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Abstract: In order to predict and recommend what users want, users’ information is required, and
more information is required to improve the performance of the recommender system. As IoT devices
and smartphones have made it possible to know the user’s context, context-aware recommender
systems have emerged to predict preferences by considering the user’s context. A context-aware
recommender system uses contextual information such as time, weather, and location to predict
preferences. However, a user’s preferences are not always the same in a given context. They may
follow trends or make different choices due to changes in their personal environment. Therefore,
in this paper, we propose a context-aware recommender system that considers the change in users’
preferences over time. The proposed method is a context-aware recommender system that uses
Matrix Factorization with a preference transition matrix to capture and reflect the changes in users’
preferences. To evaluate the performance of the proposed method, we compared the performance
with the traditional recommender system, context-aware recommender system, and dynamic rec-
ommender system, and confirmed that the performance of the proposed method is better than the
existing methods.

Keywords: recommender systems; context-aware; deep learning; transition matrix

1. Introduction

A recommender system is a system that provides a list of recommendations by pre-
dicting preferences so that users can quickly find what they want in a large amount of
information. In order to predict what a user wants, a recommender system calculates
preferences through the user’s personal information or usage history. Currently, Netflix,
Amazon, and YouTube are representative of recommender systems, and they are used in
various other fields. Recently, they have shown excellent performance by using additional
information other than the user’s usage history [1–3].

Among them, context-aware recommender systems are based on the assumption that
users have different preferences depending on their context [4]. The contextual information
required for context-aware recommender systems can be collected through the user’s
smartphone or IoT (Internet of Things). Contextual information is mainly used for time,
weather, and location, and depending on the recommended content, traffic conditions, and
partner information are also used.

However, a user’s preferences may not be the same every time they are in the same
context. For example, if a user has a favorite breakfast dish, the context-aware recommender
system will only recommend that dish to the user every morning. If the user suddenly
starts eating a diet to control their diet, it would make sense to recommend similar dietary
options, but it is very likely that the context-aware recommender system will recommend
the same menu that the user has been eating every morning. Similarly, users may change
their preferences due to personal changes or be influenced by the latest trends. This is
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a problem that can arise from not taking into account the user’s changing preferences, and
long-term users will only see similar recommendations in the same context.

Context-aware recommender systems use time as contextual information, but the
contextual information of time is simply used as one of the features of the model and is not
used in a sequential sense. In context-aware recommender systems, time is mostly used as
categorical data such as morning, lunch, dinner, or morning/afternoon, weekday/weekend,
etc. [5,6] Therefore, in this paper, we propose a method to capture user preference changes
in sequential data so that it can be reflected in predicting preferences. We aim to improve
the performance of the recommender system by considering the preference change in
the existing context-aware recommender system. Figures 1 and 2 show the meaning of
‘time’ in the existing context-aware recommender system and the meaning of ‘time’ in the
proposed method.
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The traditional context-aware recommender system in Figure 1 categorizes the user’s
current time as morning/lunch/dinner, morning/afternoon, weekday/weekend, etc., and
applies it directly to the model. Figure 2 shows an example of using temporal data in
a sequential sense. The proposed method uses temporal information as a feature that
affects preference and also uses it to access data sequentially. In order to understand the
change in user preferences over time, the proposed method captures the change in user
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preferences in the sequential data as shown in Figure 2, and incorporates it into the model.
Find patterns in the user’s recent preference changes to help predict their preferences.

This paper is organized as follows. Section 2 describes context-aware recommender sys-
tems and dynamic recommender systems. Section 3 describes the proposed method, a deep
learning-based context-aware recommender system that considers preference changes, and
Section 4 presents a comparative analysis of the proposed method and similar methods.
We describe the differences between the proposed method and similar methods by mea-
suring the accuracy of the recommender system without using additional information,
the context-aware recommender system, and the recommender system that considers
preference changes. Finally, Section 5 presents conclusions and future research directions.

