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Abstract: Amid the rapid advancement of neural machine translation, the challenge of data sparsity
has been a major obstacle. To address this issue, this study proposes a general data augmentation
technique for various scenarios. It examines the predicament of parallel corpora diversity and high
quality in both rich- and low-resource settings, and integrates the low-frequency word substitution
method and reverse translation approach for complementary benefits. Additionally, this method
improves the pseudo-parallel corpus generated by the reverse translation method by substituting
low-frequency words and includes a grammar error correction module to reduce grammatical errors
in low-resource scenarios. The experimental data are partitioned into rich- and low-resource scenarios
at a 10:1 ratio. It verifies the necessity of grammatical error correction for pseudo-corpus in low-
resource scenarios. Models and methods are chosen from the backbone network and related literature
for comparative experiments. The experimental findings demonstrate that the data augmentation
approach proposed in this study is suitable for both rich- and low-resource scenarios and is effective
in enhancing the training corpus to improve the performance of translation tasks.

Keywords: neural machine translation; data augmentation; reverse translation; low-frequency word
replacement; grammatical error correction

1. Introduction

In recent years, neural machine translation (NMT) systems have become the main-
stream method in machine translation research and have achieved state-of-the-art results
in various public translation tasks, replacing statistical machine translation [1–5]. Unlike
statistical machine translation [6], neural machine translation uses an encoder–decoder
framework that does not require artificial features or prior domain knowledge, allowing for
automatic encoding and decoding through neural networks. Additionally, neural machine
translation is a data-driven system that utilizes deep learning technology and relies on a
model structure with many parameters. The performance of the translation system greatly
depends on the quality of the parallel corpus used in low-resource domains, which is
difficult and expensive to obtain, while a monolingual corpus is readily available for almost
any language. Therefore, researchers have focused on using data augmentation methods
based on limited bilingual corpus and incorporating monolingual corpus to enhance data
and improve translation performance, which has been an important research direction in
the field of neural machine translation for a considerable amount of time [7,8].

Neural machine translation technology originated from Bengio et al.’s neural network
probabilistic language model in 2003, which represented discrete characters as continuous
dense distributed vectors through neural networks, solving the sparse problem [9]. In
the sequence-to-sequence model, the input is encoded by the encoder into a fixed-length
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context representation vector, and the decoder decodes this vector to obtain the output.
However, fixed-length vectors have a better representation for short sentences but often
cannot effectively represent long sentences. In 2014, Bahdanau of Youngor University
in Germany proposed an attention mechanism that effectively solved this problem and
brought machine translation to a new level [10]. The attention mechanism is essentially a
small neural network that is trained at the same time as the “RNN-RNN” network, making
the “RNN-RNN” model discriminative, so it can focus on more relevant input information.
Luong et al. of Stanford proposed many variants of the attention mechanism to further
enhance its representational ability [11].

Subsequently, research on neural machine translation mainly focused on the deforma-
tion of the encoder–decoder structure and the improvement of the attention mechanism.
Bahdanau et al. enhanced the ability of the encoder to represent information by using a bidi-
rectional recurrent neural network (Bi-RNN) for encoding [10]. Some scholars later studied
decoder deformation. For instance, Liu et al. researched decoding from two directions re-
spectively and finally combined the decoded content of the two directions [12], while Zhou
et al. proposed a bidirectional simultaneous decoding method that dynamically determines
the decoding direction of each word [13]. In 2015, Baidu applied neural machine translation
technology to the online automatic translation platform and proposed a multi-channel
encoder model that largely solved the problem of a lack of source information in the form
of fusion encoding [14]. The team of Shen Shiqi from Tsinghua University proposed the
minimum risk training criterion to deal with the mismatch between training and testing
in the attention mechanism encoding and decoding framework, significantly improving
the performance of machine translation [15]. Tu Zhaopeng of Huawei’s Noah’s Ark team
proposed several techniques, such as reconstructor, mechanism, and historical and future
information modeling, which significantly improved the translation quality and alignment
accuracy and solved the problem of actual translation to some extent [16–18]. Nguyen
et al. proposed a data-diversification-based method to improve NMT performance, which
uses the predictions of multiple forward and backward models to diversify the training
data [19]. Additionally, Xie, S. et al. proposed an end-to-end algorithm to handle entity
translation, where the encoder and the decoder are attached to an entity classifier to treat
named entities differently and improve the translation quality [20].

