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Abstract: Deep neural networks (DNNs) have made outstanding achievements in a wide variety
of domains. For deep learning tasks, large enough datasets are required for training efficient DNN
models. However, big datasets are not always available, and they are costly to build. Therefore,
balanced solutions for DNN model efficiency and training data size have caught the attention of
researchers recently. Transfer learning techniques are the most common for this. In transfer learning,
a DNN model is pre-trained on a large enough dataset and then applied to a new task with modest
data. This fine-tuning process yields another challenge, named catastrophic forgetting. However, it
can be reduced using a reasonable strategy for data argumentation in incremental learning. In this
paper, we propose an efficient solution for the random selection of samples from the old task to be
incrementally stored for learning a sequence of new tasks. In addition, a loss combination strategy is
also proposed for optimizing incremental learning. The proposed solutions are evaluated on standard
datasets with two scenarios of incremental fine-tuning: (1) New Class (NC) dataset; (2) New Class
and new Instance (NCI) dataset. The experimental results show that our proposed solution achieves
outstanding results compared with other SOTA rehearsal methods, as well as traditional fine-tuning
solutions, ranging from 1% to 16% in recognition accuracy.

Keywords: continual learning; memory reconstruction; loss combination; resnet backbone

1. Introduction

Catastrophic forgetting or catastrophic interference is a serious problem in contin-
uous learning in machine learning. It happens not only in traditional machine learning
algorithms such as SVM (Support Vector Machine), NB (Naive Bayes), DT (Decision Tree),
and CRF (Conditional Random Field) but also in DNNs. This phenomenon was firstly
exposed in [1]. According to the observations in that work, when training on new tasks, the
knowledge learned from previous tasks is forgotten by the machine learning model. The
forgotten knowledge includes the weights learned from the source tasks that are overridden
when learning the target tasks. The authors also demonstrated that the phenomenon of
catastrophic forgetting is the main reason for degradation in the performance of the ma-
chine learning models. Since the announcement of [1] on catastrophic interference, several
publications to address this challenge have emerged [2–8], and they shed more light on the
causes of this phenomenon.

Considering traditional machine learning algorithms such as SVM (Support Vector
Machine), NB (Naive Bayes), DT (Decision Tree), and CRF (Conditional Random Field),
although they have been very successful in practice, they are inherently focused on single-
task learning or isolated-task learning. Moreover, the models are fixed after deployment, or
there is no learning after deployment. This causes limitations in leveraging the knowledge
learned from these models to solve the new tasks or categories [1,3,4].

Recently, DNNs have achieved outstanding efficiency in different areas, but they
require a large amount of training data [9–11]. In order for some networks to be effective,
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it is frequently necessary to reuse model parameters that were learned from training
a sizable dataset [12]. The pre-trained models are then fine-tuned on specialized data
to obtain higher efficiency [13–15]. Transfer learning can cause the old knowledge to
be overwritten by the new one. This makes it impossible for the model to remember the
previous content. Therefore, transfer learning is considered the main reason for catastrophic
forgetting in DNNs.

How to mitigate the catastrophic forgetting effect in DNNs has recently attracted great
attention from the research community [16–18]. As a result, several continual learning
solutions have been proposed for language problems [19,20], object segmentation and
3D reconstruction [21], and the recognition field [7,22–25]. The strategies proposed for
mitigating the catastrophic forgetting of DNNs can be grouped into three main approaches:
(1) rehearsal-based methods; (2) loss regularization-based methods; and (3) architecture
search-based methods. In the first one, an explicit memory is utilized for maintaining
(i) raw samples [22,26,27], (ii) pseudo-samples generated using a generator [28], or (iii) net-
work representations/parameters stored from past tasks [29,30]. The previously learned
knowledge is then adapted to the new task training, which helps to avoid forgetting the pre-
vious tasks. This approach can be applied to different types of continual learning settings,
such as class incremental learning, task incremental learning, and domain incremental
learning. However, it requires an efficient strategy on what to store and how to update
the old knowledge into new tasks; otherwise, overfitting will occur. The second approach
focuses on adding a regularization term to the loss function [7,29–31] . The loss, together
with the penalty factor, determine the effectiveness of injecting knowledge from the source
task model to the target task model. This itself is an attractive research area. The third
approach pays attention to the significance of the neural network architecture in continual
learning. Individual architecture selections such as the number of hidden layers, batch
normalization, skip connections, pooling layers, etc. can affect the performance of the
continual learning [32].