2. Related Works
2.1. Context-Aware Recommender Systems

Early recommender systems targeted users in a desktop environment, predicting their
preferences for items based on their personal profile information, purchase history, and time
spent on the page. As the environment of these recommender systems gradually moved to
smartphones, recommender systems using additional information that can influence user
preferences began to appear [7–9]. Among them, context-aware recommender systems are
proposed based on the assumption that users’ preferences change due to the influence of
their surroundings or external factors. Contextual information refers to data such as the
user’s time, weather, and location. Here, weather and location are expressed as contextual
dimensions, and {sunny, rainy, cloudy} or {home, movie theater} are called contextual
conditions [10]. Since the development of smartphones, many studies on context-aware
recommender systems have been conducted, and the number has increased dramatically
since 2016 [11].

Although various contextual information can be used to provide sophisticated recom-
mendations to users, the more contextual information is considered to predict preferences,
the larger the size of the data table becomes, which increases the problem of data spar-
sity. To compensate for data sparsity, techniques to reduce dimensionality or sparsity in
three-dimensional data consisting of user, item, and context information have been studied.
CAMF (Context-Aware Matrix Factorization) is an MF-based method that reduces compu-
tational complexity by representing both users and items as factor weights in a matrix [12].
MF (Matrix Factorization) is a collaborative filtering method based on the latent factor
model, which assumes that there are some latent factors in the data and finds them through
MF. MF shows high performance in predicting unevaluated preferences in the user/Item
matrix. To apply MF, item splitting is a technique to represent high-dimensional data with
contextual information as a two-dimensional matrix [13]. CSLIM (Contextual SLIM) is
an extension of the SLIM (Sparse linear method) algorithm by incorporating contextual
information, and is a regression model-based recommendation method for small data [14].
FM (Factorization Machine) is not a context-aware recommender system, but it has the ad-
vantage of being able to model the correlation between variables by adding many features
to the model. Recently, there have been many models that apply deep learning to recom-
mender systems to predict preferences. Deep learning-based recommender systems have
not only improved the performance of existing recommender systems, but also overcome
the problems of existing recommender systems. Data sparsity in context-aware recom-
mender systems is also overcome by deep learning-based recommender systems [15,16].

While a recommender system models the relationship between a user and an item,
a context-aware recommender system models the relationship between a user, an item,
and a context. Since contextual information is personal information, it is actually very
difficult to obtain information about the user’s current surroundings unless the user allows
it. One type of contextual information that can be easily obtained is ‘time’, which is the
time a user spends on an item. There are studies on context-aware recommender systems
that utilize the contextual information ‘time’, such as a study that assumes that users prefer
different places in the morning and evening [17], or a study that proposes a method to
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recommend travel destinations to users by separating weekdays and weekends using time
information [18]. In addition, in the e-commerce domain, studies have been proposed that
assume that shopping cart additions will be different on different days of the week, and
studies have been proposed that utilize temporal information by using the four seasons
instead of weather [19].

However, users’ preferences do not always make the same choice in a given context,
but may change over time. For example, if you are recommending a dinner menu to a user,
they may not choose the same one every day. Or their choices may change as their family
size changes, and there may be certain items that they purchase consistently. Without
considering such preference changes, all existing studies categorize time as a feature of the
model. In this paper, we aim to improve the problem of predicting similar preferences over
time because existing context-aware recommender systems do not consider the change of
users’ preferences over time. The proposed method aims at a context-aware recommender
system that reflects the preference change pattern by sequentially listing data.