Data augmentation techniques have been extensively used and found effective in
computer vision [21]. In machine translation, the most popular method of data augmen-
tation is currently back translation. This method employs a target-to-source translation
model, also known as a back translation model, to generate a pseudo-bilingual corpus,
which is then used to train the source-to-target translation model, or the forward translation
model [22,23]. Researchers have explored the use of back translation for context-aware
neural machine translation and evaluated its impact on translation accuracy [24]. However,
in low-resource settings, researchers have discovered that high-quality pseudo-parallel
corpora can benefit the model due to the limited availability of bilingual data. In contrast,
in rich-resource settings, beam search can produce high-quality translations that often focus
on common words. As a result, the generated pseudo-parallel corpus may lack diversity,
which hinders its ability to accurately represent the actual data distribution, and conse-
quently, the performance improvement of the forward model may be limited. Therefore,
current back-translation methods face the challenge of balancing the demands of quality
and diversity in both low-resource and rich-resource scenarios [25].

This study analyzes the characteristics and limitations of various mainstream data
augmentation methods and proposes a scene-agnostic neural machine translation data
augmentation method. The method combines low-frequency word replacement and back-
translation to further enhance the training corpus. In the experiment section, the WMT2015
English–German dataset is used, and rich-resource and low-resource scenarios are divided
for comparative experiments from two perspectives. Firstly, a comparative experiment
is conducted on different backbone networks. Secondly, a comparative experiment is
conducted on related data augmentation works. The results in both rich-resource and
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low-resource scenarios demonstrate that the proposed method can effectively enhance
data and outperforms related works. This study solves the problem that mainstream data
augmentation methods cannot be applied to rich-resource scenarios and low-resource
scenarios at the same time.

2. Dataset and Methods
2.1. Dataset Preparation

To compare with related research [25,26], the rich-resource scenario uses the parallel
bilingual corpus in the WMT2015En-De English–German translation task as the training
data set, merges the official test data of newstest2014 and newstest2015 as the validation
set, and adopts newstest2016 as the test set. The WMT2015En-De English–German dataset
contains a total of 4.6 M parallel corpora of sentence pairs, which belong to the news field
corpus.

In the experiment, the preprocessing steps include:
(1) Filter the sentences whose sequence length exceeds 50 in the original corpus.
(2) Filter the sentences whose length ratio of source language (English)/target language

(German) exceeds 1.5.
(3) Use the Moses tool to tokenize the source language and the target language respec-

tively. Moses’ tokenizer splits the text into individual words and adds a space after each
word, with the exception of the final word in the sentence, which is followed by a period.

(4) Use the BPE tool to process the English–German bilingual corpus, train the shared
subword dictionary [27], and set the size of the subword dictionary to 40 k;

(5) Use the trained BPE tool to segment the corpus, and add <bos> and <eos> identi-
fiers at the beginning and end.

The results before and after data preprocessing are shown in Figure 1.
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Figure 1. Data Preprocessing Results.

After preprocessing, the training corpus has a total of 3,904,999 sentence pairs.
The News Crawl Corpus crawled from the Internet is pre-cleaned first. The steps

include: (1) remove html tags; (2) remove third-party language sentences; (3) remove
sentences with a length of more than 50; after screening, the final monolingual corpus size
is 2,002,899 sentences. In summary, the information on the datasets used in the rich-resource
scenario experiment is shown in Table 1.

Table 1. Dataset Information of Rich-resource Scenarios.

