The system enables community broadcast, platform broadcast, unit
broadcast, and family broadcast through instant messaging microservices to enable
residents to exchange messages with each other, even if they use different instant
messaging software.

• Any smart intercom can be combined to use the features and resources of this system
by providing OpenAPI. Residents are able to communicate with visitors through

Electronics 2023, 12, 2406 3 of 24

instant messaging software and this microservice system while being able to control
remote CoT devices.

• Simulation tests were conducted to compare two different load-balancing microservice
architectures, with the kube proxy slightly better than the istio proxy. As a result of
the stress tests conducted in this study, microservice systems are more stable and have
better performance than the monolithic system.

The remainder of this article is organized as follows. Section 2 is a review of related
work. Section 3 describes the proposed microservices’ system development. The testing
configuration is described in Section 4. Section 5 presents the testing standard and results,
and the discussion is presented in Section 6. Finally, the conclusion is given in Section 7.

2. Related Research

A monolithic application can operate independently of other applications and perform
all the steps required for a particular function. However, when a monolithic application
grows to a certain size, it takes too long to compile, deploy, and start up, and the complexity
of the dependencies between codes increases rapidly. The entire system may fail if a single
function does not work, affecting other functions [1]. The independent deployment of mi-
croservices simplifies continuous integration and shortens delivery time, making them the
most suitable technology for unified services. Microservice architectures can be deployed
independently without restarting the entire application, and failure of a single microservice
does not affect other microservices, each of which can scale independently using pools,
clusters, and grids. The flexibility of the cloud architecture is well-suited for microservices,
which are packaged to allow for the more flexible use of new frameworks, libraries, data
sources, and other resources [4]. As microservice systems are more reliable than monolithic
systems, an increasing number of monolithic systems are migrating to microservice archi-
tectures. Most of the focus is on the more fault-tolerant and resilient nature of microservice
architectures, as well as their considerable maturity and availability [1,5,6].

An IP phone intercom system is an IP network system with a SIP server and many
SIP clients that allows users to have voice, video, and SMS conversations and provides
basic access to control devices [7]. However, the IP telephony software must be installed
on the user’s smartphone for them to be able to use it at any time during a call. There
is also a mobile smart intercom system that can provide users with videos of each other.
Users can select a channel and can also invite other online users to a temporary channel
for intercom communication [8]. The main reasons for door lock systems are to avoid
intrusion by unauthorized persons and to facilitate user access. Various door lock systems
use IoT devices to provide remote access to control unauthorized access, and users use
smartphones with integrated IoT devices to control door locks [9–11]. Many studies have
been conducted to control home appliances through apps that use IoT technology [12–14].
Users can control home appliances through instant messaging software, reducing the need
to install smartphone apps [15]. IoT-based smart home systems connect various household
appliances to Internet, allowing users to easily check the status of their home and household
appliances by using a server or connecting to an efficient API for control [16,17]. A prototype
system for controlling air conditioners using an embedded system has been developed [18],
and household appliances can also be controlled by IoT-based voice commands or through
gesture detection and control [19–22]. In the smart intercom system designed by previous
research, residents control the IoT device with instant messaging software without installing
new applications and learning. Residents can check the presence of visitors and the status
of their doors through their smartphones anytime, anywhere [23].

Although migrating from monolithic applications to microservices is the current trend,
the migration process can be challenging for developers [1,4,24]. The intelligent building
management system uses the Intelligent Building Management Data Processing Framework
(IBFRAME) through the kube proxy to collect real-time data from IoT devices, but this
also requires data analysis to monitor the building environment to support various smart
building applications [25]. Integrating environmentally assisted living systems through

Electronics 2023, 12, 2406 4 of 24

microservice architectures and the Internet of Medical Things (IoMT) sensors enables
stakeholders and software architects to select and evaluate application frameworks and
platforms to implement microservice-based systems [26]. Cloud computing enables orga-
nizations to share a single resource regardless of location, with IoT devices on embedded
systems collaborating to bridge the gap between software and hardware. Cloud computing
and serverless capabilities can be used to control and monitor physical hardware compo-
nents and integrate IoT devices into the cloud using restful APIs [27]. Embedded systems
are deployed on microservices using Node-RED’s Workflow Manager, which provides
tools for developing IoT systems such as the edge computing paradigm [28].

The smart intercom replaces the traditional intercom, and a resident can communicate
with a visitor using the instant messaging software on their smartphone. In addition,
residents can communicate effectively with visitors through web services on the Web of
Things (WoT) at different network nodes and monitor the home to send alarms when
necessary [2]. The WoT-based logical sensor architecture (WLSA) reduces data processing
requirements through virtual WoT sensors. Deploying microservices to data streams at the
edge optimizes the allocation of resources at the edge and in the cloud through dynamic
linkage [29].

Integrating the IoT and cloud computing is becoming increasingly important and
referred to as the CoT. Integrating IoT and cloud computing is not straightforward and
has several key issues. While CoT can create many business opportunities, the privilege
of accessing virtual resources and storage capacity in the cloud, as well as the protection
of identity, security, and privacy, becomes very important. CoTs are built in public clouds,
and IoT devices are often deployed in resource-limited areas, which further complicates
the system [30,31]. The BCoT ecosystem can be seen as a blockchain as a service (BaaS) inte-
grated with cloud computing to develop and deploy blockchains for cloud IoT applications.
BaaS provides the infrastructure and technology to ensure the robust and efficient opera-
tion of the service [32]. The three scenarios based on fog-only, cloud-only, and fog–cloud
collaborative scenarios depend on the requirements of the user and the application [33].

The Hipster Store eCommerce application in a Kubernetes cluster demonstrates the
use of the service mesh istio to monitor communication between microservices and develop
automated testing and recovery capabilities [34]. The bookstore application uses the service
mesh istio to inject sidecar proxies into each microservice and dynamically load balance
between services through the istio control plane application service-specific routing. The
experimental results show that the istio-based system maintains stability and consistency
by maintaining responsiveness and consumes fewer resources [35].

Table 1 shows eight related studies to this paper, of which the first three are different
monolithic intercom systems, and the last five are applications in microservice architectures.
The IoT type is classified as IoT, WoT, and CoT. Two different load-balancing microservice
architectures are implemented in this paper and the bookstore application. However,
as the bookstore application does not access IoT devices, the istio proxy was tested to
perform better.

A typical load-balancing solution combines HTTP and message queues to support
microservice communication. The load of the successor microservice depends on the load
assigned by the predecessor microservice [36–38]. Based on the ideas of container tech-
nology, microservice architecture, and service mesh structure, an application architecture
for an IoT platform based on the service mesh structure is designed. After experience
and testing, the results proved that the architecture design has good performance [39,40].
The length of data is contained in HTTP reactions using the istio default log message. An
algorithm is used for calculating the application error identification metrics, using items
such as JSON formatting in HTTP reactions as the metrics. Experimental measurements
add the log message length and response time. The average log message length increased
by 216 words, and the average response time increased by 7% compared to istio’s default
log format [41].

Electronics 2023, 12, 2406 5 of 24

Table 1. Intercom-related research properties list.

Type Non-Extra Application Deploy Chatbot Monolithic/Microservice IoT Type Load Balance Proxy Provide OpenAPI Fields of Application

IP Phone Intercom [7] - - Monolithic IoT - - Intercom
Mobile Intercom [8] - - Monolithic IoT - - Intercom

Smart Intercom [2] V Single
IM Software Monolithic WoT - - Intercom

Intelligent Building [25] - - Microservice IoT Kube Proxy - Building

WLSA [29] - - Microservice WoT Istio Proxy - Logical
Sensor Architecture

Hipster Application [34] - - Microservice - Istio Proxy - eCommerce
Bookstore application [35] - - Microservice - Kube Proxy/Istio Proxy - Bookstore

Smart
Intercom

Microservice
V Multiple

IM Softwares Microservice CoT Kube Proxy/Istio Proxy V Intercom

-: Not supportive. V: Supportive.

Electronics 2023, 12, 2406 6 of 24

One study developed a chatbot system (MsdoBot) that integrates microservices to
develop and operate many supplementary tools to provide the required information on
various usage scenarios and for monitoring and maintaining real-time system status re-
ports [42]. An information robot provides users with multiple channels of information
delivery through web subscriptions. It is based on an event-based microservice architecture
to realize and provide real-time data delivery [43]. Factory employees can use Telegram
Messenger to remotely control their working electronic devices with the help of an arti-
ficial intelligence chatbot without the need for manual switching and to support energy
savings [44]. Using the Facebook Messenger application, a smart security system and a
home automation system were implemented, allowing residents to control the device even
when they are not at home and use the chatbot to lock or unlock the door and check who is
there. The chatbot is used to alert staff if they are allowed to turn equipment on or off, such
that the chatbot notifies staff to turn on fans when the temperature is high [45].

In this paper, the monolithic smart intercom system is migrated to a microservice
architecture that allows residents to use different instant messaging software to replace the
intercom handset and exchange messages with each other. The deployed Cloud of Things
framework can provide residents with the ability to communicate with visitors through
instant messaging software and microservices, and any smart intercom can join the system
with the OpenAPI.