As shown in the above analysis, each approach has its own advantages and disad-
vantages for solving the problem of catastrophic forgetting. Combining the advantages
of each with reasonable enhancements is necessary to reduce catastrophic interference in
DNN networks. In this study, we propose a novel solution for continual learning without
forgetting by exploring both approaches (1) and (2) with efficient improvements for each.

Firstly, a memory reconstruction strategy based on a random selection of samples from
the source task to the target task for continual learning is proposed. This helps transfer
the knowledge of the old task for the new task and reduce catastrophic forgetting in CNN
models. Secondly, we propose an end-to-end incremental learning framework. It contains
the baseline networks of Resnet18 [33] with the loss combination of the source training
phase and the target phase. Based on this loss combination strategy, the learning process
will be optimized at each step of incremental learning.

The proposed method is evaluated on five standard datasets. Three of them have been
the most challenging datasets in the field of continual learning in recent years: CIFAR-10
and CIFAR-100 (https://www.cs.toronto.edu/~kriz/cifar.html, accessed on 12 January
2023) [34], and CORE-50 (https://vlomonaco.github.io/core50/index.html#dataset, ac-
cessed on 12 January 2023) [35]. The other two datasets are KinectLeap (https://lttm.dei.
unipd.it/downloads/gesture/#kinect_leap, accessed on 3 February 2023) [36], and Creative
Senz3D (https://lttm.dei.unipd.it/downloads/gesture/#senz3d, accessed on 3 February
2023) [37], which are commonly used in the field of hand gesture recognition. In order to
evaluate the proposed solution on these datasets, two scenarios of incremental fine-tuning
datasets are set: (1) the New Class (NC) dataset; (2) the New Class and new Instance (NCI)
dataset. The NC scenario shows that the classes in the target dataset are different from the
ones in the source dataset. However, the NCI scenario considers the case of intersection
of some classes between the current and the previous memories. The experiments for the
NC scenario are implemented on four above datasets, but only KinectLeap and Creative
Senz3D are deployed for NCI. The experimental results show that our proposed solution
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achieves outstanding results compared with other SOTA rehearsal methods, such as Lwf [7],
iCaRL [22], OCM [25], and AOP [38], as well as the traditional fine-tuning solution, which
ranges from 1% to 16% in terms of recognition accuracy.

The remainder of this paper is organized as follows: Section 2 first presents related
work; Section 3 explains the proposed solution for incremental learning. Then, the experi-
mental result and discussion are analyzed in Section 4. Finally, Section 5 concludes the
paper and proposes research directions for future work.

2. Related Work

The catastrophic interference problem caused by transfer learning in DNNs has been
recognized since about 30 years ago [1,3,39]. Currently, several solutions have been pro-
posed to solve the problem of lifelong learning without forgetting [40–42]. In this research,
we present some SOTA methods of continual learning in three brief surveys: (1) the
proposals based on rehearsal mechanisms, (2) loss regularization-based solutions, and
(3) incremental learning benchmark datasets.

2.1. Rehearsal-Based Methods

The methods of this approach try to retain a small subset of the source task to replay in
the target task. This is a direct and effective way to lessen catastrophic forgetting through
continual learning. In the work of [22], a training strategy named iCaRL is proposed
for class-incremental learning. The classifiers and a feature representation are learned
simultaneously from a class-incremental data stream. For classification, iCaRL relies on
sequential sets of the fixed exemplar images that are dynamically selected from the data
stream. All exemplars in each set belong to a certain class. An update routine algorithm is
proposed to train the batches of classes at the same time in an incremental way. The iCaRL
method uses this algorithm to adjust the exemplars and network parameters stored in the
memory to be adapted to the new class set of training. Based on this, it can learn new tasks
without forgetting the old tasks. The experimental results on the CIFAR-100 and ImageNet
ILSVRC 2012 datasets proved the incremental learning efficiency of iCaRL in comparison
with other methods.