Type Name Size

parallel corpus
Training set WMT2015En-De 3.9 M

validation set newstest2014 + newstest2015 6 k
test set newstest2016 3 k

monolingual corpus News Crawl Corpus 2 M

In the low-resource scenario, the same as the work of Edunov et al. [25], select 10% of
the WMT2015En-De English–German dataset to simulate the low-resource scenario. The
selection of the verification set and test set is the same as that of the rich-resource scenario,
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and the monolingual corpus is also selected from the official News Crawl Corpus. The
specific information of the dataset is shown in Table 2.

Table 2. Dataset information of low-resource scenarios.

Type Name Size

parallel corpus
Training set WMT2015En-De 400 k

validation set newstest2014 + newstest2015 6 k
test set newstest2016 3 k

monolingual corpus News Crawl Corpus 2 M

2.2. Auxiliary Module Preparation

(1) Language model preparation. The language model is consistent with the work of
Fadaee et al. [26], choosing a bidirectional gated unit model (Bi-GRU), which is pre-trained
in advance using a monolingual corpus.

(2) Align model preparation. The low-frequency word replacement module needs to
obtain the position of the word to be replaced in the target language through the alignment
model, so it needs to use the existing parallel corpus to pre-train the alignment model.
Adopt fast_align [28] as the alignment model.

(3) Syntax error correction module preparation. The grammatical error correction
method adopts the open-source method of Zhao et al. [29], which uses the method of
adding noise to generate many grammatically incorrect sentences, and combines them with
real sentences to form training data to train a grammatical error correction module. This
article uses the English and German grammar error correction (GEC) model pre-trained
and open sourced by Zhao et al.

(4) Translation quality evaluation. The translation results generated by the model in
the test set are evaluated by the BLEU indicator [30], and the BLEU value is calculated
using the multi_bleu.perl [31] script provided by the Moses tool.

2.3. Back Translation

Figure 2 demonstrates the specific flow of the reverse translation method [32]. It is as-
sumed that in order to obtain a forward translation system Mx→y, there are parallel bilingual

corpus D =
{

x(n), y(n)}N
n=1 and target language monolingual corpus Y =

{
y(t)}T

t=1 .The first

step is to train the reverse translation system using bilingual corpus D =
{

x(n), y(n)}N
n=1 ,

that is My→x, the translation model from the target language to the source language. The

second step is to decode the monolingual corpus Y =
{

y(t)}T
t=1 to obtain the transla-

tion results x(t), so as to construct the pseudo bilingual corpus D̃ = {x(t), y(t)}T
t=1. The

third step is to combine the real bilingual corpus D =
{

x(n), y(n)}N
n=1 and pseudo bilin-

gual corpus D̃ = {x(t), y(t)}T
t=1, and all the combined data are used to train the forward

translation system.
In resource scenarios, adding some noise to the source language sentences generated by

back translation to improve their diversity can achieve better results. In machine translation,
beam search is most commonly used for decoding, but in a rich-resource context, beam
search will cause translation results to mainly focus on some high-frequency words, and
the generated pseudo data lack diversity [33]. To solve the problem of insufficient diversity
of pseudo-corpora in rich-resource scenes, Edunov et al. used the methods of sample
decoding, top-k decoding, and beam-plus-noise in their research. Sampling decoding in
the process of generating translation results, all words in the vocabulary are taken into
account and randomly sampled according to their predicted probability, so some words
with low predicted probability may also be selected, which makes the translation results
more diverse, but the translation quality and fluency will be greatly compromised. Top-k
decoding combines beam search and sampling decoding. First, the first k words with
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the highest probability in the predicted probability are selected, and random selection
is performed among these k words, which can not only ensure the quality of translation
but also have a certain diversity. The beam-plus-noise approach is to add noise to the
translation results of beam search, such as dropped words, masked words, and random
exchange of words.
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2.4. Low-Frequency Word Replacement