Although microservice architectures have proven to be more advantageous than
monolithic architectures, monolithic architectures are easier to develop. They are a good
choice when the system load is low and there are fewer integration, connectivity, and
configuration issues. A microservice architecture is more efficient if an application needs to
handle more requests. The choice between these two architectures depends entirely on the
type of problem to be solved [46]. There is a need to compare monolithic and microservice
architectures with reference to relevant studies [1,40,41,47]. Therefore, this study will also
use stress testing tools to simulate and compare two different load-balancing microservice
architectures and monolithic systems by activating CoT or IoT devices.

3. Microservice System Development
3.1. Monolithic to Microservice

In this study, a monolithic smart intercom system is used as the basis for deploying a
microservice architecture using microservice and IoT technologies to enhance functionality
and make the system more secure, stable, scalable, and convenient for more communities
and residents.

The monolithic smart intercom system is an integration of an embedded system and
a chatbot server that provides residents with a menu of instant messaging software to
communicate directly with visitors through various services and to perform functions of
door-related devices. When a resident clicks one of the “Open door”, “Monitor”, “Alarm”,
or “Busy” buttons, the instant messaging software sends a message through the messaging
API, which then uses a webhook to trigger an event to be sent to a chatbot server on the
embedded system to perform a specific function based on the message. The software
framework of the monolithic smart intercom system is shown in Figure 2.

In addition to migrating the above functions to the microservice, this study establishes
an instant messaging microservice that enables residents to receive messages from the smart
intercom and even communicate with each other when residents choose to use different
instant messaging software. On the other hand, these bot functions of the chatbot server on
the embedded system can be migrated to the microservice. Residents who use different
instant messaging software can receive messages, control the CoT device, and communicate
with each other through the instant messaging microservice.

In addition, this system develops an OpenAPI for smart intercoms, enabling this
system to provide services to integrated smart intercoms. Any smart intercom will be able
to access the features and resources of this system to provide services through OpenAPI.

Electronics 2023, 12, 2406 7 of 24

Electronics 2023, 12, x FOR PEER REVIEW 6 of 24

Things framework can provide residents with the ability to communicate with visitors
through instant messaging software and microservices, and any smart intercom can join
the system with the OpenAPI.

Although microservice architectures have proven to be more advantageous than
monolithic architectures, monolithic architectures are easier to develop. They are a good
choice when the system load is low and there are fewer integration, connectivity, and con-
figuration issues. A microservice architecture is more efficient if an application needs to
handle more requests. The choice between these two architectures depends entirely on the
type of problem to be solved [46]. There is a need to compare monolithic and microservice
architectures with reference to relevant studies [1,40,41,47]. Therefore, this study will also
use stress testing tools to simulate and compare two different load-balancing microservice
architectures and monolithic systems by activating CoT or IoT devices.

3. Microservice System Development
3.1. Monolithic to Microservice

In this study, a monolithic smart intercom system is used as the basis for deploying
a microservice architecture using microservice and IoT technologies to enhance function-
ality and make the system more secure, stable, scalable, and convenient for more commu-
nities and residents.

The monolithic smart intercom system is an integration of an embedded system and
a chatbot server that provides residents with a menu of instant messaging software to
communicate directly with visitors through various services and to perform functions of
door-related devices. When a resident clicks one of the “Open door”, “Monitor”, “Alarm”,
or “Busy” buttons, the instant messaging software sends a message through the messag-
ing API, which then uses a webhook to trigger an event to be sent to a chatbot server on
the embedded system to perform a specific function based on the message. The software
framework of the monolithic smart intercom system is shown in Figure 2.

Figure 2. The software framework of the monolithic smart intercom system.

In addition to migrating the above functions to the microservice, this study estab-
lishes an instant messaging microservice that enables residents to receive messages from
the smart intercom and even communicate with each other when residents choose to use
different instant messaging software. On the other hand, these bot functions of the chatbot
server on the embedded system can be migrated to the microservice. Residents who use
different instant messaging software can receive messages, control the CoT device, and
communicate with each other through the instant messaging microservice.

Figure 2. The software framework of the monolithic smart intercom system.

3.2. Microservice Architecture

This system consists of an intercom microservice, an instant messaging microservice,
and an administration microservice. Residents can use instant messaging software to
receive visitor messages and click on the menu of the instant messaging software to activate
the system functions. The software framework of this system is shown in Figure 3.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 24

In addition, this system develops an OpenAPI for smart intercoms, enabling this sys-
tem to provide services to integrated smart intercoms. Any smart intercom will be able to
access the features and resources of this system to provide services through OpenAPI.

3.2. Microservice Architecture
This system consists of an intercom microservice, an instant messaging microservice,

and an administration microservice. Residents can use instant messaging software to re-
ceive visitor messages and click on the menu of the instant messaging software to activate
the system functions. The software framework of this system is shown in Figure 3.

Figure 3. Software framework of this system.

The system provides a microservice for managing and controlling the smart intercom
called the “intercom microservice”, which contains the following APIs.
• Open API (for one-way intercom delivery).
• Photo API (for one-way intercom delivery).
• Alarm API (for intercom unidirectional delivery).
• Message API (for intercom send/receive).
• Doorbell API (for intercom).
• Smart Intercom Management: intercomsList API, Regintercom API, intercomsReads

API, intercomsModify API, and intercomsDelete API.
In addition, the “instant messaging microservice” is a webhook mechanism triggered

by messages sent from different instant messaging platforms. The related APIs are acti-
vated according to different events, and the results are sent to the users of the messaging
software. The related APIs are listed below.
• lineWebhook API.
• Send_line API.
• tgWebhook API.
• Send_tg API.

Figure 3. Software framework of this system.

The system provides a microservice for managing and controlling the smart intercom
called the “intercom microservice”, which contains the following APIs.

• Open API (for one-way intercom delivery).
• Photo API (for one-way intercom delivery).
• Alarm API (for intercom unidirectional delivery).
• Message API (for intercom send/receive).
• Doorbell API (for intercom).

Electronics 2023, 12, 2406 8 of 24

• Smart Intercom Management: intercomsList API, Regintercom API, intercomsReads
API, intercomsModify API, and intercomsDelete API.

In addition, the “instant messaging microservice” is a webhook mechanism triggered
by messages sent from different instant messaging platforms. The related APIs are activated
according to different events, and the results are sent to the users of the messaging software.
The related APIs are listed below.

• lineWebhook API.
• Send_line API.
• tgWebhook API.
• Send_tg API.

To allow more communities and residents to use the system, “management microser-
vices” are divided into community building management, unit management, user manage-
ment, and broadcast management APIs to provide related services, and the APIs of each
category are listed below.

• Community Building Management: buildingsList API, buildingsAdd API, build-
ingsRead API, buildingsModify API, and buildingsDelete API.

• Unit Management: unitsList API, unitsAdd API, unitsRead API, unitsModify API,
and unitsDelete API.

• User Management: usersList API, usersAdd API, usersRead API, usersModify API,
and usersDelete API.

• Broadcast Management: platformBroadcast API, buildingBroadcast API, and unit-
Broadcast API.

Suppose the resident presses the “Open” button. In that case, the message will be sent
to the instant messaging software platform, which will use the webhook mechanism to
execute the “Open API” of the intercom microservice through the API gateway. The “Open
API” controls the remote GPIO to switch on the CoT device to execute the “Open Door”
action through the internet.

3.3. OpenAPI of Intercom

OpenAPI is a standard format for defining APIs and supports the Restful API speci-
fication. This study uses a third-format library to support the OpenAPI 2.0 specification,
which can generate help files, test server programs, and test client programs directly from
the comments written in the code.

The following is an example of OpenAPI for smart intercoms. The name, parame-
ters, and response format of OpenAPI for smart intercoms can be defined by adding the
following comments to the code shown in Listing 1.

Listing 1. Example of comments in the Regintercom API.
//swagger:route POST/intercom Regintercom

//
//Register new intercom for specific building
//
//Returns Intercom Information
//
//Responses:
//200: IntercomInfo
//500:

The first swagger: the route is used to define an OpenAPI, “POST” is the method used
for HTTP calls, the next intercom is the OpenAPI category, and the last Regintercom is the
name of this API. The following four lines are the description block of this OpenAPI. The
last defines the status code and the format of the https response. The status code is defined
in the HTTP/1.1 standard as the meaning of each number. The example above defines two
responses: one is 200 for a successful API response, and the accompanying response format
is IntercomInfo. The other response is 500 for an internal server error, and the blank after
500 means that the error message does not carry any response.

In addition, this Regintercom API defines the structure of the parameters and the
IntercomInfo data structure. The swagger:parameters Regintercom is defined here as

Electronics 2023, 12, 2406 9 of 24

API parameters and swagger:model IntercomInfo is defined as the IntercomInfo data
structure of the API response shown in Listing 2.

