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Abstract: A posteriori multiobjective optimization relies on a series of mutually independent
single-objective optimization subproblems, which can be run in parallel, thus making full use of a
multiprocessor (or multicore) computer. This paper presents a parallel process launching scheme,
such that practically no computing capacity gets wasted. This is achieved using standard Windows
API kernel objects for process synchronization of the semaphore and mutex types. The algorithm
used was further modified to inherently generate the desired Pareto front in the convenient form of a
contour plot.
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1. Introduction

One way of reducing computing time for multiobjective optimization consists in
using efficient algorithms based on replacing the explored objective function with a less
accurate but more easily computable surrogate objective function, as in [1–4]. Another
way is parallelization, which is able to decrease the time even more, depending on the
number of parallel processors. While many parallelization attempts have been used in
the area of evolutionary multiobjective optimization algorithms [5–11] and other types of
metaheuristics [12–16], we are utilizing our original multiobjective optimization method
with an asymptotically uniform coverage of the Pareto front, which improves on [17–21]
substantially. Part of the published research aims at using alternative computing platforms
(GPUs, CUDA) [6,22,23]. However, our main objective dealt with in this paper was to
develop a technical solution of synchronization of individual threads run in parallel to
avoid collisions when accessing shared resources. It is an asynchronous task-launching
scheme (in the meaning introduced in [24]), which allows for the restarting a new task
immediately after any of the previously started ones finish, without having to wait for the
end of all of the parallel runs. For generating tasks to be automatically distributed among a
given number of simultaneously running processors (threads), we have efficiently used
process synchronization objects.

The paper is organized as follows. In Section 2, we briefly specify our modification of
the goal attainment method used as an a posteriori multiobjective optimization method.
In Section 3, a method of solving obtained single-objective problems is defined in detail.
Then, in Section 4, a way of utilizing our modification of method to generate a contour plot
of the Pareto front is briefly proposed. Section 5 presents the parallelization scheme and
explains its implementation using process synchronization objects. Finally, the application
of the method is demonstrated on an example RF circuit designs in Sections 6–10, including
appropriate graphical results and some comparison with other procedures.
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2. Brief Description of a Posteriori Multiobjective Method

The purpose of multiobjective optimization (MO) is to solve the MO problem, i.e., to
simultaneously minimize a set of k objective functions:

minimize
x∈S

{ g1(x), g2(x), . . . , gk(x) }, (1)

where x is the decision vector, x = (x1, x2, . . . , xn)
>. It is in the feasible region S, S ⊆ Rn,

which may be defined by a set of constraints and bounds on the decision variables xi.
The above-mentioned requirement of simultaneous minimization translates as finding

a single noninferior solution, which is an element of what is known as the Pareto front. A
noninferior solution is such a solution in which an improvement in one objective is only
possible at the cost of deteriorating at least one other objective. This means that a noninferior
solution represents a certain tradeoff between mutually contradicting objectives. The choice
of single solution is made in accordance with the decision maker’s (DM’s) preferences.

The class of a posteriori methods is defined by the fact that the DM’s preferences are
applied on the resulting representation of the Pareto front only after its computation is
finished. A posteriori MO methods can thus be considered as methods of obtaining and
visualizing the Pareto front.

The a posteriori MO method used here is a modification of the goal attainment method.
It converts the MO problem to a single-objective (SO) problem (SOP):

minimize
x∈S

max
i=1,...,k

gi(x)− z̄i

znad
i − z∗i

, (2)

where z̄i stands for suitable reference goal values associated with the individual functions
gi. In the denominator of (2), z∗i are elements of the ideal (or best-case) vector z∗ =
[z∗1 , z∗2, . . . , z∗k ] obtained by independent minimizations:

z∗ =
[

min
x∈S

g1(x), min
x∈S

g2(x), . . . , min
x∈S

gk(x)
]

. (3)

Symbol znad
i represents a component of what is called the nadir (or worst-case) objective

vector znad, formed by the largest respective component (z∗i )j found in all k objective vectors
z∗i obtained by independently minimizing the ith objective function:

znad =

[
max

i
(z∗i )1, . . . , max

i
(z∗i )k

]
. (4)

The differences znad
i − z∗i in the denominator of Equation (2) provide a convenient,

automatically generated scaling of otherwise incommensurate components of the objective
vector. (At a later stage, they may be manually adjusted by the user, e.g., to emphasize
certain objectives over others.)