2.2. Dynamic Recommender Systems

DRS (Dynamic Recommender System) refers to a recommender system that reflects
changes in users or items over time. DRS predicts preferences by capturing time-varying
data or temporal changes in various domains related to users or items. There are pre-
vious studies on DRS, and most of them have shown good performance in multimedia
and e-commerce fields [20,21]. In the Netflix Prize held in 2009, Koren et al. proposed
a study that considered user bias, item bias, and preference change and showed excel-
lent performance [22]. Since then, there have been many studies on preference change.
Ding et al. argued that users’ most recent item ratings are more likely to reflect their true
preferences [23], so they proposed a weighting factor that reduces the similarity as the
time difference increases. Chen et al. proposed a framework for a recommender system
using tweet streams to take into account the rapidly changing user interests and topic
popularity over time [24]. They studied how to provide users with topics of interest in
a timely manner. Liu et al. proposed a dynamic model that considers preference changes
for points of interest (POIs) in a given time period [25]. Jin et al. proposed a temporal
model that captures multiple drifts using deep learning to incorporate user interest or item
changes into preference prediction [26]. It has been shown that this approach performs well
by tracking preference changes and can achieve better results than recommender systems
that do not consider preference changes [27,28]. Among DRSs, TimeSVD++ is an extension
of the SVD (Singular Value Decomposition) model that utilizes user and item bias over
time to reflect trends in user activity or items [29]. TMF (Temporal Matrix Factorization)
is a method that models the temporal dependence of users through transition matrices
between consecutive time periods, assuming that users’ preferences change gradually [30].
BTMF (Bayesian Temporal Matrix Factorization) is an extension of TMF that extends MF to
a fully Bayesian treatment by applying presets to the hyperparameters. TimeTrustSVD is
an improved TrustSVD algorithm that considers the impact of time and trust relationships
on users and items, and the impact of time on scores [31]. The proposed method aims to
improve accuracy by applying DRS to context-aware recommender system by referring to
the method of applying a preference transition matrix to MF.

3. Proposed Model

In this paper, we propose a context-aware recommender system using preference tran-
sition matrices to predict changing preferences over time. The proposed method applies
preference transition matrices to MFs to capture preference changes. The model also incor-
porates users’ preferences for contexts using deep learning. Section 3.1 presents a model
that takes preference changes into account, while Section 3.2 illustrates the integration
process with a context-aware recommendation model.

The notation used in this paper is shown in Table 1 below.
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Table 1. Notations.

Notation Description

i, j Number of users, number of items
k Number of latent factors

Rt ∈ Ri×j Preference matrix at current time t
Rt−1 ∈ Ri×j Preference matrix at time t − 1

R̂ij
t Time t user i item j preference prediction matrix

T Entire period
Ui

t ∈ Ri×k User latent matrix at time t
Ui

t−1 ∈ Ri×j User latent matrix at time t − 1
Vj

t ∈ Rk×j Item latent matrix at time t
W Time weights

λ1, λ2 Normalization parameters

3.1. Matrix Factorization to Account for Changing User Preferences

To identify patterns in temporal data, we use state transition matrices that can represent
the time-varying changes embedded in the data. In this paper, the matrix generated to
capture preference changes over a range of time t is called a preference transition matrix,
where Si ∈ RN×d×d is the preference of user i and d is the latent space.

Table 2 shows a typical preference matrix for a recommender system. The preference
matrix R is of size i× j and consists of rows representing items and columns representing
users. There are values in the matrix where ri,j represents i’s preference for item j.

Table 2. Preference matrix for a recommender system.

V1 V2 · · · Vj
U1 r1,1 r1,2 · · · r1,j
U2 r2,1 r2,2 · · ·
...

...
... · · ·

Ui ri,1 ri,2 · · · ri,j

MF is a technique that decomposes a user-item matrix into a user latent matrix, U, and
an item latent matrix, V. The product of the user latent matrix and the item latent matrix is
trained to resemble the values in the preference matrix. The matrices U and V are obtained
by training the product of the user latent matrix and the item latent matrix to be similar to
the values in the preference matrix. Finally, the predicted value of R′ is multiplied by the
matrices U and V that are most similar to R, and R′ is the matrix filled with all the values
in the matrix. In this way, MF can predict preferences that have not been evaluated by the
user. The mathematical representation of MF is shown in Equation (1), and in this paper,
we follow Non-Negative Matrix Factorization (NMF).