Parameters of Regintercom.
The swagger:parameters are defined here as API parameters, and the RegisterParam

is used to specify the corresponding API://swagger:parameters

Listing 2. Regintercom parameters and the IntercomInfo data structure.
//swagger:parameters Regintercom

type Regintercom struct {
//required: true
//in: body
BuildingID int64
//required: true
//in: body
AuthCode int64
}

IntercomInfo data structure://swagger:model
//swagger:model Intercom
type Intercom struct {
ID int64 ‘json: “id”‘
Title string ‘json: “title”‘
BuildingID int64 ‘json: “buildingID”‘
}

After completing the above Regintercom API configuration, the following command
can be run to generate the swagger.json file, which is the file of this Regintercom API shown
in Listing 3.

Listing 3. The command used to generate the swagger.json file.
swagger generate spec -m -o swagger.json

To make the Regintercom OpenAPI file more readable, running the command (shown
in Listing 4) generates a highly readable web page, as shown in Figure 4.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 24

Figure 4. Regintercom OpenAPI is a highly readable web page.

3.4. Cloud of Things
The monolithic system uses a web service approach to directly control the IoT device

with a program from the chatbot server on the embedded system. As the system migrates,
the associated bot functions are also migrated to the microservice, which connects directly
to the embedded system through an IP address to remotely control the GPIO pins to turn
on the CoT device. The CoT is a cloud-based platform for high-performance IoT applica-
tions that connect our devices and machines, allowing for the remote monitoring and
management of CoT devices. The system integrates the security mechanisms of the instant
messaging microservice and the instant messaging platform, allowing both parties to ex-
change messages through a secure authentication process. To ensure that control of re-
mote CoT devices is legal, the system only allows access to the CoT device settings
through strict security procedures.

3.5. System Security
A monolithic system provides permission checking by storing user information in a

session at login and retrieving user information from there on subsequent accesses. This
study migrates a monolithic system into a microservice architecture and integrates the
security mechanisms of an instant messaging platform and microservices. The instant
messaging software uses the webhook service to connect to the Token-based authentica-
tion mechanism of the microservice. The Token is generated by the authentication server
built on the IM microservice after the user has been authenticated using the user ID of
instant messaging software as the user ID when entering the system. The Token is used
as a pass for users to access system resources during system usage, instead of the instant
messaging software’s user ID, so that users’ privacy and security will be fully protected.

Figure 4. Regintercom OpenAPI is a highly readable web page.

Electronics 2023, 12, 2406 10 of 24

Listing 4. The command used to generate the highly readable web page.
docker run -p 80:8080 -e SWAGGER_JSON=/foo/swagger.json -v

server:/foo swaggerapi/swagger-ui

3.4. Cloud of Things

The monolithic system uses a web service approach to directly control the IoT device
with a program from the chatbot server on the embedded system. As the system migrates,
the associated bot functions are also migrated to the microservice, which connects directly
to the embedded system through an IP address to remotely control the GPIO pins to
turn on the CoT device. The CoT is a cloud-based platform for high-performance IoT
applications that connect our devices and machines, allowing for the remote monitoring
and management of CoT devices. The system integrates the security mechanisms of the
instant messaging microservice and the instant messaging platform, allowing both parties
to exchange messages through a secure authentication process. To ensure that control
of remote CoT devices is legal, the system only allows access to the CoT device settings
through strict security procedures.

3.5. System Security

A monolithic system provides permission checking by storing user information in a
session at login and retrieving user information from there on subsequent accesses. This
study migrates a monolithic system into a microservice architecture and integrates the
security mechanisms of an instant messaging platform and microservices. The instant
messaging software uses the webhook service to connect to the Token-based authentication
mechanism of the microservice. The Token is generated by the authentication server built
on the IM microservice after the user has been authenticated using the user ID of instant
messaging software as the user ID when entering the system. The Token is used as a pass
for users to access system resources during system usage, instead of the instant messaging
software’s user ID, so that users’ privacy and security will be fully protected.

The system provides a process for administrators to review users joining the system.
Upon receipt of the administrator’s approval of the user application, the system will
initiate the user registration and authentication process. In addition to completing the
registration process of the system, the user will also be required to agree to join the instant
messaging software official account of the system through security authentication by the
instant messaging platform. Therefore, the system provides a security mechanism between
user registration and usage to fully protect the privacy and security of users. The security
mechanism of the system is shown in Figure 5.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 24

The system provides a process for administrators to review users joining the system.
Upon receipt of the administrator’s approval of the user application, the system will initi-
ate the user registration and authentication process. In addition to completing the regis-
tration process of the system, the user will also be required to agree to join the instant
messaging software official account of the system through security authentication by the
instant messaging platform. Therefore, the system provides a security mechanism be-
tween user registration and usage to fully protect the privacy and security of users. The
security mechanism of the system is shown in Figure 5.

Figure 5. The security mechanism of this system.

Unlike a session ID, a Token is not just a key; it usually contains information about
the user, and an authenticated Token can be used to identify the user. The API gateway in
this system is the entry point for accessing API privilege control, combined with the au-
thorization server on the IM microservice built into this system. After a validation check
with the user ID of the instant messaging software, the authorization server returns an
access Token with which access to system resources is indicated as authorized by the sys-
tem. The API gateway or service-to-service communication goes through a two-way au-
thentication and encryption channel to establish a baseline for normal service and to de-
tect abnormal intrusion. The Token is in JSON format and is used to access resources such
as protected APIs, CoT devices, etc. Before accessing these system resources, the Token
can then be checked for authenticity using an authentication mechanism, or the Token can
be checked for permissions use a pair of public and private keys. It also prevents contain-
ers from being directly connected and accessed by a fixed IP location and ensures that
containers are secure on the network through proper network environment settings.

The system also allows both parties to pass messages through a secure authentication
process by combining the instant messaging microservice with the security mechanisms
of the instant messaging platform. When the system handles messages sent from different
instant messaging platforms, they are also authenticated by the instant messaging plat-
form. In other words, users from different instant messaging platforms must go through
the security authentication process of the instant messaging platform and the security au-
thentication mechanism on the microservice system before they can access the corre-
sponding API.

No user can access user information on other instant messaging platforms through
the system. The system provides effective security mechanisms to protect the privacy and
security of users. The CoT connection settings are also available to the system through a
rigorous security check process as described above, ensuring that the controlling CoT de-
vice is system approved.

4. Testing Configuration

Figure 5. The security mechanism of this system.

Electronics 2023, 12, 2406 11 of 24

Unlike a session ID, a Token is not just a key; it usually contains information about
the user, and an authenticated Token can be used to identify the user. The API gateway
in this system is the entry point for accessing API privilege control, combined with the
authorization server on the IM microservice built into this system. After a validation
check with the user ID of the instant messaging software, the authorization server returns
an access Token with which access to system resources is indicated as authorized by the
system. The API gateway or service-to-service communication goes through a two-way
authentication and encryption channel to establish a baseline for normal service and to
detect abnormal intrusion. The Token is in JSON format and is used to access resources
such as protected APIs, CoT devices, etc. Before accessing these system resources, the
Token can then be checked for authenticity using an authentication mechanism, or the
Token can be checked for permissions use a pair of public and private keys. It also prevents
containers from being directly connected and accessed by a fixed IP location and ensures
that containers are secure on the network through proper network environment settings.

The system also allows both parties to pass messages through a secure authentication
process by combining the instant messaging microservice with the security mechanisms of
the instant messaging platform. When the system handles messages sent from different
instant messaging platforms, they are also authenticated by the instant messaging platform.
In other words, users from different instant messaging platforms must go through the secu-
rity authentication process of the instant messaging platform and the security authentication
mechanism on the microservice system before they can access the corresponding API.

No user can access user information on other instant messaging platforms through
the system. The system provides effective security mechanisms to protect the privacy and
security of users. The CoT connection settings are also available to the system through
a rigorous security check process as described above, ensuring that the controlling CoT
device is system approved.

4. Testing Configuration

In this system, the related functions are broken down into each independent API, and
the services are provided by each API in the microservice architecture. When the intercom
microservice receives an “alarm” message from the resident through a webhook on an
instant messaging platform, it will directly find the “Alarm API” through the API gateway
to control the CoT device. The schematic diagram of this system receiving alarm message
processing is shown in Figure 6.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 24

In this system, the related functions are broken down into each independent API, and
the services are provided by each API in the microservice architecture. When the intercom
microservice receives an “alarm” message from the resident through a webhook on an
instant messaging platform, it will directly find the “Alarm API” through the API gateway
to control the CoT device. The schematic diagram of this system receiving alarm message
processing is shown in Figure 6.

Figure 6. Schematic diagram of this system receiving alarm message processing.

To understand the effectiveness of the smart intercom system in improving the ser-
vice performance after migrating from a monolithic system to a microservice system, a
stress testing tool is used to assess the server performance of HTTPs and web pages. The
stress testing tool can simulate many users and record the simulated user test scenarios
individually. By analyzing the test results of the smart intercom system under different
architectural conditions, we can understand which system architecture performs the best.

Stress testing is a performance test that investigates how many users the system can
handle at a given time by activating simulated users to make various requests simultane-
ously. Load balancers are used to improve the overall network performance by distrib-
uting the request and traffic load among multiple resources.