Let us now consider the selection of reference points z. They can be used as a tool to
greatly influence the location of the obtained solution, which is required so that the Pareto
front is uniformly covered. In an attempt to approximately fulfill this requirement, z are
(pseudo)randomly generated to uniformly cover a predefined reference set in the objective
space formed by a convex body of k vertexes (a triangle if k = 3, for instance):

zvert
i =

[
znad
1 , . . . , znad

i−1 , z∗i , znad
i+1 , . . . , znad

k

]>
∀ i = 1, . . . , k. (5)
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We proved that the following sequence of steps can be used to obtain such a reference
point zk−1,1:

t1 =
k−1√r1

z1,1 = (1− t1)z0,1 + t1z0,2

z1,2 = (1− t1)z0,1 + t1z0,3
...

z1,k−1 = (1− t1)z0,1 + t1z0,k

t2 = k−2√r2
z2,1 = (1− t2)z1,1 + t2z1,2
z2,2 = (1− t2)z1,1 + t2z1,3

...
z2,k−2 = (1− t2)z1,1 + t2z1,k−1

...

tk−1 =
1√rk−1 = rk−1

zk−1,1 = (1− tk−1)zk−2,1 + tk−1zk−2,2,

(6)

where the starting points z0,1 . . . z0,k are the vertices zvert
1 . . . zvert

k ; and ri ∈ [0, 1), i = 1, . . . ,
k− 1 are randomly generated real numbers uniformly distributed on interval [0, 1). The
same can also be expressed in a more concise and “algorithmic” fashion as

for i = 1 to k− 1:
ti := k−i√ri;
for j = 1 to k− i:

zi,j := (1− ti)zi−1,1 + tizi−1,j+1;

(7)

N.B.: Equations (1)–(7) represent only a very brief description of our method. We al-
ready defined more comprehensive descriptions in [25–27], e.g., where certain comparisons
with more other methods such as weighted Sum strategy, genetic, Nelder–Mead simplex,
and simulated annealing algorithms were performed. However, as the main focus of this
paper is devoted to the parallelization technique, we will not repeat such definitions and
comparisons here, but we will thoroughly elaborate on the parallelization strategy instead.

3. Solving the SOP

To solve the obtained constrained single-objective problem, a derivative-based algo-
rithm was adopted. As it is not meant to be the main focus of this paper, only a brief
description will be provided here.

The algorithm is called sequential linear programming (SLP), a name formed by
analogy to sequential quadratic programming (SQP). The central idea corresponds to the
minimax method of paper [28], which resembles the method of approximate programming
(MAP) [29] that also inspired some of the implemented features.

3.1. Form of Optimization Problem Solved

The SLP method solves constrained SOPs in the form

minimize
(α,x)∈S

α (8)

where x is the decision vector to be found, α is an auxiliary decision variable, and S is a
feasible region, defined as
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S = { (α, x) ∈ Rn+1 | xl 5 x 5 xu

∧ − fi(x) + a0iα = 0 ∀ i ∈ I1

∧ fi(x) = 0 ∀ i ∈ I2 },
(9)

with xl and xu being given vectors of lower and upper bounds for the components of
decision vector x; I1 being the set of all indexes i, such that a0i 6= 0 (indexes of the
components fi of an objective function to be minimized); and I2 being the set of indexes i,
such that a0i = 0 (indexes of constraint functions fi to be kept non-negative).

On closer inspection, this form of SOP can be obtained from form (2) by substitutions
fi(x) = gi(x)− z̄i and a0i = znad

i − z∗i for i ∈ I1.

3.2. Algorithm Description

The top-level structure of the SLP algorithm can be roughly expressed as the following
series of steps:

1. Start at a given initial point x = x0.
2. Evaluate the set of functions fi(x) and their derivatives ∂ fi(x)/∂xj.
3. Test stopping condition and stop if it evaluates to true.
4. Obtain new step ∆x by running the exchange algorithm for the linearized set of

functions fi(x).
5. Update vector x with new iterate max(xl, min(xu, x + ∆x)).
6. Go to Step 2.

The result is then stored in the current decision vector x.
Now, we will give more details on the individual steps.

3.3. Linearized Form of the Problem

The linearized set of inequalities that is passed to the exchange algorithm in Step 4 is
obtained from the values of functions fi and their derivatives obtained in Step 2:

− fi(x) + a0iα−
n

∑
j=1

∂ fi(x)
∂xj

(∆xj) = 0 ∀ i ∈ I1

fi(x) +
n

∑
j=1

∂ fi(x)
∂xj

(∆xj) = 0 ∀ i ∈ I2

(10)

where ∆xj, j = 1, . . . , n are the decision variables of the linear optimization problem, whose
values are to be determined by the exchange algorithm.

3.4. Exchange Algorithm

The purpose of the exchange algorithm is to solve the linear constrained optimization
problem. It is an extended version of the algorithm found in paper [28], where it is
applied as part of an iterative minimax optimization method. The extensions are aimed
at facilitating an inequality constraint mechanism to obtain a more general optimization
routine. The algorithm implementation was also largely inspired by the implementation of
the standard simplex algorithm of linear programming (LP), as published in [30].

The exchange algorithm is different from the simplex method of linear programming
(LP) in that the decision variables can take both signs (in LP, they can only be non-negative),
as well as being in the presence of an additional decision variable α, which represents the
value of the single linear objective function to be minimized.