Ri,j = UV U ≥ 0, V ≥ 0 (1)

The preference transition matrix Si is used to capture the change in preference of user
i from the previous time (t− 1) to the next time (t). Suppose Si exists with a latent space of

2, and Si is a unit matrix of the form
[

1 0
0 1

]
. It is characterized that multiplying any matrix

by a unit matrix always results in a multiplicative matrix. Therefore, the implication that Si
is a unit matrix is that there is no change in the user’s preferences. In another example, if Si

is a matrix of the form
[

1.5 0
0 1

]
, we can say that preferences are shifting by the first factor.

Rt = UtVt (2)



Electronics 2023, 12, 2337 6 of 14

Rt−1 = Ut−1Vt−1 (3)

Rt−T = Ut−TVt−T (4)

Figure 3 illustrates the Matrix Factorization method with a preference transition
matrix. If we split the data into t non-overlapping time periods and apply MF, we get the
following result.
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Between each time period, there is a preference transition matrix (Si ∈ RN×d×d) that
reflects the change in preferences. we express user i’ s user latent factor (Ui,t) at time t as
a formula, it is equal to (5).

Ut = StUt−1 (5)

Traditional NMF assumes that the data and latent factors are static. However, this is
not appropriate for datasets where preference changes occur continuously. Therefore, in
this paper, we apply a method to model user preference changes in user latent spaces Ut

and Ut−1 from the previous time to the next time by using the preference transition matrix
St. By reflecting Equation (5) in Equation (2), the formula to obtain the preference of user i
at time t using the user factor is as follows.

Rt = Ut−1StVt (6)

If we assume T = 3, the data is split into Rt, Rt−1, Rt−2. The loss function for this is as
follows.

min
Ut ,Vt
‖Rt −UtVt‖2

F (7)

min
U−1t ,Vt−1

‖Rt−1 −Ut−1Vt−1‖2
F (8)

min
Ut−2,Vt−2

‖Rt−2 −Ut−2Vt−2‖2
F (9)
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Ut, Vt, Ut−1, Vt−1, Ut−2, Vt−2 ≥ 0

‖·‖2
F stands for the Frobenius norm. It shows how the process of previous times is

reflected to get the preference for the current time t. Here is how Equation (7) reflects the
preference transition matrix to capture the change in user preferences using Equation (5).

min
Ut−1,st ,Vt

‖Rt −Ut−1StVt‖2
F (10)

min
U−1t ,Vt−1

‖Rt −Ut−2St−1Vt−1‖2
F (11)

min
Ut−2,Vt−2

‖Rt −Ut−2Vt−2‖2
F (12)

The preference transition matrix is learned as the change in preference over time
between the latent user vectors. To account for user preference changes, we can use
Equations (10)–(12) to represent the following objective function.

L = min
Ut ,st ,Vt ∑

T
t=1 ‖R

t −UtVt‖2
F (13)

+∑T
t=2 ‖U

t − StUt−1‖2
F

+λ1(‖Ut‖1 + ‖Vt‖1 + ‖St‖1

+λ2 ∑N
n=1 ‖S

t−1 − I‖2
F

where I ∈ Rd×d is a unit matrix and ‖·‖1 denotes l1-norm. The third term is the l1-norm
regularization, which makes the factor matrix Ut, Vt, St a sparse matrix. The parameter λ1
controls the effect of the λ1-norm normalization. The fourth term represents the temporal
normalization between the user preference matrices. The parameter λ2 controls how biased
we want the model to be toward past interests/attributes. The objective function is shown
to compute the change in user interest over time T.

3.2. Context-Aware Recommender System Considering Change in Preference

Context-aware recommender systems need to model the relationship between users,
items, and contexts. The problem of data sparsity is much more serious for context-aware
recommender systems than for recommender systems using only users and items. If the
contextual information is applied to the previous method using the transition matrix, the
pattern of the data will be blurred. Therefore, in this paper, we chose a method to integrate
with a context-aware recommender system that considers data sparsity. The framework of
the proposed method is as follows.

Figure 4 is a combination of an autoencoder and a neural network. The input consists
of several feature vectors. There is an autoencoder whose input and output are user vector,
item vector, and context vector, and a neural network that is trained by targeting the
score from the middle hidden layer. When a dataset has n(x, y) pairs, x is a data record
containing user, item, and context information, and y is labeled with the score evaluated
by the user. Each field in x is represented as a binary vector with one-hot encoding. In
Figure 4, yuic denotes the actual score that user u rated item i in context c, and ŷuic denotes
the predicted score.