In [26], a model of Gradient Episodic Memory (GEM) is proposed for continual learn-
ing. In GEM, a small amount of data per task is stored in an explicit memory, while the
number of tasks is large. This is the opposite of other previous approaches to continual
learning. The advantage of GEM is that it is able to constrain the training using real data.
However, it is easily overfitted by the subset of stored samples because the replayed data
are the only information that the model has for the previous tasks. An improved version
of GEM called A-GEM was proposed in [27]. A-GEM focuses on balancing accuracy and
efficiency in sample complexity, computational cost, and memory cost. In addition to the
features inherited from GEM, a small change to the loss function was proposed to boost
training faster while maintaining similar performance. In addition, cross validation is per-
formed on a set of the disjointed tasks for evaluation. The experiments indicate that there is
only a small gap in performance between the lifelong learning methods, including A-GEM.
Forgetting in neural networks can be eliminated, but the transfer learning performance
does not improve by much.

Different from the abovementioned solutions, the methods of [43,44] utilize greedy
selection strategies for replay memory. However, these are inefficient because of the
additional memory required for greedy saving. To overcome this, several optimal strategies
for sample selection have been proposed. In [45], the authors proposed a memory retrieval
technique that recovers memory samples with increased loss as a result of estimated
parameter updates based on the current task. The solution in [46] scores samples in the
memory based on their capacity to maintain latent decision boundaries for previously
observed classes. The strategy in [47] expressly promotes samples from the same class
to cluster closely in an embedding space while discouraging samples from other classes
during replay-based training.
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Instead of storing any old samples in replay memory as in the abovementioned
methods, in [28], an infinite number of instances of old classes in the deep feature space
are generated to overcome the classifier bias in class-incremental learning. In addition, the
work in [48] uses orthogonal and low-dimensional vector subspaces for learning individual
tasks. This helps to prevent catastrophic interference of learning target tasks from source
tasks. In comparison with the rehearsal baseline methods with the same amount of memory,
both accuracy and anti-forgetting ability are improved on deeper networks.

2.2. Loss Regularization-Based Solutions

The knowledge from the source task to the target task can be distilled via loss regu-
larization in the training phase of the tasks. In [7], the authors proposed a solution called
LwF (Learning without Forgetting), in which training is carried out on new task data
while preserving the original capabilities. This overcomes the disadvantage of growing the
number of new tasks with the increase in data that needs to be stored and retrained. The
LwF method changes the network architecture and combines the sharing parameters of the
trained model with the new model in the optimization function. However, the old model is
frozen to retain the old knowledge and to optimize the extended network parameter. The
LwF method outperforms the current standard practice of fine-tuning if we only care about
the performance of the new task. In addition, it highly depends on the relevance between
the new tasks and the old tasks, and the training time increases linearly with the number of
the learned tasks.

The later proposed solutions for LwF showed more efficient improvements. In [30], the
authors proposed two algorithms: Dark Experience Replay (DER) and DER++. DER looks
for parameters that fit the current task well while approximating the behavior observed
in the previous tasks. In order to retain knowledge of the previous tasks, the objective
function implemented in DER is minimized by an optimization trajectory. DER++ feeds an
additional term on buffer data points to the objective of DER to promote higher conditional
likelihood to their ground truth labels with a minimal memory overhead. The work
in [49] learns representations using the contrastive learning objective and reserves learned
representations using a self-supervised distillation step. The experiments show that the
proposed scheme performs better than baselines in various learning configurations. More
efficient solutions for continual learning were recently published [25,38]. The work in [25]
used all of the training data’s attributes when learning each task. This helps lessen the
feature bias brought on by cross entropy, which only learns features that are discriminative
for the task at hand but may not be discriminative for another. The network parameters
that were previously learned must be adjusted in order to learn a new task well. The
promising technique in [38] named AOP (Adaptive Orthogonal Projection) only changes
the network parameters in the direction that is orthogonal to the subspace bounded by all
of the prior task inputs. As a result, there is no requirement to memorize the input data for
each task, and the knowledge about the prior tasks is incrementally updated. According
to empirical analysis, these methods significantly outperformed most recent continual
learning baselines.

In this work, we deploy both rehearsal-based and loss regulation-based methods in
novel settings for continual learning without forgetting. It is different from other rehearsal-
based methods in which a small fixed amount of data per task is stored in the memory or
greedy storage. In this work, a strategy of selecting samples at random from the previous
memory is proposed for replay memory. Furthermore, these samples are then combined
with the current random-chosen ones to form a fixed memory for the current task. This
process is performed in a cumulative way through a sequence of tasks. This is a key
improvement in our memory reconstruction strategy compared with other rehearsal-based
methods. It helps efficiently eliminate the over-fitting phenomenon that normally occurs in
other related methods.