Thus, several modifications have been performed in the effort to combine and extend
the features of both of the algorithms, which can be summarized as follows:

• Allowing decision variables (including α, an auxiliary variable representing the single-
objective function value to be minimized) to take both signs;
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• Also supporting negative and zero-valued coefficients of α, so that constrained prob-
lems (i.e., with inequality constraints independent of α) can be solved (as opposed to
the pure unconstrained minimax problem);

• Implementing minimization of the objective function instead of maximization;
• Implementing special treatment to prevent infinite cycling in cases of degeneracies;
• Ensuring that all decision variables, including α, are exchanged (and thus resolved).

3.5. Damping Step Sizes of Iterations

For the algorithm to be stable, it is necessary to limit the maximum size of steps in one
iteration of each variable ∆xj. This is achieved by adding a pair of inequalities:

min(sxj, x− xl) + ∆xj = 0

min(sxj, xu − x)− ∆xj = 0
(11)

to (10) for each variable ∆xj, j = 1, . . . , n, with sxj > 0 being a sufficiently small number.
Note that the bounds on x are enforced here rather than in Step 5.

3.6. Determining the Damping step

In paper [28], the step size is limited by scaled value of α. This is possible in the
unconstrained minimax method if it is applied to problems where the objective function
value (and thus, α as well) converges to zero or almost zero. In our case, a more flexible
damping scheme needs to be used.

At the beginning, the values of maximum steps sxj are given as input to the algo-
rithm. After each iteration, they may be contracted (decreased), expanded (increased), or
left unchanged.

Three possible strategies are implemented for contraction by a given coefficient χ. The
contraction can be chosen to be applied:

• Only if the change of ∆xj changed its sign between the current and previous iteration;
• Or only if the objective function maxi∈I1 fi(x) has increased compared with its value

before the last iteration;
• Or in either of the previous cases.

The contraction will happen only if the new step is still longer than ε(xuj − xlj) / χ,
where ε is the max. relative change used in the stopping criterion.

Expansion by coefficient κ
√

χ (with κ being a given parameter, typically 1 or 2) is always
performed if the following conditions are simultaneously fulfilled:

• The change of ∆xj changes its sign between the current and previous iteration;
• In both iterations, the particular damping constraint was active;
• The new step size is still shorter than its forbidden limit (xuj − xlj) / (χ κ

√
χ).

3.7. Stopping Criterion

The iteration loop terminates as soon as the maximum relative change of all decision
variables during the last nε iterations has not exceeded a given ε and the current iterate is
feasible. However, if that has not happened during the first max_it iterations, the iterations
are stopped after reaching a total of max_it iterations, where max_it is a given integer.

3.8. Modified Form of Constraints

If the given starting point x0 is infeasible, the algorithm needs to find some feasible
solution, and then it can proceed by optimizing it. The following modification of the
constraint inequalities improves the chances of finding a feasible solution by the runs of
the exchange algorithm:

fi(x)− g + α +
n

∑
j=1

∂ fi(x)
∂xj

(∆xj) = 0 ∀ i ∈ I2, (12)
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where
g = max

i∈I1
fi(x) (13)

is the objective function value in the current iterate x. This allows the α term in the
constraints without significantly changing them, because typically, α→ g when vector x
approaches the optimum. (However, the step damping inequalities are still in action.)

This modification mode can be set as always on, on for finding the first feasible iterate
only, or permanently switched off.

4. Contour Plot of a 3D Pareto Front

Let us now consider the possible ways of graphical presentation of an obtained Pareto
front to the decision maker. If k = 2, the Pareto front is a single curve in 2D and the case is
trivial. For k = 3, the Pareto front is formed by a surface in 3D objective space and is not
as easy to display in a 2D plot. One way to distinguish the third dimension would be to
define intervals and use different point symbols for each interval. Another option would
be to use different shades of gray or different hues of colors.

A more sophisticated approach is a contour plot, where the optimization process is
designed such that the obtained noninferior solutions are already concentrated in a vicinity
of preselected values of the third objective, the contour parameter. For this purpose, one of
the three objectives becomes an inequality constraint, and the simultaneous optimization of
the remaining two objectives is repeated over individual values of the contour parameter.
The individual sets of points obtained this way show the locations and shapes of underlying
contour curves.

5. Process Parallelization Scheme

The computation of points forming the Pareto front is organized into two types of
processes: a main process at the top level and a number of parallel processes subordinate to
the main process.