In this paper, to test the monolithic system and two different load-balancing micro-
service systems, the monolithic system uses a fixed IP instead of an IP proxy to improve
its operational performance. Stress test tools are used to simulate residents using instant
messaging software to switch on alarm WoT devices for testing. The two different micro-
service smart intercom systems were simulated using instant messaging software by a
resident pressing the “Alarm” button and using “AlarmOpenAPI” through ingress to trig-
ger the remotely GPIO codes to turn on the buzzer. The flow of the “Alarm” message
processing by the system is shown in Figure 7.

Figure 7. The flow of the “Alarm” message processing by the system.

Figure 6. Schematic diagram of this system receiving alarm message processing.

To understand the effectiveness of the smart intercom system in improving the service
performance after migrating from a monolithic system to a microservice system, a stress
testing tool is used to assess the server performance of HTTPs and web pages. The
stress testing tool can simulate many users and record the simulated user test scenarios

Electronics 2023, 12, 2406 12 of 24

individually. By analyzing the test results of the smart intercom system under different
architectural conditions, we can understand which system architecture performs the best.

Stress testing is a performance test that investigates how many users the system can
handle at a given time by activating simulated users to make various requests simultane-
ously. Load balancers are used to improve the overall network performance by distributing
the request and traffic load among multiple resources.

In this paper, to test the monolithic system and two different load-balancing microser-
vice systems, the monolithic system uses a fixed IP instead of an IP proxy to improve its
operational performance. Stress test tools are used to simulate residents using instant mes-
saging software to switch on alarm WoT devices for testing. The two different microservice
smart intercom systems were simulated using instant messaging software by a resident
pressing the “Alarm” button and using “AlarmOpenAPI” through ingress to trigger the
remotely GPIO codes to turn on the buzzer. The flow of the “Alarm” message processing
by the system is shown in Figure 7.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 24

In this system, the related functions are broken down into each independent API, and
the services are provided by each API in the microservice architecture. When the intercom
microservice receives an “alarm” message from the resident through a webhook on an
instant messaging platform, it will directly find the “Alarm API” through the API gateway
to control the CoT device. The schematic diagram of this system receiving alarm message
processing is shown in Figure 6.

Figure 6. Schematic diagram of this system receiving alarm message processing.

To understand the effectiveness of the smart intercom system in improving the ser-
vice performance after migrating from a monolithic system to a microservice system, a
stress testing tool is used to assess the server performance of HTTPs and web pages. The
stress testing tool can simulate many users and record the simulated user test scenarios
individually. By analyzing the test results of the smart intercom system under different
architectural conditions, we can understand which system architecture performs the best.

Stress testing is a performance test that investigates how many users the system can
handle at a given time by activating simulated users to make various requests simultane-
ously. Load balancers are used to improve the overall network performance by distrib-
uting the request and traffic load among multiple resources.

In this paper, to test the monolithic system and two different load-balancing micro-
service systems, the monolithic system uses a fixed IP instead of an IP proxy to improve
its operational performance. Stress test tools are used to simulate residents using instant
messaging software to switch on alarm WoT devices for testing. The two different micro-
service smart intercom systems were simulated using instant messaging software by a
resident pressing the “Alarm” button and using “AlarmOpenAPI” through ingress to trig-
ger the remotely GPIO codes to turn on the buzzer. The flow of the “Alarm” message
processing by the system is shown in Figure 7.

Figure 7. The flow of the “Alarm” message processing by the system. Figure 7. The flow of the “Alarm” message processing by the system.

Since the procedures for controlling the buzzer are the same for the two load-balancing
microservice systems and the buzzer is an exclusive device, it is time-consuming to perform
the switching operation. Therefore, when testing with the stress test tool, we simulated
many residents using the same test script and collected the testing log from the stress test
tool to decipher which load balancer performs the best.

This study deploys two load-balancing microservice systems using a native load
balancer with a kube proxy and a service mesh load balancer with an istio proxy. The
resident presses a button using the instant messaging software, and the instant messaging
platform executes a webhook specifying URL that is an entry of Ingress. When Ingress
sets up a native load balancer, Ingress finds the API of the dependent message in the
corresponding pod for communication, and all pods share the kube proxy, as shown in
Figure 8.

Electronics 2023, 12, 2406 13 of 24

Electronics 2023, 12, x FOR PEER REVIEW 13 of 24

Since the procedures for controlling the buzzer are the same for the two load-balanc-
ing microservice systems and the buzzer is an exclusive device, it is time-consuming to
perform the switching operation. Therefore, when testing with the stress test tool, we sim-
ulated many residents using the same test script and collected the testing log from the
stress test tool to decipher which load balancer performs the best.

This study deploys two load-balancing microservice systems using a native load bal-
ancer with a kube proxy and a service mesh load balancer with an istio proxy. The resident
presses a button using the instant messaging software, and the instant messaging platform
executes a webhook specifying URL that is an entry of Ingress. When Ingress sets up a
native load balancer, Ingress finds the API of the dependent message in the corresponding
pod for communication, and all pods share the kube proxy, as shown in Figure 8.

Figure 8. Schematic diagram of the native load balancer.

When Ingress sets up a service mesh load balancer, Ingress finds the API of the de-
pendent message in the corresponding pod for communication, each pod is attached with
an istio proxy, and the traffic between istio proxies can be communicated and encrypted,
as shown in Figure 9.

Figure 9. Schematic diagram of service mesh load balancer.

Figure 8. Schematic diagram of the native load balancer.

When Ingress sets up a service mesh load balancer, Ingress finds the API of the
dependent message in the corresponding pod for communication, each pod is attached with
an istio proxy, and the traffic between istio proxies can be communicated and encrypted, as
shown in Figure 9.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 24

Since the procedures for controlling the buzzer are the same for the two load-balanc-
ing microservice systems and the buzzer is an exclusive device, it is time-consuming to
perform the switching operation. Therefore, when testing with the stress test tool, we sim-
ulated many residents using the same test script and collected the testing log from the
stress test tool to decipher which load balancer performs the best.

This study deploys two load-balancing microservice systems using a native load bal-
ancer with a kube proxy and a service mesh load balancer with an istio proxy. The resident
presses a button using the instant messaging software, and the instant messaging platform
executes a webhook specifying URL that is an entry of Ingress. When Ingress sets up a
native load balancer, Ingress finds the API of the dependent message in the corresponding
pod for communication, and all pods share the kube proxy, as shown in Figure 8.

Figure 8. Schematic diagram of the native load balancer.

When Ingress sets up a service mesh load balancer, Ingress finds the API of the de-
pendent message in the corresponding pod for communication, each pod is attached with
an istio proxy, and the traffic between istio proxies can be communicated and encrypted,
as shown in Figure 9.

Figure 9. Schematic diagram of service mesh load balancer. Figure 9. Schematic diagram of service mesh load balancer.

In these two load-balancing microservice architectures, connecting to two smart inter-
coms with fixed IP addresses makes it possible to access the CoT device.

5. Testing Standards and Results
5.1. Testing Limitation

As the testing environment for this study needs to be conducted in the real world,
the following factors may lead to the increased complexity of the testing operations, and
therefore trade-offs and limitations are necessary.

Electronics 2023, 12, 2406 14 of 24

• The control of the intercom system by the resident using instant messaging software
on the smartphone is often affected by the transmission speed of the network. This
test simulates the execution of a stress test command by obtaining the execution
script through the instant messaging platform through the actions of a resident. The
test was conducted without actually sending the commands from the resident using
instant messaging software on the smartphone, and the results were not sent back
to the resident.

• The speed of the network transmission of the cloud service platform and the intercom
also affected the results. However, the workload on the cloud service platform cannot
be controlled. Therefore, this study can only select the test period with more stable
data execution based on over 100 experiments. As much as possible, only the smart
intercom used the network segment during the test to minimize the impact on the
test operation.

• This study used a variety of IP configuration methods for smart intercoms, such as
the Ngrok, Node-RED, and DDNS methods. However, all of these methods take a
variable amount of time to convert the IP, which has a significant impact on the test
results. Therefore, in this study, two smart intercoms were configured in different
locations and given fixed IPs. If there is a difference, one of the intercoms is affected
by the network environment, and the test work has to be redone.

• Each resident has a different time of use for opening and closing the door. This study
uses a system simulation instead of residents and sets the door opening and closing
times to 2 s to facilitate comparison of response times for different system architectures.

5.2. Testing Criteria

The stress test tool is used to simulate residents operating the intercom. The stress test
tool generates the results of each test case execution during the testing process, and the
relevant generated data relationships are described as follows:

n = x + y,

where n denotes the number of tests, x denotes the number of successful transactions, and
y denotes the number of failed transactions.

SR = x/n × 100%,

where S denotes the success rate.

AT = ∑x
i=1 STi,

where AT denotes the average successful response time in seconds. STi denotes the ith time
in seconds for successful response when 1 ≤ i ≤ x.

SD =

√
1

x− 1 ∑x
i=1(STi− AT)2,

where SD denotes the standard deviation in seconds. STi denotes the ith time in seconds
for successful response when 1 ≤ i ≤ x.