In addition to the back-translation method, another method of data augmentation
is adding noise. Common methods of adding noise include dropping words, masking
words, and shuffling the order. The method of adding noise is generally only carried
out on the source language sentences. The reason is to maintain the fluency of the target
language sentences and ensure that the decoder is fully trained. On this basis, adding noise
to the source language can increase the diversity of data to improve the robustness and
generalization ability of the encoder [34]. Word replacement, as the name suggests, is to
replace some words in a bilingual corpus with other words in the vocabulary, which is a
unique method of adding noise. This method changes the semantics by substituting words
but is generally syntactically sound. For example, for the sentence “Biden/won/election”,
you could replace “Biden” with “Trump”, “Obama”, or “won” with “lose”, or “Election”
with “match”, “victory”, etc.

Low-frequency word replacement replaces a word in the source language sentence
with a rare word that satisfies the grammatical and semantic conditions through the
language model, and then uses the alignment tool to find the corresponding position of the
replaced word in the target language sentence, and uses the translation dictionary to convert
the target language. The word at this position is also replaced with the corresponding
translation result, thereby obtaining a pseudo-bilingual corpus. Rare words can easily lead
to insufficient training due to their small number of occurrences, and such methods can
greatly alleviate this situation.

2.5. Grammar Error Correction

The function of the grammatical error correction module is to detect whether there
are grammatical errors in a sentence and automatically correct the detected grammatical
errors. Figure 3 is an example of a grammatical error correction task. In this sentence, the
original word absolute is grammatically incorrect, and the GEC module should absolutely
recognize and modify it as an adverb.
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Currently, the task of correcting grammatical errors uses an encoder–decoder frame-
work similar to neural machine translation. This framework can be understood as taking
grammatically incorrect sentences as an input in the source language and outputting gram-
matically correct sentences in the target language. Figure 3 shows a pair of parallel training
data, “Nothing is absolute right” and “Nothing is absolutely right”. When a large-scale
parallel corpus, such as <wrong sentence, correct sentence>, is used to train a GEC model,
the model can automatically correct grammatical errors.

To enhance the performance of the GEC module, some researchers propose construct-
ing pseudo-training data. Zhao et al. [29] constructed pseudo-training data by randomly
adding noise, which achieved good performance. The method of adding noise involves
randomly deleting a word with a 10% probability, randomly adding a word with a 10%
probability, randomly replacing a word with a 10% probability, and increasing the serial
number of all words to a normal distribution and reorder, resulting in an error sentence.
Tao Ge et al. [35] used the reverse translation method of neural machine translation to train
a wrong sentence generation model, which was then used to construct pseudo-training data
and improve the performance of the GEC module. Alokla, A. et al. [36] proposed a new
retrieval-based transformer pseudocode generation model that can handle low-frequency
words and words that do not exist in the training dataset, which can be used in grammatical
error correction tasks. In this study, the pre-trained GEC module of Zhao et al. is used.

2.6. Scenario-Generic Neural Machine Translation Data Augmentation Method

The general neural machine translation data enhancement method proposed in this
paper, based on reverse translation, uses the word replacement method to replace common
words with low-frequency words and reduces grammatical errors through the grammatical
error correction module; the final generated corpus is parallel to the original. The corpus is
merged into a bilingual corpus with both quality and diversity. As shown in Figure 4, it is
a flow chart of this method.

The specific steps are:
(1) The existing limited parallel bilingual corpus D =

{
x(n), y(n)}N

n=1 and a large

amount of target language monolingual corpus Y =
{

y(t)}T
t=1 first use the bilingual corpus

to train the back translation model My→x from the target language to the source language;
(2) Determine the low-resource or rich-resource scenario, input the target language

monolingual corpus into the My→x model, select the cluster search method to generate
the translation X̃ = {x(t)}T

t=1 in the low-resource scenario, and select the Top-k decoding
method to generate the translation in the rich-resource scenario. Use the Back Translation
method of data augmentation corpus, DBT =