5.1. Hierarchical Level of Parallelized Tasks

It is important to realize that the actual algorithm resulting from Sections 2–4 represents
a multitude of nested loops (problem-oriented ones are located under the line):

• Going through a predefined list of contour parameter values;

• Performing multiple SO runs to cover the current contour;

• Iterations within each SO run;
• Evaluations of objective functions and constraints to obtain their values

and approximate their derivatives for each iteration;
• Appropriate circuit analyses (typically running a circuit simulator)

for each such evaluation;
• . . . (The innermost levels are internal to the simulator and their

number can vary widely, depending on types of analyses needed.)
—————————————————————————————–
Iterations of the scalar ε-algorithm (typically tens) when a steady-state pe-
riod must be obtained (as they occurred in our RF-circuit design example)
• Going through all points (typically hundreds or thousands) of the time

response required in each iteration of the scalar ε-algorithm;
• Going through all iterations (typically several or tens) of the Newton–

Raphson method in each point of the time response;
• Going through all columns (typically tens, hundreds, or thousands,

depending on how large the circuit is) of the Jacobian matrix in the
LU-factorization required in each iteration of the Newton–Raphson
method—for extremely large circuits, this is the most demanding.
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The level of subtasks that can be run in parallel needs to be chosen such that the
subtasks are independent of each other, but are still as short as possible so that the waiting
time to finish the running task is not too long. This is fulfilled by taking the whole single
SO run for a single reference point as a unit task.

5.2. Process Synchronization Objects of the System Kernel

Now, the question is how to generate such tasks and distribute them automatically
among a given number of simultaneously running processors. For this purpose, two types
of process synchronization objects are used, called semaphore and mutex [31,32].

5.2.1. Semaphore

The semaphore is a special kind of a counter variable stored in the kernel memory
space that can be used to organize access by multiple threads or processes to a shared
system resource. This can be carried out due to a special treatment of a thread or process
manipulating the counter’s content.

The creation of a new Semaphore object is performed using the function Create-
Semaphore(), which also sets this variable to an non-negative initial value and takes an
optional identification string. The initial value specifies how many threads/processes can
simultaneously dispose of the particular system resource.

The semaphore gets decremented by calling the function WaitForSingleObject(), un-
less the value of the mutex is already zero. In such a case, the current thread/process is put
to sleep. When the counter value becomes nonzero, one of the sleeping processes/threads
wakes up, which also decrements the counter value back to zero.

The semaphore is incremented by means of the function ReleaseSemaphore(). This
also wakes one of the currently sleeping threads/processes (due to the previous call of the
WaitForSingleObject() function), if there are any.

5.2.2. Mutex

Mutex (whose name stands for mutually exclusive access) is essentially a special case
of semaphore with a maximum value of one. This means that only one thread/process can
dispose of the shared resource at a time (thus indeed providing it exclusive access).

Mutex is created by a call to the CreateMutex() API function, with an optional ID
string as an argument. Access to the shared resource is granted by calling WaitForSingle-
Object(), which possibly enqueues the current thread/process by putting it to sleep if the
mutex’s value is currently zero (indicating the protected resource currently being taken).

Mutex is incremented by a call to ReleaseMutex(), which subsequently wakes up one
of sleeping threads/processes (if any).

5.3. The Main Process

The purpose of the main process is to run a batch of single-objective optimization runs
as separate partially parallel subprocesses. Two thread synchronization objects are used
here: a semaphore to limit the number of optimizations running in parallel to the number
of available processor cores Nproc (e.g., 8 or 16); and a mutex enforcing exclusive access to
the output NIS (noninferior solutions) file holding the achieved optimization results. The
flowcharts of the main and paralell processes are shown in Figures 1 and 2, respectively.

First, both the synchronization objects are created and initialized by calls to functions
CreateSemaphore() and CreateMutex(). Moreover, an empty NIS file is created, so that it
can be later appended with obtained noninferior optimization solution points.
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Start

ProcessorSemaphore← CreateSemaphore(Nproc, ”procSemaphore”)

NISfileMutex← CreateMutex(”NISFmutex”)

Create empty ”NIS” file in current directory

i ← 0

j ← 0

create unique working directory dirName(i, j)

open INP file in dirName(i, j) for writing

writef(INP, i, j, Clist[i])

WaitForSingleObject(ProcessorSemaphore)

CreateProcess(”parallel.exe”, dirName(i, j), procInfo)

CloseHandle(procInfo.hProcess)

CloseHandle(procInfo.hThread)

j← j + 1

j < Nlist[i]

i ← i + 1

i < Nii < Ni

p ← 0

WaitForSingleObject(ProcessorSemaphore)

p ← p + 1

CloseHandle(ProcessorSemaphore)

CloseHandle(NISfileMutex)

p < Nproc

End

Yes

Yes

Yes

Figure 1. Flowchart of the main process.
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Parallel run

Open ”INP” file for reading

readf(”INP”, i, j, C)

randSeed← fs(i, j)

generate random zref, x0

x ← run SOP solver (zref, x0)

x feasible

NISfileMutex← OpenMutex(”NISFmutex”)

WaitForSingleObject(NISfileMutex)

open ”NIS” file

Add x to NISfile if x noninferior

Close NISfile

ReleaseMutex(NISfileMutex)

CloseHandle(NISfileMutex)

empty and delete working directory

ProcessorSemaphore← OpenMutex(”procSemaphore”)

ReleaseSemaphore(ProcessorSemaphore)

CloseHandle(ProcessorSemaphore)

End

No

Figure 2. Flowchart of the parallel process.