E = ∑x
i=1 STi+∑y

j=1 FTj+∑x
k=1 Z,

where E denotes the elapsed times in seconds.
where STi denotes the ith time in seconds for successful response when 1 ≤ i ≤ x. FTj
denotes the jth time in seconds for failure response when 1 ≤ j ≤ y. Z denotes the device
operation time.

Electronics 2023, 12, 2406 15 of 24

D = ∑x
i=1 SDi+∑y

j=1 FDi,

where D denotes the size of the transferred data in bytes, SDi denotes the ith time in bytes
for successful response when 1 ≤ i ≤ x, and FDj denotes the jth time in bytes for failure
response when 1 ≤ j ≤ y.

TR = n/E,

where TR denotes the transaction rate in trans/second.

TP = D/E,

where T denotes the throughput in bytes/second.

LT = max
1≤〉≤x

ST 〉,

where LT denotes the longest transaction response time in seconds.

ST = min
1≤〉≤x

ST 〉,

where ST denotes the shortest transaction response time in seconds.
As the monolithic smart intercom system is installed on an embedded system and

can serve only one user at a time, to compare the monolithic system with the two different
load-balancing microservice systems, this study simulates the activation of the buzzer 50,
100, 150, and 200 consecutive times using a stress testing tool, whose device rings for 2 s at
the end of each time and then proceeds to the next test.

Next, the stress testing tool was used to simulate 50, 100, 150, and 200 users using
the same test script of the microservice system simultaneously to compare the native load
balancer and the service mesh load balancer. Since the activation buzzer is an exclusive
device that runs much longer than the microservice execution times, the actual activation
buzzer was not activated in the experiments, and only the time of microservice execution
was recorded.

5.3. Testing Results

As the monolithic smart intercom system is installed on an embedded system, it can
serve only one user at a time. This test uses a stress test tool to simulate 50, 100, 150,
and 200 consecutive activations of the buzzer by one user. The stress test tool records the
results of each activation. To understand whether the two load-balancing microservice
systems are superior to the monolithic system, relevant experiments were conducted, and
the success rate was calculated after calculating the number of successful transactions,
which are shown in Table 2.

Table 2. List of stress test success rates for three different architectures.

Architecture Type

50 Times 100 Times 150 Times 200 Times

Success
Times (x)

Success
Rate (S)

Success
Times (x)

Success
Rate (S)

Success
Times (x)

Success
Rate (S)

Success
Times (x)

Success
Rate (S)

Service mesh load
balancer 50 100% 100 100% 150 100% 200 100%

Native
load balancer 50 100% 100 100% 150 100% 200 100%

Monolithic 21 42% 21 21% 21 14% 21 10.5%

The monolithic smart intercom system experienced an exception after 21 activations
of the buzzer, while both load-balancing microservice systems were able to provide stable

Electronics 2023, 12, 2406 16 of 24

activation of the CoT device with a 100% success rate. The main reason for this is that both
load-balancing microservice systems are deployed in the cloud, which is much richer in
resources than a monolithic system deployed on an embedded system. As a result, the
stability and performance of both load-balancing microservice systems are much better
than those of the monolithic system.

The activation of the buzzer was omitted from the simulation tests due to the time-
consuming operation of accessing the buzzer. Therefore, Z was set to 0 in the test criteria.
The stress test tool was then used to simulate 50, 100, 150, and 200 users simultaneously
using the same test script on both load balancers. After obtaining the test results of the
stress test tool, the respective calculations according to the test criteria are shown in Table 3.

Table 3. List of test results for the simultaneous use of different load balancer microservices.

Proxy Type
50 Users 100 Users 150 Users 200 Users

Istio Kube Istio Kube Istio Kube Istio Kube

x 50 50 100 100 150 150 200 200
y 0 0 0 0 0 0 0 0

SR 100% 100% 100% 100% 100% 100% 100% 100%
AT 0.2854 0.196 0.4027 0.3348 0.5752 0.4681 0.7763 0.6890
SD 0.0671 0.0202 0.1223 0.0856 0.2055 0.1773 0.2850 0.2756
E 14.2700 9.8000 40.27 33.48 86.2800 70.2100 155.2500 137.7900
D 450 450 900 900 1350 1350 1800 1800

TR 3.5039 5.1020 2.4832 2.9869 1.7385 2.1364 1.2882 1.4515
TP 31.5347 45.9184 22.3491 26.8817 15.6467 19.2280 11.5942 13.0634
LT 0.38 0.24 0.58 0.44 0.88 0.69 1.19 1.04
ST 0.16 0.17 0.1 0.12 0.1 0.11 0.21 0.17

The stress test tool was used to simulate 50 users using the same test script in
two load-balancing microservice systems. Based on the test results recorded by the stress
test tool, Figure 10 was created according to the test criteria. It was observed that the native
load balancer was better than the service mesh load balancer after the 10th user activated
the buzzer.

Electronics 2023, 12, x FOR PEER REVIEW 17 of 24

Figure 10. The response time for simultaneous use by 50 residents.

The stress test tool was used to simulate 100 users using the same test script in two
load-balancing microservice systems. Based on the test results recorded by the stress test
tool, Figure 11 was created according to the test criteria. The native load balancer was
found to outperform the service mesh load balancer.

Figure 11. The response time for simultaneous use by 100 residents.

The stress test tool was used to simulate 150 users using the same test script in two
load-balancing microservice systems. Based on the test results recorded by the stress test
tool, Figure 12 was created according to the test criteria. The native load balancer outper-
formed the service mesh load balancer.

Figure 10. The response time for simultaneous use by 50 residents.

The stress test tool was used to simulate 100 users using the same test script in
two load-balancing microservice systems. Based on the test results recorded by the stress

Electronics 2023, 12, 2406 17 of 24

test tool, Figure 11 was created according to the test criteria. The native load balancer was
found to outperform the service mesh load balancer.

Electronics 2023, 12, x FOR PEER REVIEW 17 of 24

Figure 10. The response time for simultaneous use by 50 residents.

The stress test tool was used to simulate 100 users using the same test script in two
load-balancing microservice systems. Based on the test results recorded by the stress test
tool, Figure 11 was created according to the test criteria. The native load balancer was
found to outperform the service mesh load balancer.

Figure 11. The response time for simultaneous use by 100 residents.

The stress test tool was used to simulate 150 users using the same test script in two
load-balancing microservice systems. Based on the test results recorded by the stress test
tool, Figure 12 was created according to the test criteria. The native load balancer outper-
formed the service mesh load balancer.

Figure 11. The response time for simultaneous use by 100 residents.

The stress test tool was used to simulate 150 users using the same test script in
two load-balancing microservice systems. Based on the test results recorded by the stress
test tool, Figure 12 was created according to the test criteria. The native load balancer
outperformed the service mesh load balancer.

Electronics 2023, 12, x FOR PEER REVIEW 18 of 24

Figure 12. The response time for simultaneous use by 150 residents.

The stress test tool was used to simulate 200 users using the same test script in two
load-balancing microservice systems. Based on the test results recorded by the stress test
tool, Figure 13 was created according to the test criteria. The native load balancer outper-
formed the service mesh load balancer.

Figure 13. The response time for simultaneous use by 200 residents.

The data presented in Table 3 and the analysis of the four stress tests show that the
kube proxy is better than the istio proxy in the microservice architecture, which means
that the type of processing tested in this simulation is suitable for execution under a native
load balancer with a kube proxy architecture. The more users there are executing simul-
taneously, the longer the average response time and the larger the standard deviation. In
other words, the greater the number of users executing simultaneously is, the worse the
execution efficiency of the two microservice architectures.

5.4. System Implementation
The smart intercom microservice system remotely controls the CoT device using the

appropriate designated API and then transmits the execution results to the resident by
instant messaging software.

The instant messaging microservice not only transmits system messages, but can also
be used to implement platform broadcasts, building broadcasts, unit broadcasts, and

Figure 12. The response time for simultaneous use by 150 residents.

The stress test tool was used to simulate 200 users using the same test script in
two load-balancing microservice systems. Based on the test results recorded by the stress

Electronics 2023, 12, 2406 18 of 24

test tool, Figure 13 was created according to the test criteria. The native load balancer
outperformed the service mesh load balancer.

Electronics 2023, 12, x FOR PEER REVIEW 18 of 24

Figure 12. The response time for simultaneous use by 150 residents.

The stress test tool was used to simulate 200 users using the same test script in two
load-balancing microservice systems. Based on the test results recorded by the stress test
tool, Figure 13 was created according to the test criteria. The native load balancer outper-
formed the service mesh load balancer.

Figure 13. The response time for simultaneous use by 200 residents.

The data presented in Table 3 and the analysis of the four stress tests show that the
kube proxy is better than the istio proxy in the microservice architecture, which means
that the type of processing tested in this simulation is suitable for execution under a native
load balancer with a kube proxy architecture. The more users there are executing simul-
taneously, the longer the average response time and the larger the standard deviation. In
other words, the greater the number of users executing simultaneously is, the worse the
execution efficiency of the two microservice architectures.

5.4. System Implementation
The smart intercom microservice system remotely controls the CoT device using the

appropriate designated API and then transmits the execution results to the resident by
instant messaging software.