{
x(t), y(t)}T

t=1 ;
(3) For the enhanced bilingual corpus after combining the translation generated by the

reverse translation part with the original bilingual corpus, input the low-frequency word
replacement module;

(4) The corpus is further enhanced by the low-frequency word replacement module,
and the specific steps are shown in Figure 5. First, after artificially generating the low-
frequency word set V, select a word si of the source language sentence S in the original
sentence pair as the word to be replaced, and the language model will extract words from
the low-frequency word set V as the replacement word for si. At this time, through the
language model, calculate the probability distribution of the replaced sentence, and select
the word with the largest probability distribution as the replacement word s′ i, as shown in
Formula (1). Formula (1) shows that when si is replaced by s′ i in the low-frequency word
set V, the language model will calculate the probability distribution before and after the
replacement word, respectively, obtain certain candidate words, and the final replacement
word s′ i takes the intersection. Then, through the alignment model, it is known that the
corresponding word of si in the target language sentence T is tj, and tj is replaced with the
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translation word t′ j of s′ i. Finally, the enhanced sentence pair DWS =
{

x(k), y(k)}K
k=1 after

the replacement of low-frequency words is obtained.
→
C = {s′ i ∈ V : Pf orwardLM(s′ i|s1, . . . , si−1)}
←
C = {s′ i ∈ V : PbackwardLM(s′ i|sn, . . . , si+1)}
C = {s′ i|s′ i ∈

→
C ∧ s′ i ∈

←
C}

(1)

(5) When in a low-resource scenario, the corpus generated after the low-frequency
word replacement processing will also go through the grammar error correction module
as post-processing to reduce grammatical errors in the corpus. The flowchart is shown in
Figure 5.
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3. Experiment and Results
3.1. Baseline Models and Comparison Methods

The data enhancement method proposed in this paper combines low-frequency word
replacement and reverse translation methods. The experiments are carried out from two
perspectives to verify the effect:

To compare different backbone networks in neural machine translation, this study sets
up experimental baseline models in three categories based on different backbone networks.

(1) RNNSearch: The work of Bahdanau et al. [10] in 2015, a milestone in the field of
neural machine translation. Through Bi-LSTM combined with an attention mechanism,
neural machine translation surpasses statistical machine translation;

(2) ConvS2S: The work of Gehring et al. [37] of the Facebook team in 2017 greatly
improved the computational efficiency through convolutional neural networks and also
improved the translation performance;

(3) Transformer-base: The work of Vaswani et al. of the Google team in 2017 presented
a completely self-attention-based structure that achieved state-of-art effects on a large range
of data sets and has now become the mainstream backbone in the field of neural machine
translation networks.

Table 3 summarizes the advantages and disadvantages of RNNSearch, ConvS2S, and
Transformer-base models for neural machine translation tasks:

Table 3. Advantages and disadvantages of backbone networks.

Model Advantages Disadvantages

RNNSearch
Can model sequential dependencies well

Good for long sequences
Easy to implement

Prone to vanishing gradients
Computationally expensive

ConvS2S Less prone to vanishing gradients
Can capture long-term dependencies

Requires large datasets to train effectively
Needs careful hyperparameter tuning

Transformer-base
Captures global dependencies better than RNNs

Better for long sequences
Faster than RNNs

Needs large amounts of data to train
effectively

More complex to implement than RNNs

Second, this study essentially proposes a data augmentation method, so it is compared
with related work on data augmentation, as follows:

(1) base: only the original parallel corpus is used, and no data augmentation method
is used.
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(2) Edunov: The work of Edunov et al. [25] of the Facebook research team in EMNLP2018
uses the back translation method and verifies the effect of the back translation method for
low-resource and rich-resource scenarios. It achieved first place in English–German translation
in WMT2018.

(3) Fadaee: The work of Fadaee et al. [26] in ACL2017, the work carried out a word re-
placement method for low-frequency words, and selectively enhanced the training corpus.