Then two nested loops are used to launch individual parallel runs of the optimization
process, each in its own working subdirectory, over the predefined list of contour parameter
values Clist selected by the loop index i and for distinguishing values of the nested loop
index j, enabling the pseudorandomly generated inputs of each of the parallel runs to be
unique. Both loop indexes and the contour parameter value are passed to the individual
parallel process in an input file called "INP", written in its subdirectory. Immediately after
creating each parallel process, its process and thread handles can be closed by calls to
CloseHandle(), as they are no longer needed in the main process.
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After the whole of the intended number of parallel processes have been launched,
most of them have already finished, but the final batch of Nproc is still running. Therefore,
the main process waits for all of them to finish using yet another loop, this time controlled
by the p parameter. Then, it can close its semaphore and mutex handles, and thus allow
the operating system to free both of the synchronizing objects. After that, the main process
itself closes down. The resulting set of noninferior solutions is gathered in the NIS file and
is ready for inspection.

Note that no processor (core) apart from the Nproc total needs to be specifically reserved
for the main process itself because it spends most of the time sleeping and waiting for any
of the running processes to finish, and thus, its overall computational demand turns out to
be negligible.

5.4. The Parallel Process

After a parallel subprocess is created by the main process, the INP file in the current
working subdirectory is open and both loop parameters are read from it. Then, objective
reference point zref and initial iterate x0 are generated with a pseudorandom generator. A
simple mapping function, e.g., fs(i, j) = i × 10,000 + j, is used to obtain a randomizing
seed value.

Then, a single-objective optimization solver is used to try to find a solution to the
problem (2). If a feasible solution x has been found, exclusive access to the shared output
NIS file is obtained via waiting for mutex. The file is read and rewritten, with x being
included to it if it is found noninferior with respect to the current NIS file content. (In
this process, some of the existing solutions may be also removed from the NIS file if they
happen to be found inferior to the new x). After this operation and closing the NIS file, the
mutex is released and its handle closed, and the current working subdirectory is emptied
and removed. (The updated NIS file remains in the parent directory one level of nesting
above. This way, the NIS file always holds a set of mutually noninferior solutions.) After
releasing the semaphore and closing its handle, the parallel subprocess is ready to finish.

6. Example Application in RF Circuit Design

For an example, a basic design of the end stage of an narrow-band RF power amplifier
at f1 = 300 MHz is chosen. Source and load impedances are both 50 Ω and supply voltage
Vdd = 12 V. The aim is to show the available tradeoffs between output power, power
efficiency, and total harmonic distortion.

6.1. Circuit Schematic

The simulation schematic is based on a silicon N-channel LDMOS device LP821
(Polyfet RF Devices) of a maximum total dissipated power of 50 W and a topology that
is typical for the C-class mode of operation; see Figure 3. The transistor is followed by
an LC filter to diminish higher harmonic components and provide a good impedance
matching. (Even though impedance matching at the output is not directly required, it is
enforced indirectly by maximizing output power.)

Note that the elements C1, C2, and L1 can also be considered as a form of a tapped
resonant circuit. The maximum operating frequency of the Polyfet LDMOS transistor can
be 500 MHz, which is well above the design band of this power amplifier.

We want to explore the output trade-offs rather than obtaining a complete design.
Please also note that no input impedance matching circuit is considered, and no stability-
ensuring measures are taken (with the exception of the small reactance of the capacitance
between the source and gate of the transistor itself).
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JFET

NMOS

L_S

L_D

C_S

C_G
C_ISS

L_GATE R_GATE

R_RC

C_RC

C_D

D_BODY

C_RSS

LP821

G

D

S

V_in

Z_gen

in

V_bias

out

Z_L

V_DD

L_1

L_2

C_1

C_2 C_3

L_i

L_i

R_Li

R_RC

C_Li

C_i

C_i

L_C

R_Ci

Figure 3. Simulation schematic and RF model topologies used.

6.2. Design Variables

The set of all design variables is formed by two groups. The first one specifies the
transistor’s gate voltage, and thus its mode of operation; the second group are values of
the output filter’s LC components.

The first design variable was chosen to be an estimated peak Vgs max of the gate voltage
Vgs. The second one is its AC component magnitude VgsACm, related to input voltage
magnitude VinACm via the voltage dividing ratio between a driving resistance Rd and the
gate capacitive reactance approximated as 10 ohms:

VgsACm = VinACm
Xi√

X2
i + R2

d

, (14)

From this, we obtain the DC and AC voltage source values in Figure 3:

Vbias = Vgs max −VgsACm and VinACm = VgsACm

√
X2

i + R2
d

Xi
. (15)

This arrangement allows limiting the peak gate voltage simply by an upper bound on
Vgs max to its maximum rating value (rather than performing it by means of an additional
inequality constraint on the gate voltage).