The instant messaging microservice not only transmits system messages, but can also
be used to implement platform broadcasts, building broadcasts, unit broadcasts, and

Figure 13. The response time for simultaneous use by 200 residents.

The data presented in Table 3 and the analysis of the four stress tests show that the
kube proxy is better than the istio proxy in the microservice architecture, which means that
the type of processing tested in this simulation is suitable for execution under a native load
balancer with a kube proxy architecture. The more users there are executing simultaneously,
the longer the average response time and the larger the standard deviation. In other words,
the greater the number of users executing simultaneously is, the worse the execution
efficiency of the two microservice architectures.

5.4. System Implementation

The smart intercom microservice system remotely controls the CoT device using the
appropriate designated API and then transmits the execution results to the resident by
instant messaging software.

The instant messaging microservice not only transmits system messages, but can also
be used to implement platform broadcasts, building broadcasts, unit broadcasts, and family
broadcasts to exchange messages between different instant messaging software to enable
residents to communicate through the system. The implementation and results of the
system are described below.

When a visitor presses a floor button on the intercom and takes a photo, the system
looks up the family member to whom the button corresponds through the system. Mem-
bers will receive the visitor’s photo and message, even if they are using different instant
messaging software, as shown in Figure 14a,b.

Residents who receive a photo or message will usually ignore it if they do not know
the visitor. However, if the resident receiving the message is away and wishes to pass
on the message to a family member to assist in receiving the visitor, the recipient can use
the system to send a message of assistance to the family member using a different instant
messaging software, as shown in Figure 14b.

Suppose the community needs to notify all residents of an emergency. In this case, a
community announcement can be sent through the system, and residents can also receive
the message using different instant messaging software, as in Figure 15a,b.

Electronics 2023, 12, 2406 19 of 24

Electronics 2023, 12, x FOR PEER REVIEW 19 of 24

family broadcasts to exchange messages between different instant messaging software to
enable residents to communicate through the system. The implementation and results of
the system are described below.

When a visitor presses a floor button on the intercom and takes a photo, the system
looks up the family member to whom the button corresponds through the system. Mem-
bers will receive the visitor’s photo and message, even if they are using different instant
messaging software, as shown in Figure 14a,b.

(a) (b)

Figure 14. (a) The resident receives messages by Line. (b) The resident receives messages by Tele-
gram.

Residents who receive a photo or message will usually ignore it if they do not know
the visitor. However, if the resident receiving the message is away and wishes to pass on
the message to a family member to assist in receiving the visitor, the recipient can use the
system to send a message of assistance to the family member using a different instant
messaging software, as shown in Figure 14b.

Suppose the community needs to notify all residents of an emergency. In this case, a
community announcement can be sent through the system, and residents can also receive
the message using different instant messaging software, as in Figure 15a,b.

Figure 14. (a) The resident receives messages by Line. (b) The resident receives messages by Telegram.

Electronics 2023, 12, x FOR PEER REVIEW 20 of 24

(a) (b)

Figure 15. (a) Residents receive community broadcasts using Line. (b) Residents receive community
broadcasts using Telegram.

6. Discussion
The system was implemented to migrate from a smart intercom monolithic system

to a microservice architecture and integrated with the security mechanism of the instant
messaging software platform to make the system more secure. As the monolithic system
is installed on an embedded system, a single user will experience a system crash after 21
consecutive uses, which will cause the monolithic system to stop providing services. Two
different load-balancing microservice architectures were able to provide stable services
after 200 consecutive uses. Not only is it known that microservice architectures using two
different load balancers are more stable and scalable when accessing CoT devices, but they
are also better than monolithic architectures.

Next, we tested the buzzer or the door lock under two different load-balancing mi-
croservice architectures to see the actual response times. Neither of the two load-balancing
operations of the microservice architectures activate a buzzer or door lock opening oper-
ation. This study uses a stress testing tool to simulate 50, 100, 150, and 200 users simulta-
neously, requesting specific functions from two microservice architectures with different
load balancers to see which one is more suitable for accessing the CoT device.

The two different load balancers of the microservice systems use a native load bal-
ancer with a kube proxy and a service mesh load balancer with an istio proxy. According
to the average response time and standard deviation of the two architectures based on the
data logged by the stress test tool, the kube proxy slightly outperformed the istio poxy for
microservice architectures based on CoT. The study identified numerous issues that need
to be discussed:
1. This study confirmed that L4 load balancers process requests faster than L7 balancers

[48]. A native load balancer with a kube proxy is a network load balancer that can
handle only L4 protocols. A service mesh load balancer with an istio proxy is an ap-
plication load balancer that can handle L7 protocols.

Figure 15. (a) Residents receive community broadcasts using Line. (b) Residents receive community
broadcasts using Telegram.

Electronics 2023, 12, 2406 20 of 24

6. Discussion

The system was implemented to migrate from a smart intercom monolithic system
to a microservice architecture and integrated with the security mechanism of the instant
messaging software platform to make the system more secure. As the monolithic system
is installed on an embedded system, a single user will experience a system crash after
21 consecutive uses, which will cause the monolithic system to stop providing services.
Two different load-balancing microservice architectures were able to provide stable services
after 200 consecutive uses. Not only is it known that microservice architectures using
two different load balancers are more stable and scalable when accessing CoT devices, but
they are also better than monolithic architectures.

Next, we tested the buzzer or the door lock under two different load-balancing mi-
croservice architectures to see the actual response times. Neither of the two load-balancing
operations of the microservice architectures activate a buzzer or door lock opening opera-
tion. This study uses a stress testing tool to simulate 50, 100, 150, and 200 users simultane-
ously, requesting specific functions from two microservice architectures with different load
balancers to see which one is more suitable for accessing the CoT device.

The two different load balancers of the microservice systems use a native load balancer
with a kube proxy and a service mesh load balancer with an istio proxy. According to
the average response time and standard deviation of the two architectures based on the
data logged by the stress test tool, the kube proxy slightly outperformed the istio poxy for
microservice architectures based on CoT. The study identified numerous issues that need
to be discussed:

1. This study confirmed that L4 load balancers process requests faster than L7 bal-
ancers [48]. A native load balancer with a kube proxy is a network load balancer that
can handle only L4 protocols. A service mesh load balancer with an istio proxy is an
application load balancer that can handle L7 protocols.

2. The average response time length for both the native load balancer and the service
mesh load balancer microservice architectures varied with the number of concurrent
residents, as indicated by the simulation using the stress testing tool. In other words,
as the number of concurrent residents increases, the average response time increases
due to the increase in system load.

3. Although the native load balancer was better than the service mesh load balancer,
further analysis of the four stress tests showed that the response times of the two load
balancers were similar for the first 12 users. After the 12th user, the native load
balancer outperformed the service mesh load balancer. Even so, the native load
balancer had sudden increases in response time after approximately the 30th, 65th,
and 70th completed users, as shown in Figures 16 and 17.

4. As the instant messaging software does not provide an API to integrate a third-party
live calling functionality in the system, the instant messaging software mentioned
in this study does not yet include the live calling functionality, which is a potential
drawback of the system compared to other intercom systems. However, the system
allows residents and visitors to still hear each other’s voices by exchanging voice files.

5. Although strict security mechanisms and procedures have been designed to capture
the connection settings of CoT devices, and CoT device control instructions are trans-
mitted over an encrypted channel, the security mechanism for controlling CoT devices
is still undergoing continuous improvement.

Electronics 2023, 12, 2406 21 of 24

Electronics 2023, 12, x FOR PEER REVIEW 21 of 24

2. The average response time length for both the native load balancer and the service
mesh load balancer microservice architectures varied with the number of concurrent
residents, as indicated by the simulation using the stress testing tool. In other words,
as the number of concurrent residents increases, the average response time increases
due to the increase in system load.

3. Although the native load balancer was better than the service mesh load balancer,
further analysis of the four stress tests showed that the response times of the two load
balancers were similar for the first 12 users. After the 12th user, the native load bal-
ancer outperformed the service mesh load balancer. Even so, the native load balancer
had sudden increases in response time after approximately the 30th, 65th, and 70th
completed users, as shown in Figures 16 and 17.

Figure 16. Response time of simulations with service mesh load balancer.

Figure 17. Response time of simulations with native load balancer.

4. As the instant messaging software does not provide an API to integrate a third-party
live calling functionality in the system, the instant messaging software mentioned in
this study does not yet include the live calling functionality, which is a potential
drawback of the system compared to other intercom systems. However, the system
allows residents and visitors to still hear each other’s voices by exchanging voice files.

5. Although strict security mechanisms and procedures have been designed to capture
the connection settings of CoT devices, and CoT device control instructions are trans-
mitted over an encrypted channel, the security mechanism for controlling CoT de-
vices is still undergoing continuous improvement.

Figure 16. Response time of simulations with service mesh load balancer.

Electronics 2023, 12, x FOR PEER REVIEW 21 of 24

2. The average response time length for both the native load balancer and the service
mesh load balancer microservice architectures varied with the number of concurrent
residents, as indicated by the simulation using the stress testing tool. In other words,
as the number of concurrent residents increases, the average response time increases
due to the increase in system load.