(4) Our method; the data augmentation method proposed in this chapter combines
back translation and low-frequency word replacement.

(5) Our method (+GEC): The method proposed in this chapter. Different from our
method, in low-resource scenarios, additional syntax error correction (GEC) processing is
performed on the generated pseudo-parallel corpus.

3.2. Environmental Preparation

This experiment is based on the deep learning framework of the system, and the
specific environment settings are shown in Table 4.

Table 4. Environment Settings.

Hardware Configuration System Configuration

cpu Intel i7-9700k operating system Ubuntu18.04LTS
Memory 32 GB Development language Python 3.6

graphics card Nvidia RTX 2080ti frame Pytorch 1.5.0

3.3. Baseline Model Parameter Settings

(1) RNNSearch parameter settings

In the RNNSearch model, the number of hidden layer neurons is set to 1000, the word
embedding dimension is set to 620, the number of attention layer neurons is set to 1000, the
Adadelta optimizer is selected, the initial learning rate is set to 5 × 10−4, and the batch size
is set to 128.

(2) ConvS2S parameter settings

In the ConvS2S model, the number of hidden neurons of the encoder and decoder is
set to 512 dimensions, the word embedding dimension is 512, the initial learning rate is
0.25, the batch size is set to 64, the dropout probability is set to 0.2, and the label smoothing
is set to 0.1.

(3) Transformer-base model parameter settings

The number of encoder and decoder layers in the Transformer-base model is 6 layers,
the number of heads of the multi-head attention mechanism is 8, the model dimension
d_model is set to 512 dimensions, the feedforward neural network dimension d_ f f is set
to 1024 dimensions, and the dropout probability is set to 0.1. The beam search width
beam_width is set to 4 and label smoothing is set to 0.1.

The activation function during model training uses ReLU, and the optimizer uses
Adam [38]. The Adam optimizer will dynamically adjust the learning rate during the
training process. First set warm_step; within warm_step, the learning rate will increase
linearly. After warm_step, the learning rate will gradually decay, and the relevant parameter
settings of the Adam optimizer are shown in Table 5.

Table 5. Adam optimizer parameter settings.

Parameter Name Parameter Meaning Parameter Value

β1 First Moment Estimation Exponential Decay Rate 0.9
β2 Second Moment Estimation Exponential Decay Rate 0.98

warm_step Model start steps 4000



Electronics 2023, 12, 2320 10 of 15

3.4. Experimental Results

In this paper, experiments are carried out in the rich-resource scenario and the low-
resource scenario, respectively, and the experiments performed in different scenarios are
the same. As mentioned above, the baseline model is based on three backbone networks,
RNNSearch, ConvS2S and Transformer. The comparison methods are base (without data
augmentation), Edunov (reverse translation method), Fadaee (low-frequency word replace-
ment method), our method and our method (+GEC). The experimental results of each
model method in the rich- and low-resource scenarios are shown in Tables 6 and 7.

Table 6. Experimental results of English–German translation under the rich-resource scenario.

Backbone Network Model Method
BLEU Score of Validation Set BLEU Score of Test Set

Newstest2014 + Newstest2015 Newstest2016

RNNSearch

Base 20.90 22.42
Edunov 23.13 24.59
Fadaee 21.77 23.74

Our method 23.69 24.82

ConvS2S

Base 22.82 25.15
Edunov 26.34 27.19
Fadaee 25.15 25.92

Our method 27.58 28.43

Transformer

Base 24.1 27.31
Edunov 29.67 32.09
Fadaee 27.94 30.50

Our method 30.12 32.61

Table 7. Experimental results of English–German translation in low-resource scenarios.