The parameters of stray phenomena of the L and C component models shown in
Figure 3 are obtained as mere estimates in a simple (but nontrivial) manner depending on
the components’ principal L/C values.

Table 1 contains a complete list of the design variables for the multiobjective optimiza-
tion process. (The ranges are chosen by a user with respect to the intended practical realiza-
tion of the amplifier. The “Coverage type” field specifies whether the random generator of
the initial iterate uniformly covers the specified range on a linear or logarithmic scale.)
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Table 1. Design variables for the power amplifier.

Bound Coverage
No. Symbol Lower Upper Unit Type

1 Vgs max 2 20 V linear
2 VgsACm 0.4 12 V linear
3 L1 3 30 nH logarithmic
4 C1 10 300 pF logarithmic
5 C2 3 300 pF logarithmic
6 L2 3 100 nH logarithmic
7 C3 3 100 pF logarithmic

6.3. Design Goals

Our MO problem amounts to five design goals: three simultaneously optimized
objective functions and two constraints based on selected absolute maximum ratings of the
transistor. All of the goals are evaluated from voltages and currents provided by the steady-
state (SS) analysis of the simulator CIA. Table 2 lists all design goals. Their definitions
are:

Table 2. Design Goals for the power amplifier. (THD has the preselected values of the objective, the
contour parameter.)

Optimum
No. Symbol Type Direction or Bound Unit

1 Pout1 objective maximum 32.137826 W
2 η objective maximum 81.680676 %
3 THD objective minimum set to 0.25 %
4 Id avg constraint 5 5 A
5 Pdiss constraint 5 50 W

• Average output power at the first harmonic frequency Pout1

Pout1 =
|vout1|2

2RL
=

a2
1 + b2

1
2RL

, (16)

where vout1 is the phasor of the output voltage vout(t); ak and bk are the coefficients of
the k-th cosine and sine harmonic series components of the periodic steady-state output
voltage vout(t) of the period T:

ak =
2
T

∫
T

vout(t) cos
2π

T
t dt and bk =

2
T

∫
T

vout(t) sin
2π

T
t dt. (17)

The integrals over period T are computed with the trapezoid method of numeric
integration.

• Power efficiency η, defined as the ratio of output power at the first harmonic frequency
and the sum of average power from DC power supply and power from the (imaginary)
input driving stage. (This definition pushes not only for lower power dissipation on
the transistor, but also for lower input power, and thus for higher power gain.)

• Total harmonic distortion THD of the output voltage vout(t) in %. Although this goal
is considered a minimized objective, it was chosen as the contour parameter and thus
changed into an inequality constraint, as explained in Section 3.

• Average drain current Id avg representing the supply current consumption of the
power amplifier, chosen to be kept below 5 A.

• Dissipated power of the LDMOS transistor Pdiss, representing the undesirable power
loss, and chosen to be kept below 50 W.
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6.4. Obtained Contour Plot

The resulting contour plot of the analyzed Pareto front is shown in Figure 4. The
chosen levels of total harmonic distortion were chosen so that the shape of the 3D surface
can be easily envisioned. Moreover, typical results for a chosen point are shown in Figure 5.

10 15 20 25 30

55

60

65

70

75

80

THD 0.7%

THD 0.25%

THD 0.35%

THD 0.5%

%out1 (W)

[
(%
)

Figure 4. Pareto front in the form of contours for chosen levels of total harmonic distortion. Dotted
curves interpolate between points obtained by computation. Close groups of multiple points are
mutually noninferior and result from subsequent fine refinement optimization reruns with modified
numeric parameters controlling the used algorithm.



Electronics 2023, 12, 2343 14 of 20

0 1 2 3
0

2

4

6

−40

−20

0

20

40

C (ns)

{out (V)−�DD (A)

Figure 5. The current flowing out of the power supply and the output voltage for the selected
point located on the curve THD = 0.25%. The results of the optimization are Pout1 = 22.512439 W,
η = 68.948036%, THD = 0.24999837%, Id avg = 2.7067285 A, and Pdiss = 8.2391780 W.

7. A Note on the Usage of the Method in the Frequency Domain

We thoroughly tested the algorithm on analyses in frequency domain as well [25–27],
including two-, three-, and even four-dimensional examples. However, it should be stated
that the computations in the frequency domain are (much) simpler than those in the time
domain. Please note that in the problem-oriented loops described in Section 5.1, there are
only two levels here (instead of four levels necessary in the time domain):

• Going through all required frequencies (typically tens or hundreds);

• Going through all columns of the Jacobian matrix in complex LU factorization.

Although the complex LU factorization is more difficult than the real one, the com-
putational effort is clearly much lower than that in the time domain. Therefore, in the
frequency domain, the parallelization is much less urgent than in the time domain.