ŷuic = σ
(

wxk/2 + b
)

(14)
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If the total number of layers is k, then ŷuic can be obtained from layer k/2. To train the
proposed model, we need to go through two processes. First, vu

′, vi
′, vc

′ in the output of
Figure 3 should minimize the loss with respect to vu, vi, vc in the input. Here, context is
separated into context dimension and input. The expression is equivalent to (15).

LAE = min
θ

∑v∈V ‖X− X′‖2 + α∑l

(
‖wAE‖2 + ‖bAE‖2

)
(15)

X means the entire input, and the output of the autoencoder given the input X is X′.
We applied Exponential Linear Units (ELU) to learn while reducing the error of X and X′.
Regularization terms are added to prevent overfitting. Autoencoders are mainly used to
reduce the dimensionality of input data or to extract features from input data. In Figure 5,
the hidden layer represents context representations when the input is context. Using the
context representation obtained from Equation (15), ŷuic is obtained. ŷuic is trained to
minimize the loss between it and ŷuic. This is expressed in the following Equation (16).

LNN = min
θ

∑y∈Y(yuic − ŷuic)
2 + β∑l

(
‖wNN‖2 + ‖bNN‖2

)
(16)
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Equations (15) and (16) are trained simultaneously. To train the proposal method, we
apply Adaptive Moment Estimation (Adam). Adam is a popular optimization technique.

In Figure 5, the MF layer represents the model that considers preference changes
in Section 3.1, and the CA layer represents the context-aware recommendation model in
Section 3.2. The details of each model are described above. The output from each model is
concatenated to get the final prediction.

4. Experiments
4.1. Data Sets

For the experiments of the proposed method, we used two datasets. We used a dataset
of real users to check whether the performance improves when considering the preference
changes assumed in this paper. The detailed dataset information is shown in Table 3.

Table 3. Data sets.

University Cafeteria Instacart

# of users 37,289 206,209
# of items 97 49,688
# of orders 725,438 3,421,083

Contextual Dimensions 4 3
Contextual Conditions 16 13

Sparsity 99.89% 99.99%

- The University Cafeteria dataset is from a food court at Chungnam National Univer-
sity, Korea. To distinguish individual users, they were identified by their encrypted
credit card numbers. There are four contextual dimensions: time, day, weather, and
temperature. Time of day has three contextual conditions: Breakfast, Lunch, and
Dinner. Day of the week has 6 contextual conditions: Mon, Tue, Wed, Thu, Fri, Sat.
Weather has 3 contextual conditions: Sunny, Rain, Snow. Temperature has 4 contextual
conditions: Hot, Warm, Cool, Cold.

- The Instacart dataset is from Instacart, an online-based fresh food delivery service
in the United States. It has user_id, which identifies the user, and order_id, which
is the order number. The order_id can be thought of as the identification number
of a shopping cart that contains multiple items. There are about 30 million rows of
order_product, which is the product in the order_id. The Instacart dataset has the day
of purchase, time of purchase, and time since purchase, but we don’t know the exact
date of purchase, so we assigned the first purchase date as January. There are three
contextual dimensions: day of the week, time of day, and weekday/weekend.

We used 5-fold cross validation, with 80% of users as training set and 20% as test set.

4.2. Evaluation Measures

There are many types of performance evaluation measures for recommender systems.
There are RMSE (Root Mean Square Error) and MAE (Mean Average Error) to measure the
error of the predicted score. Precision and Recall are methods that recommend based on
the degree of preference rather than score. Although the dataset is represented as a score
instead of preferred/dispreferred, the actual recommender system does not show the score
to the user. Therefore, it recommends items in the order of the highest score based on the
predicted score, and uses Precision and MAP (Mean Average Precision) to measure the
performance based on the order. Precision@N is equal to Equation (17).