Backbone Network Model Method
BLEU Score of Validation Set BLEU Score of Test Set

Newstest2014 + Newstest2015 Newstest2016

RNN-Search

Base 13.90 14.62
Edunov 16.19 16.87
Fadaee 14.08 15.82

Our method 16.41 16.33
Our method (+GEC) 16.71 17.20

ConvS2S

Base 14.51 15.71
Edunov 16.80 17.49
Fadaee 15.89 16.60

Our method 16.36 17.72
Our method (+GEC) 17.12 18.11

Trans-former

Base 14.68 16.10
Edunov 16.91 18.21
Fadaee 16.09 17.32

Our method 16.57 17.90
Our method (+GEC) 17.29 18.91

When comparing the results of data augmentation methods from Base, Edunov, Fadaee,
and our method in a resource-rich scenario, it is evident that the bilingual corpus generated
using our proposed data augmentation method, which combines low-frequency word
replacement and back-translation, achieved the highest translation evaluation scores across
three different backbone neural machine translation models. Our method outperformed
both the baseline model that did not use any data augmentation methods and the models
that utilized only a single data augmentation method (Edunov and Fadaee). Compared to
Edunov, the champion of the WMT2018 English-to-German translation task, our method
improved BLEU scores by 0.23, 1.24, and 0.52 on the newstest2016 test set.
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In a low-resource scenario, when comparing data augmentation methods from Base,
Edunov, Fadaee, and our method, Edunov performed the best, while our method yielded
inferior results to Edunov. However, after the pseudo-parallel corpus underwent grammar
correction using the GEC module, our method (+GEC) achieved the best performance,
demonstrating the necessity of grammar correction for pseudo-corpus in low-resource
scenarios. In low-resource scenarios, neural machine translation models are more sensitive
to the quality of the corpus, and grammar errors introduced by word replacement methods
can further compromise translation performance. In contrast, in a resource-rich scenario,
some grammar errors will not affect translation performance and can even enhance the
robustness of the model’s encoder, which is consistent with the findings of Edunov et al.
This study proposes a solution to this phenomenon through the grammar correction
module.

3.5. Analysis of Results

For other experimental results in Tables 5 and 6, further analysis will be combined
with the charts here.

(1) Comparative analysis of backbone network

In Figure 6, the Transformer model outperforms the RNNSearch and ConvS2S models
in terms of overall translation performance, regardless of whether it is in a rich- or low-
resource scenario. However, the performance difference between the three models is more
significant in the rich-resource scenario, with the Transformer model having the highest
translation quality, followed by the ConvS2S model and then the RNNSearch model. In
contrast, in the low-resource scenario, the performance difference between the three models
is not as obvious.
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(2) Comparative analysis of data enhancement methods

Comparing the results of the Edunov and Fadaee methods shows that both data
augmentation methods improve the translation performance, which explains that neural
machine translation is data-driven and the size of the parallel corpus directly affects
translation performance. Among them, the translation performance improvement brought
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by the back-translation method is generally higher than that of the low-frequency word
replacement method. In the resource-rich scenario, Edunov based on the back-translation
method outperformed Fadaee based on the low-frequency word replacement method
by 0.85, 1.27, and 1.59 BLEU points on the newstest2016 test set, while Fadaee based on
the low-frequency word replacement method outperformed the base method without
data augmentation by 1.32, 0.77, and 3.19 BLEU points, respectively. In the low-resource
scenario, Edunov outperformed Fadaee by 1.05, 0.89, and 0.89 BLEU points, respectively,
on the newstest2016 test set, while Fadaee outperformed the base method by 1.20, 0.89, and
1.22 BLEU points, respectively. The reason why the back-translation method brings a higher
improvement in translation performance compared to the word replacement method is
that the back-translation method essentially uses additional monolingual data to generate
pseudo-parallel corpora, while the word replacement method only replaces words on the
basis of the original bilingual parallel corpus to generate new data.

(3) Corpus size and translation performance

During the experiment, the scale changes in the corpus after applying different data
enhancement strategies were counted, as shown in Table 8.

Table 8. Corpus size under different data augmentation methods.