8. Another Example: Four-Dimensional Problem

In this section, we will provide another design example to show a comparison of two
different methods in pursuing the same task of exploring a Pareto front, this time in a
four-dimensional objective space. The circuit to be optimized is an amplifier of a video
signal in Figure 6, whose input should be matched to 75 Ω, and output driving a 75 Ω load
to at least 1 Vpp of voltage span. Remaining parameters of interest are the low-frequency
voltage gain Av and 3 dB roll-off frequency fm to be maximized and total DC current
supply Icc to be minimized. There will be a total of five design variables: the resistances
R1–R5. The capacitances C1–C3 will be assumed high enough to have negligible impact
on the gain at low frequencies. Transistor type is 2N5179, same for both Q1 and Q2. The
requested input impedance matching will be characterized by a standing voltage ratio
SWR = (1 + |ρ|)/(1 − |ρ|), where ρ = (Ri − 75 Ω)/(Ri + 75 Ω).

The above specifications lead to the multiobjective optimization problem

minimize SWR, Icc,

maximize AvdB, fm

subject to Vout 5 3.5 V,

(18)

where the constraint condition on Vout implements the requirement of 1 Vpp minimum
guaranteed output voltage span.

Both the weighted sum strategy (WSS) and goal attainment method (GAM) have been
used to solve the problem (18).
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Figure 6. Video amplifier schematic.

8.1. Weighted Sum Strategy

The following set of objective functions to be minimized was chosen:

f1 = 10(SWR− 1), f2 = Ao
vdB − AvdB, f3 =

Icc

1 mA
, f4 = log10

f o
m

fm
, (19)

where Ao
vdB = 40.72 dB and f o

m = 860.3 MHz are independently optimized results for the
voltage gain AvdB and the roll-off frequency fm, respectively.

The constrained optimization problem is converted into an unconstrained one using
the penalty function method. The penalty function added to a single-objective function is
as follows:

c1 = max
(

Vout − 3.5 V
3.5 V

, 0
)
× q. (20)

The emphasis on the constraint term is controlled by the coefficient q, q = 100. The scalar
objective function to be minimized can be expressed as

fP(x) =
4

∑
i=1

wi f 2
i (x) + c2

1(x) (21)

where the choice of weight values is further restricted with the usual condition ∑4
i=1 wi = 1.

To minimize the objective function fP, our special version of the Levenberg–Marquardt
method was used (which normalizes the Jacobian matrix). Iterations end after the biggest
relative change in the design variables between iterations becomes smaller than 10−4 or
when a maximum allowed number of iterations is reached.

8.2. Goal Attainment Method

The individual objective functions fi and the constraint penalty function c1 are the
same. However, in the GAM method, they change into a single-objective function to
be minimized, which is f (x) = γ; and the following set of constraint penalty functions,
q = 100:

g1 = max
(

10(SWR− 1)− w1γ− P
P

, 0
)
× q,

g2 = max
(

Ao
vdB − AvdB − w2γ− P

P
, 0
)
× q

g3 = max
(

Icc/1 mA− w3γ− P
P

, 0
)
× q,

g4 = max
(

log10( f o
m/ fm)− w4γ− P

P
, 0
)
× q

(22)
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complemented with the original constraint penalty function c1. Note that to reduce the
number of degrees of freedom, we set all the reference goals z̄i equal to the same scalar
value P, P = 10. This is possible because of the special choice of objective functions fi. The
resulting scalar objective function to be minimized is then composed as follows:

fP(x) = γ2 +
4

∑
i=1

g2
i (x) + c2

1(x). (23)

The same procedure using the Levenberg–Marquardt method is applied to obtain
solutions for chosen values of wi and P as that with WSS.

8.3. Results Obtained with Weighted Sum Strategy (Table 3)

Multiple optimization runs were tried for different sets of weighting coefficients wi.
The result obtained by minimizing the composed scalar objective function also gives the
four design goals: SWR, AvdB, Icc, and fm. In the table, they are listed in the same order as
their respective weights wi are. Therefore, the effect of changing a weighting coefficient can
be easily examined. For instance, increasing w1 in row No. 2 decreases the value of SWR
compared to row No. 1, decreases Av, and decreases Icc. We would expect an improvement
in the goal whose weight has increased, but disimprovement in the remaining goals. This
is also what happened, with the only exception being Icc.

This is expressed by the “success rate” S1 value of 75%. (The subscript of “1” in S1
refers to the reference row with respect to which the changes are evaluated.) We can also
see that the average value of S1 of 62.5% is well above 50%.

Moreover, the noninferiority of the obtained data was tested. This is a test for each
solution in the table to see whether no other solution in the table has all of its components
of better values (in terms of the design assignment) than the one tested. This is a necessary
condition for any valid candidate for a noninferior solution. Each of the nine solutions
passed this test.

Table 3. Results obtained by weighted sum strategy.