Precision@N =
|{relevant items} ∩ {top− N items}|

N
(17)

Precision is the percentage of recommended items that the user is interested in. Given
a list of recommended items for a <User, Context> pair, we measure the hit ratio.
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When a recommender system recommends items, it’s very important which items
appear at the top. However, the Precision measure does not consider the order. We use
MAP as an accuracy measure that considers the order of items. Before we can find MAP,
we need to find AP (Average Precision). AP@N can be found through Equation (18).

AP@N =
1
m

N

∑
k=1

(P(k) i f kth item was relevant) (18)

=
1
m

N

∑
k=1

P(k)·rel(k)

rel(k) =
{

1, i f relevant
0, otherwise

In the above expression, m is the number of relevant items, and P(k) is the precision
up to index k. rel(k) has a value of 1 or 0 depending on whether the item was relevant. The
accuracy of the recommendation for one user is AP, and the accuracy for all users U is MAP.
MAP@N can be obtained through Equation (19). In the experiments in this paper, N is set
to 10.

MAP@N =
1
|U|

|U|

∑
u=1

(AP@N)u (19)

Precision and MAP consider higher values to be better performance.

4.3. Compared Methods

To measure the performance of the proposed method, we selected and compared each
model in Non-contextual RS, Context-Aware RS, and DRS. Among the non-contextual
algorithms, we selected User KNN, SVD++, PMF, and FM. Among the context-aware recom-
mender systems, CAMF, ItemSplitting, and CSLIM were selected for comparison. Among
DRS, we compared the performance with TimeSVD, TMF, BTMF, and TimeTrustSVD.

The proposed method requires some parameters to be set. Each parameter value is
selected through experiments. First, we set the latent factor to 100 and the learning rate to
0.001. The regularization parameters in Equation (13) are set to λ1 = 0.001 and λ2 = 0.01.
In Equations (15) and (16), we set α = 0.01 and β = 0.001, respectively. The learning rate of
PMF was set to 0.001. The learning rate for TimeSVD++, TMF, BTMF, and TimeTrustSVD
was set to 0.003. In addition, TMF and BTMF set the factor to 20 based on other studies,
and the number of factors for other latent factor-based models was set to 100.

4.4. Results of the Experiments

In this paper, we proposed a model to improve accuracy by reflecting preference
changes over time in context-aware recommender systems. Therefore, we compared the
performance of the proposed model with representative RS, CARS, and DRS to check
whether the accuracy is improved by considering preference changes.

First, the Precision results were examined by the DRS over different periods, and
the results are shown in Figure 6. For the experiment, we set the time period to 1 month,
3 months, 6 months, and 12 months. One month was too small a number of data to
identify patterns in the data, so we set the time period to six months, which showed some
performance. When we split the data into small chunks of time, the accuracy was low
due to data sparsity. However, we can see that the performance gradually improves as we
capture preference changes from long-term data.
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The following table shows the experimental results of the baseline and proposed
methods on the university cafeteria and Instacart datasets. Table 4 shows the Precision@N
results for each model, and Table 5 shows the MAP@N results for each model.

Table 4. Compare Precision@N for each model.

Dataset University Cafeteria Instacart

Method N = 10 N = 20 N = 10 N = 20

RS

UserKNN 0.043732 0.040358 0.023672 0.035216
SVD++ 0.008599 0.011044 0.047396 0.050524

PMF 0.062262 0.068834 0.050791 0.052613
FM 0.017369 0.019594 0.019762 0.028647

CARS
CAMF 0.065836 0.075625 0.018642 0.022677

ItemSplitting 0.068498 0.066235 0.041653 0.040589
CSLIM 0.012835 0.019662 0.038452 0.037446

DRS

TimeSVD 0.057290 0.061211 0.029648 0.029273
TMF 0.064522 0.066507 0.052473 0.052981

BTMF 0.077652 0.080917 0.064520 0.069118
TimeTrustSVD 0.063861 0.064185 0.034913 0.035499

Proposed method 0.114865 0.107562 0.085116 0.080427

Table 5. Compare MAP@N for each model.