3. Although the native load balancer was better than the service mesh load balancer,
further analysis of the four stress tests showed that the response times of the two load
balancers were similar for the first 12 users. After the 12th user, the native load bal-
ancer outperformed the service mesh load balancer. Even so, the native load balancer
had sudden increases in response time after approximately the 30th, 65th, and 70th
completed users, as shown in Figures 16 and 17.

Figure 16. Response time of simulations with service mesh load balancer.

Figure 17. Response time of simulations with native load balancer.

4. As the instant messaging software does not provide an API to integrate a third-party
live calling functionality in the system, the instant messaging software mentioned in
this study does not yet include the live calling functionality, which is a potential
drawback of the system compared to other intercom systems. However, the system
allows residents and visitors to still hear each other’s voices by exchanging voice files.

5. Although strict security mechanisms and procedures have been designed to capture
the connection settings of CoT devices, and CoT device control instructions are trans-
mitted over an encrypted channel, the security mechanism for controlling CoT de-
vices is still undergoing continuous improvement.

Figure 17. Response time of simulations with native load balancer.

7. Conclusions

This study completed the deployment of a microservice architecture and enhanced
related functions based on a monolithic smart intercom system to serve more communities
and residents and to enhance the system’s security, stability, scalability, and convenience.

An analysis of the results of the implementation and testing proved that the microser-
vices of the smart intercom system are indeed better than those of the monolithic system.
The response time of the kube proxy was found to be slightly better than that of the istio
proxy by comparing the two different microservice architectures. Furthermore, the sys-
tem enables residents to use different instant messaging software, thereby increasing the
convenience for residents.

The system enables residents to use different instant messaging software and still
enables community broadcasts, platform broadcasts, unit broadcasts, and family broadcasts

Electronics 2023, 12, 2406 22 of 24

to exchange messages between residents. This study also developed an OpenAPI for the
smart intercom. The smart intercom can use the system’s features and resources to provide
services through the OpenAPI.

In the future, the system will need to continue to address the issue of instant mes-
saging software not providing the ability for third parties to use live phone calls. Fur-
thermore, although the connection settings for fetching CoT devices undergo a stringent
security check process, the security mechanism for controlling CoT devices can still be
continuously advanced.

Author Contributions: Conceptualization, H.-Y.H., C.-H.H. and Y.-Y.F.; methodology, H.-Y.H. and
Y.-Y.F.; software, H.-Y.H., H.-Y.T. and B.-H.L.; validation, H.-Y.H. and Y.-Y.F.; writing—original
draft preparation, H.-Y.H., H.-Y.T. and B.-H.L.; writing—review and editing, H.-Y.H. and Y.-Y.F.;
supervision, Y.-Y.F.; funding acquisition, Y.-Y.F. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was partially sponsored by the National Science and Technology Council
(Taiwan) under Grants MOST 110-2221-E-030-001 and MOST 111-2221-E-030-010.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Newman, S. Monolith to Microservices: Evolutionary Patterns to Transform Your Monolith; O’Reilly Media, Inc.: Sebastopol,

CA, USA, 2019.
2. Huang, H.-Y.; Fanjiang, Y.-Y.; Hung, C.-H.; Lee, C.-A. Design and Implementation of a Smart Intercom System through Web

Services on Web of Things. Telecom 2022, 3, 675–691. [CrossRef]
3. Kazanavičius, J.; Mažeika, D. Migrating legacy software to microservices architecture. In Proceedings of the 2019 Open Conference

of Electrical Electronic and Information Sciences (eStream), Vilnius, Lithuania, 25 April 2019; pp. 1–5.
4. De Lauretis, L. From Monolithic Architecture to Microservices Architecture. In Proceedings of the 2019 IEEE International

Symposium on Software Reliability Engineering Workshops (ISSREW), Berlin, Germany, 27–30 October 2019; pp. 93–96.
[CrossRef]

5. Raharjo, A.B.; Andyartha, P.K.; Wijaya, W.H.; Purwananto, Y.; Purwitasari, D.; Juniarta, N. Reliability Evaluation of Microservices
and Monolithic Architectures. In Proceedings of the 2022 International Conference on Computer Engineering, Network, and
Intelligent Multimedia (CENIM), Surabaya, Indonesia, 22–23 November 2022; pp. 1–7. [CrossRef]

6. Zhang, H.; Li, S.; Jia, Z.; Zhong, C.; Zhang, C. Microservice architecture in reality: An industrial inquiry. In Proceedings of the
2019 IEEE International Conference on Software Architecture (ICSA), Hamburg, Germany, 25–26 March 2019; pp. 51–60.

7. Hofman, D.; Leu, J.-S.; Troller, P. Evolution from a Door Bell into an IP Door Phone. In Proceedings of the 2019 4th International
Conference on Intelligent Green Building and Smart Grid (IGBSG), Yichang, China, 6–9 September 2019; pp. 287–290.

8. Ejidokun, T.O.; Oke, O.J.; Omitola, I.M.; Oduneye, T. A Cost-Effective Two-Way Household Wireless Door Intercom System.
J. Commun. 2021, 16, 379–385. [CrossRef]

9. Sivapriyan, R.; Rao, K.M.; Harijyothi, M. Literature Review of IoT based Home Automation System. In Proceedings of
the 2020 Fourth International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 8–10 January 2020;
pp. 101–105.

10. Ahtsham, M.; Yan, H.Y.; Ali, U. IoT Based Door Lock Surveillance System Using Cryptographic Algorithms. In Proceedings of
the 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC), Banff, AB, Canada, 9–11 May 2019;
pp. 448–453.

11. Baikerikar, J.; Kavathekar, V.; Ghavate, N.; Sawant, R.; Madan, K. Smart Door Locking Mechanism. In Proceedings of the
2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE), Navi Mumbai, India, 15–16 January
2021; pp. 1–4.

12. Singh, H.K.; Verma, S.; Pal, S.; Pandey, K. A step toward Home Automation using IOT. In Proceedings of the 2019 Twelfth
International Conference on Contemporary Computing (IC3), Noida, India, 8–10 August 2019; pp. 1–5.

13. Mustafa, B.; Iqbal, M.W.; Saeed, M.; Shafqat, A.R.; Sajjad, H.; Naqvi, M.R. IOT Based Low-Cost Smart Home Automation System.
In Proceedings of the 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications
(HORA), Ankara, Turkey, 11–13 June 2021; pp. 1–6.

https://doi.org/10.3390/telecom3040036
https://doi.org/10.1109/ISSREW.2019.00050
https://doi.org/10.1109/CENIM56801.2022.10037281
https://doi.org/10.12720/jcm.16.9.379-385

Electronics 2023, 12, 2406 23 of 24

14. Thirrunavukkarasu, R.R.; Kumar, S.M.; Praveen, P.; Devi, T.M.; Pradeep, S.; Prabu, S.G. Customization In Home Automation
Using IoT. In Proceedings of the 2021 7th International Conference on Advanced Computing and Communication Systems
(ICACCS), Coimbatore, India, 19–20 March 2021; pp. 1062–1067.

15. Lee, Y.-S.; Fanjiang, Y.-Y.; Hung, C.-H.; Li, W.-D.; Zhang, T.-M. Design and Implement the Convenient Home Appliances Control
with Instant Messaging Software. In Proceedings of the 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE), Kobe,
Japan, 13–16 October 2020; pp. 604–605.

16. Ma, L.; Li, Z.; Zheng, M. A Research on IoT Based Smart Home. In Proceedings of the 2019 11th International Conference on
Measuring Technology and Mechatronics Automation (ICMTMA), Qiqihar, China, 28–29 April 2019; pp. 120–122.

17. Xu, R.; Jin, W.; Hong, Y.; Kim, D.-H. Intelligent Optimization Mechanism Based on an Objective Function for Efficient Home
Appliances Control in an Embedded Edge Platform. Electronics 2021, 10, 1460. [CrossRef]

18. Chomklin, A.; Tanthavech, N.; Pakornmanokul, S. Prototype of Air Conditioners Control Systems via Line Chatbot using
Raspberry Pi. In Proceedings of the 2021 6th International Conference on Business and Industrial Research (ICBIR), Bangkok,
Thailand, 20–21 May 2021; pp. 1–6.

19. Yue, C.Z.; Ping, S. Voice activated smart home design and implementation. In Proceedings of the 2017 2nd International
Conference on Frontiers of Sensors Technologies (ICFST), Shenzhen, China, 14–16 April 2017; pp. 489–492.

20. Isyanto, H.; Arifin, A.S.; Suryanegara, M. Performance of Smart Personal Assistant Applications Based on Speech Recognition
Technology using IoT-based Voice Commands. In Proceedings of the 2020 International Conference on Information and
Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 21–23 October 2020; pp. 640–645.

21. Gondkar, S.S.; William, P.; Pardeshi, D.B. Design of a Novel IoT Framework for Home Automation using Google Assistant. In
Proceedings of the 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India,
25–27 May 2022; pp. 451–454.