SWR Av Icc fm S1
No. w1 w2 w3 w4 (–) (dB) (mA) (MHz) (%)

1 0.25 0.25 0.25 0.25 1.02 40.1 0.486 128 –

2 0.4 0.2 0.2 0.2 1.00 40.0 0.485 127 75
3 0.2 0.4 0.2 0.2 1.02 40.1 0.479 126 75
4 0.2 0.2 0.4 0.2 1.01 40.3 0.376 112 50
5 0.2 0.2 0.2 0.4 1.02 40.0 0.487 128 50

6 0.7 0.1 0.1 0.1 1.00 40.0 0.478 125 75
7 0.1 0.7 0.1 0.1 1.07 40.2 0.481 128 50
8 0.1 0.1 0.7 0.1 1.00 40.2 0.311 94.3 50
9 0.1 0.1 0.1 0.7 1.03 40.1 0.488 128 75

Single-run average correlation 62.5 62.5 50.0 75.0 62.5

8.4. Results Obtained with Goal Attainment Method (Table 4)

Similarly to the previous case of WSS, the coefficients wi of GAM are also used in
the attempts to steer the location of found solutions onto (or close to) the Pareto front.
Increasing wi usually allows for larger changes of the respective objective in the required
direction. Therefore, increasing any wi should improve the objective value.

The resulting average correlation rate of 79.2% looks much better than that of the WSS.
A noninferiority test was also performed, and all the solutions in the table passed.

All noninferior solutions found were used to generate an interpolated estimate of the
4-dimensional Pareto front, as in the quasi four-dimensional plots in Figure 7.
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Table 4. Results obtained by goal attainment method.

SWR Av Icc fm S1
No. w1 w2 w3 w4 (–) (dB) (mA) (MHz) (%)

1 1 1 1 1 1.07 40.0 0.505 134 –

2 1 0 0 0 1.00 32.4 0.844 302 75
3 0 1 0 0 1.18 40.5 0.477 129 75
4 0 0 1 0 1.63 30.7 0.404 174 75
5 0 0 0 1 1.67 30.7 1.780 583 100

6 2 1 1 1 1.00 38.9 0.973 131 100
7 1 2 1 1 1.18 40.5 0.477 129 75
8 1 1 2 1 1.18 35.6 0.463 154 75
9 1 1 1 2 1.48 35.5 0.848 296 100

10 2 2 2 1 1.06 40.1 0.491 130 100
11 2 2 1 2 1.05 40.0 0.491 130 25
12 2 1 2 2 1.02 35.5 0.500 203 100
13 1 2 2 2 1.12 40.0 0.477 129 50

Single-run average correlation 95.5 86.4 68.2 72.7 79.2

Figure 7. Four alternative ways of graphical presentation of the Pareto front in the form of a row of
graphs of contours obtained by a piecewise linear interpolation between computed solution points.
Each alternative row has a different objective chosen as graph parameter ( fm, SWR, Av, and Icc in
the first, second, third, and fourth rows, respectively) and another one as the contour parameter.
Note that the curves have subsequently been carefully smoothed by the third-order Bézier curves
(implemented in MetaPost) in this final refinement of the graph.
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9. Testing Processor Exploitation

The efficiency of the whole parallelized procedure can be well illustrated by XMeters
graphs of the exploitation of the cores/threads of a processor. In Figure 8, the exploitation
of the threads is shown in the cases of one, two, . . ., or eight parallel processes of our
multiobjective procedure that ran on the Intel Core i7-860 processor (four cores, eight
threads). The (very small) red-colored amount represents system (Windows) demands;
the violet columns represent the demands of our multiobjective procedure. It is clear that
for eight processes computed in parallel (the last picture at the end), practically the whole
capacity of the processor is exploitable, which confirms our strategy very well.

Figure 8. Eight XMeters pictures for exploiting Intel Core i7-860 threads in the cases of one, two,
three, four, five, six, seven, and eight parallel tasks of the multiobjective optimization, respectively.

10. Note on Another Recently Published Example: Ultra-Low-Noise
Antenna Amplifier

We thoroughly tested our algorithm on the multiobjective optimization of an ultra-low-
noise antenna amplifier for all five (GPS, GLONASS, BeiDou, Galileo, and NavIC) satellite
navigation systems. A comparison of the single- and multiband realizations was published
in [27], where the optimized and measured results for the noise figure and amplification of
the two variants were compared (as well as necessary stability tests) for the two variants.
The new measured method was published in [33], where a comparison of the computed
and measured transducer power gain was performed as well. Therefore, this example can
be considered another confirmation of the full functionality of our method and related
software procedures.

11. Conclusions

The following achievements described in the paper deserve to be highlighted:

• Our modification of the a posteriori goal attainment method has been devised and
presented, which leads to asymptotically uniform coverage of the reference set by
chosen reference points used to control the exploration of Pareto front.

• Regarding actual computation strategy, a way of parallel processing has been chosen,
such that the tasks run in parallel are automatically started one after another on each
of the available processor cores without any slack time needed, contrary to many other
published procedures. This is due to the specific organizing role of the main process
starting the child processes.

• The resulting graph Figure 4 in the form of contour plot is more informative of the
actual Pareto front shape than other frequently used forms of depiction in literature.
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