Model Method
Data Scale

Rich-Resource Scenarios Low-Resource Scenarios

Original Bilingual Corpus 3.9 M 400 k
+Back Translation Method 5.9 M 2.4 M

+Low Frequency Word
Replacement Method 5.2 M 720 k

Our Method 8.9 M 4.6 M

Here, the control variable method is used for analysis, the backbone network is se-
lected as the Transformer model, and the results of the newstest2016 test set are selected as
indicators. Figure 7 shows the relationship between the corpus size and the correspond-
ing BLEU.
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From Figure 7, we can further verify the dependence of neural machine translation on
data. Whether it is a low-resource scenario or a rich-resource scenario, when the scale of
training data increases, the BLEU value on the newstest2016 test set also increases.

However, the trend in increasing BLEU scores has gradually slowed down. This means
that the performance improvement for translation tasks using pseudo-bilingual corpora
constructed through manual data augmentation methods is limited and cannot be infinitely
increased. The core factor that affects translation performance remains to be the size of real
bilingual corpora. For instance, in a rich-resource scenario with a real parallel corpus size
of 3.9 M sentence pairs, the overall BLEU score for translation tasks is over 10 points higher
compared to a low-resource scenario with a real parallel corpus size of 400 k.

4. Discussion

The method proposed in this paper combines the back translation method with the low-
frequency word replacement method in an organic way. This two-dimensional approach
enhances data in a manner that could lead to a “1 + 1 > 2” effect for strictly data-driven
neural machine translation. Moreover, because the neural machine translation model has
different requirements for artificially constructed pseudo-parallel corpora in low-resource
and rich-resource scenarios, higher-quality pseudo-parallel corpora in low-resource scenar-
ios can improve translation performance even more, while a more diverse pseudo-parallel
corpus in rich-resource scenarios can lead to further performance improvements. This
study introduces more diversity into the training data by replacing common words with
less frequent words, allowing the model to learn to translate a wider range of words and
phrases and improving the accuracy of translations. The method also helps prevent models
from overfitting limited training datasets by adding more diverse training examples. The
grammar error correction module reduces errors in the generated corpus, improving the
quality of the training data and helping the model learn correct grammar and syntax,
resulting in more accurate translations. Finally, merging the augmented corpus with the
original parallel corpus ensures that the model is trained on a balanced combination of
augmented and original data, improving its ability to handle both common and rare words
and phrases. Therefore, this study proposes a data augmentation method that is suitable for
both low-resource and rich-resource scenarios and can dynamically satisfy corpus quality
and diversity. In low-resource scenarios, the low-frequency word replacement method en-
hances the corpus based on the pseudo-parallel corpus generated by the reverse translation
method, and the GEC module reduces grammatical errors and ensures the quality of the
enhanced corpus. In rich-resource scenarios, low-frequency word substitution increases
the diversity of pseudo-parallel corpora.

5. Conclusions

The main content of this paper is to propose a general neural machine translation data
enhancement method for scenarios, which combines the low-frequency word replacement
method and the reverse translation method to further enhance the training corpus. It has
better results in low-resource scenarios.

This paper first introduces one of the challenges faced by current neural machine
translation—data augmentation—and then proposes a combined method, which is a data
augmentation method that combines the low-frequency word replacement method and
the reverse translation method. Then, related technologies such as the reverse translation
method, low-frequency word replacement method and grammatical error correction mod-
ule are introduced. Finally, the overall process and specific connotation of the combined
data enhancement method proposed in this paper are introduced.

The experimental part uses the WMT2015 English–German dataset and divides the
rich- and low-resource scenarios and conducts comparative experiments from two perspec-
tives. One is the comparative experiment of different backbone networks. The comparison
methods include RNNSearch, ConvS2S, and Transformer, a comparison between related
data augmentation works, including Edunov, Fadaee, and our method. Ultimately, the
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results in both rich- and low-resource scenarios collectively show that the combined method
proposed in this paper can effectively augment the data and outperform related works.
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