22. Hamdan, O.; Shanableh, H.; Zaki, I.; Al-Ali, A.R.; Shanableh, T. IoT-Based Interactive Dual Mode Smart Home Automation. In
Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–13 January 2019;
pp. 1–2.

23. Huang, H.-Y.; Fanjiang, Y.-Y.; Hung, C.-H.; Lee, C.A. Design and Implement a Smart Intercom System with Remote Interactive
Control. In Proceedings of the 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE), Kobe, Japan, 13–16 October
2020; pp. 584–585.

24. Velepucha, V.; Flores, P. Monoliths to microservices—Migration Problems and Challenges: A SMS. In Proceedings of the
2021 Second International Conference on Information Systems and Software Technologies (ICI2ST), Quito, Ecuador, 23–25 March
2021; pp. 135–142.

25. Kwon, D.; Ok, K.; Ji, Y. IBFRAME: IoT Data Processing Framework for Intelligent Building Management. In Proceedings of
the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 5233–5238.
[CrossRef]

26. Márquez, G.; Taramasco, C.; Astudillo, H.; Zalc, V.; Istrate, D. Involving Stakeholders in the Implementation of Microservice-Based
Systems: A Case Study in an Ambient-Assisted Living System. IEEE Access 2021, 9, 9411–9428. [CrossRef]

27. Kalubi, N.; Sajal, S. Cloud Computing: Arduino Cloud IoT Integration with REST API. In Proceedings of the 2022 IEEE
International Conference on Electro Information Technology (eIT), Mankato, MN, USA, 19–21 May 2022; pp. 473–476. [CrossRef]

28. Larrinaga, F.; Ochoa, W.; Perez, A.; Cuenca, J.; Legaristi, J.; Illarramendi, M. Node-RED Workflow Manager for Edge Service
Orchestration. In Proceedings of the NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium, Budapest,
Hungary, 25–29 April 2022; pp. 1–6. [CrossRef]

29. Miyagoshi, K.; Teranishi, Y.; Kawakami, T.; Yoshihisa, T.; Shimojo, S. Proposal of a Logical Sensor Architecture using WoT-
Based Edge Microservices. In Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference
(COMPSAC), Madrid, Spain, 13–17 July 2020; pp. 1223–1228. [CrossRef]

30. Aazam, M.; Khan, I.; Alsaffar, A.A.; Huh, E.-N. Cloud of Things: Integrating Internet of Things and cloud computing and the
issues involved. In Proceedings of the 2014 11th International Bhurban Conference on Applied Sciences & Technology (IBCAST),
Islamabad, Pakistan, 14–18 January 2014; pp. 414–419.

31. Eugster, P.; Kumar, S.; Savvides, S.; Stephen, J.J. Ensuring Confidentiality in the Cloud of Things. IEEE Pervasive Comput. 2019,
18, 10–18. [CrossRef]

32. Nguyen, D.C.; Pathirana, P.N.; Ding, M.; Seneviratne, A. Integration of Blockchain and Cloud of Things: Architecture, Applications
and Challenges. IEEE Commun. Surv. Tutor. 2020, 22, 2521–2549. [CrossRef]

33. Aazam, M.; Islam, S.U.; Lone, S.T.; Abbas, A. Cloud of Things (CoT): Cloud-Fog-IoT Task Offloading for Sustainable Internet of
Things. IEEE Trans. Sustain. Comput. 2022, 7, 87–98. [CrossRef]

34. Karn, R.R.; Das, R.; Pant, D.R.; Heikkonen, J.; Kanth, R. Automated Testing and Resilience of Microservice’s Network-link using
Istio Service Mesh. In Proceedings of the 2022 31st Conference of Open Innovations Association (FRUCT), Helsinki, Finland,
27–29 April 2022; pp. 79–88. [CrossRef]

35. Shitole, A.S. Dynamic Load Balancing of Microservices in Kubernetes Clusters Using Service Mesh. Master’s Thesis, National
College of Ireland, Dublin, Ireland, 2022.

36. Niu, Y.; Liu, F.; Li, Z. Load Balancing Across Microservices. In Proceedings of the IEEE INFOCOM 2018—IEEE Conference on
Computer Communications, Honolulu, HI, USA, 16–19 April 2018; pp. 198–206. [CrossRef]

https://doi.org/10.3390/electronics10121460
https://doi.org/10.1109/BigData47090.2019.9006367
https://doi.org/10.1109/ACCESS.2021.3049444
https://doi.org/10.1109/eIT53891.2022.9814027
https://doi.org/10.1109/NOMS54207.2022.9789940
https://doi.org/10.1109/COMPSAC48688.2020.00-89
https://doi.org/10.1109/MPRV.2018.2877286
https://doi.org/10.1109/COMST.2020.3020092
https://doi.org/10.1109/TSUSC.2020.3028615
https://doi.org/10.23919/FRUCT54823.2022.9770890
https://doi.org/10.1109/INFOCOM.2018.8486300

Electronics 2023, 12, 2406 24 of 24

37. Yu, R.; Kilari, V.T.; Xue, G.; Yang, D. Load Balancing for Interdependent IoT Microservices. In Proceedings of the IEEE INFOCOM
2019—IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; pp. 298–306. [CrossRef]

38. Song, M.; Liu, Q.; Haihong, E. A MircoService Tracing System Based on Istio and Kubernetes. In Proceedings of the 2019 IEEE 10th
International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 18–20 October 2019; pp. 613–616.
[CrossRef]

39. He, X.; Deng, F. Research on Architecture of Internet of Things Platform Based on Service Mesh. In Proceedings of the
2020 12th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Phuket, Thailand,
28–29 February 2020; pp. 755–759. [CrossRef]

40. Ferreira, L.C.; Borchardt, A.D.R.; Cardoso, G.D.S.; Lemes, D.A.M.; de Sousa, G.R.D.R.; Neto, F.B.; de Lima, E.R.; Fraidenraich, G.;
Cardieri, P.; Meloni, L.G.P. Edge Computing and Microservices Middleware for Home Energy Management Systems. IEEE Access
2022, 10, 109663–109676. [CrossRef]

41. Koyama, T.; Kushida, T. Log message with JSON item count for root cause analysis in microservices. In Proceedings of the
2023 6th Conference on Cloud and Internet of Things (CIoT), Lisbon, Portugal, 20–22 March 2023; pp. 55–61. [CrossRef]

42. Huang, Y.-W.; Ma, S.-P.; Wang, S.K. MsdoBot: An Extensible Chabot Platform for Microservice Development and Operations. In
Proceedings of the 2022 IEEE International Conference on e-Business Engineering (ICEBE), Bournemouth, UK, 14–16 October
2022; pp. 124–129. [CrossRef]

43. Kaur, G.; Thangaraju, B. Event Driven Microservices based Information Bot. In Proceedings of the 2022 IEEE International
Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 8–10 July 2022; pp. 1–5.
[CrossRef]

44. Muslih, M.; Supardi, D.; Multipi, E.; Nyaman, Y.M.; Rismawan, A. Developing Smart Workspace Based IOT with Artificial
Intelligence Using Telegram Chatbot. In Proceedings of the 2018 International Conference on Computing, Engineering, and
Design (ICCED), Bangkok, Thailand, 6–8 September 2018; pp. 230–234.

45. Ahmed, S.; Paul, D.; Masnun, R.; Shanto, M.U.A.; Farah, T. Smart Home Shield and Automation System Using Facebook
Messenger Chatbot. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020;
pp. 1791–1794.

46. Gos, K.; Zabierowski, W. The Comparison of Microservice and Monolithic Architecture. In Proceedings of the 2020 IEEE
XVIth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), Lviv, Ukraine,
22–26 April 2020; pp. 150–153. [CrossRef]

47. Blinowski, G.; Ojdowska, A.; Przybyłek, A. Monolithic vs. Microservice Architecture: A Performance and Scalability Evaluation.
IEEE Access 2022, 10, 20357–20374. [CrossRef]

48. Hosseini, S.M.; Jahangir, A.H.; Daraby, S. Session-persistent Load Balancing for Clustered Web Servers without Acting as
a Reverse-proxy. In Proceedings of the 2021 17th International Conference on Network and Service Management (CNSM),
Izmir, Turkey, 25–29 October 2021; pp. 360–364.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/INFOCOM.2019.8737450
https://doi.org/10.1109/ICSESS47205.2019.9040783
https://doi.org/10.1109/ICMTMA50254.2020.00164
https://doi.org/10.1109/ACCESS.2022.3214229
https://doi.org/10.1109/CIoT57267.2023.10084901
https://doi.org/10.1109/ICEBE55470.2022.00030
https://doi.org/10.1109/CONECCT55679.2022.9865852
https://doi.org/10.1109/MEMSTECH49584.2020.9109514
https://doi.org/10.1109/ACCESS.2022.3152803

	Introduction
	Related Research
	Microservice System Development
	Monolithic to Microservice
	Microservice Architecture
	OpenAPI of Intercom
	Cloud of Things
	System Security

	Testing Configuration
	Testing Standards and Results
	Testing Limitation
	Testing Criteria
	Testing Results
	System Implementation

	Discussion
	Conclusions
	References