Dataset University Cafeteria Instacart

Method N = 10 N = 20 N = 10 N = 20

RS

UserKNN 0.136482 0.138623 0.020044 0.022758
SVD++ 0.082366 0.080475 0.095427 0.075211

PMF 0.107694 0.108462 0.172436 0.153776
FM 0.088219 0.090325 0.053641 0.058962

CARS
CAMF 0.084963 0.087581 0.071628 0.070493

ItemSplitting 0.130531 0.035816 0.162285 0.158174
CSLIM 0.035816 0.043746 0.049264 0.050723

DRS

TimeSVD 0.084190 0.086997 0.082358 0.085279
TMF 0.127522 0.132490 0.164015 0.170294

BTMF 0.178620 0.171236 0.170293 0.169470
TimeTrustSVD 0.107223 0.114918 0.147526 0.150711

Proposed method 0.223674 0.202638 0.197563 0.188249
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The RSs include userKNN, SVD++, PMF, and FM. We set userKNN to 10 and the
number of factors for the other methods to 100. In the University cafeteria dataset, userKNN
and PMF showed good performance among RS, and we can see that the proposed method
and PMF differed in precision by about 0.05 when N is 10. In RS, userKNN was the highest
in terms of MAP, but it was about 0.08 lower than the proposed method. In the Instacart
dataset, we can see that the proposed method performs slightly better than the University
cafeteria, although the difference is not significant. This is likely due to the fact that it
utilizes other additional information from the user to predict their preferences.

We compared CAMF, ItemSplitting, CSLIM, and the proposed method with the CARS
model. In CARS, ItemSplitting generally performed well, but it has the disadvantage
that it takes a lot of time because ItemSplitting measures the correlation between con-
texts and converts Item to Item+context, making the matrix two-dimensional. The better
performance of the proposed method shows that it is effective in considering preference
changes. Also, when comparing the two datasets, Instacart has a slightly smaller number
of contextual dimensions and contextual conditions. We expected Instacart to be more
accurate because CARS often has too much contextual information, which can lead to
poor performance. However, the experimental results showed that the University cafeteria
generally performed better. These results show that having the right amount of contextual
information to influence preferences can improve performance.

Finally, we compared the precision and MAP of DRS and the proposed method. We
compared the performance of TimeSVD, TMF, BTMF, TimeTrustSVD, and the proposed
method as DRS models. Among the DRSs, BTMF has the highest precision and MA0P.
It also has the smallest performance difference with the proposed method among the
compared models. In general, DRS performed better than CARS, which suggests that
the method that considers preference changes is better than the method that considers
contextual information.

5. Conclusions and Future Work

In order to provide users with satisfactory recommendations, recommender systems
utilizing additional information have been developed. Among them, context-aware rec-
ommender systems are based on the assumption that users’ preferences differ depending
on the context in which they are placed. Context refers to the attributes that can influence
a user’s preferences. However, a user will not always choose the same items in the same
context. No one eats the same food every time it rains. In this way, users may change their
preferences for personal reasons or due to trends.

Therefore, in this paper, we propose a context-aware recommender system that con-
siders user preference changes over time. The proposed method is a context-aware rec-
ommender system model using a preference transition matrix to detect preference change
and apply it to predict preference. For the experiments, we compared a recommender
system that does not use contextual information with a context-aware recommender system
and a recommender system that considers time. The experimental results showed that
the additional information was generally better than the existing recommender system.
When comparing the comparison model and Precision, the proposal method showed better
results. According to the MAP, BTMF showed the smallest difference, indicating that the
method that considers preference changes generally has good accuracy. Based on this, we
expect to be able to provide improved recommendations to long-term users through the
suggested method.

The proposed method incorporates the division of data into time units to account
for temporality. However, during this process, it was observed that splitting the data
into weekly and monthly time units resulted in low accuracy due to data sparsity. This
indicates that while the model effectively captures long-term time preference changes
compared to other models, it struggles to capture short-term preference changes. Therefore,
additional research is required to explore methods for effectively capturing short-term
preference changes.
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