Another key improvement of our framework in comparison with other solutions is a
strategy for loss regularization. It is performed by optimizing the combination of training
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losses from the previous task and the current task. This is promoted in the continuous
learning framework, which contains the parallel ResNet models. Based on this, catastrophic
forgetting will be efficiently avoided.

In comparison with the abovementioned methods at both approaches, our strategy has
better performance on the standard datasets. This will be proved in detail in the Section 4.

2.3. Incremental Learning Benchmark Datasets

There are many continual learning benchmarks, as presented in [23], including
MNIST [50], CIFAR-100 [34], ILSVRC2012 [12], CUB-200 [51], and CORE-50 [35]. These
datasets consist of large categories, as well as the divergent instances, which are suitable
for evaluating continual learning algorithms. Moreover, in the application aspect, using
specification datasets (such as action, hand gesture, and face) is also necessary when a
certain CNN model is pre-trained on a small dataset. It is then extended to recognize a new
dataset that not only contains different instances but also has other categories. In this work,
our experimental results are achieved on three continual learning benchmarks (CIFAR-10
and CIFAR-100 [34], and CORE-50 [35]) and two hand gesture datasets (KinectLeap [36]
and Creative Senz3D [37]).

3. Proposed Method

The proposed framework for overcoming catastrophic forgetting in continual learning
is shown in Figure 1. It has two components: (1) a memory reconstruction strategy and
(2) end-to-end continual learning via parallel ResNet18 branches with a loss combina-
tion strategy.

Figure 1. The proposed framework of memory reconstruction and loss regulation strategies for
continual learning of a sequence of tasks.
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The first component (colored vintage rose in Figure 1) is responsible for creating
incremental fine-tuning data for the target task from the source task. This is carried out
using a strategy of random sample selection from the data of each task in each step of
continual learning (colored yellow in Figure 1). The selected samples are then stored in
the replay memory. By doing so, the overfitting phenomenon, which is commonly seen
in other rehearsal-based methods, will be avoided. The proposed memory reconstruction
strategy is tested on two types of incremental data, including the New Classes (NCs) and
New Classes and Instances (NCIs).

Together with the memory reconstruction strategy, the second component (Figure 1)
is implemented in the manner of continual parallel learning via Resnet 18 networks. The
inputs for each Resnet 18 model are an incremental dataset from the source task and a new
dataset from the target task. An optimal strategy based on the combination of the logistic
loss functions in each task is deployed to result in a reconstructed buffer memory and a
fine-tuned CNN model. This end-to-end learning with the loss combination strategy helps
train the target tasks without forgetting the source tasks.

The details of the components in the proposed framework and data scenarios for
experiments are indicated in the following sections.

3.1. Memory Reconstructing Strategy

Our memory reconstruction strategy is an improvement to the solution in [22], in
which the authors proposed the iCaRL method for class-incremental learning. The con-
straint for this is that the training data for a small number of classes must be presented
at the same time, and the new classes can be progressively added. The solution in [22]
comprises three main parts: (1) a 2DCNN feature extractor based on the Resnet18 backbone,
(2) a KNN classifier to obtain final result, and (3) exemplar memory. In [22], the samples are
selected from the center of the data distribution (mean-sample method), and this could fail
into an overfitting problem. In order to overcome this, in our work, a strategy of random
sample selection for memory (random-sample memory) is implemented.

As presented in Figure 1, we have a sequence of tasks D1, D2, . . . , Dt, Dt+1, . . . in
which D presents the data of a task. The memory reconstruction strategy is responsible
for the random sample selection from each task to store in memory. Firstly, we have the
memory DM

1 for the task D1, and this memory contains the random samples selected from
D1. The memory DM

2 is the combination of samples that are randomly chosen from D2
and the random samples from DM

1 . The same method is deployed for the next memory
in the task sequence, and as a result, we have the corresponding memory sequence of
DM

1 , DM
2 , . . . , DM

t , DM
t+1, . . . The memory size for each task is the same and equal to M. It is

noted that memory size is fixed to restrict a huge hardware requirement. These memories
are then used for training ResNet18 branches in the second component.

In addition, in order to implement the proposed memory reconstruction strategy, in
this work, we deploy two cases of data selection based on the types of incremental data,
including New Classes (NCs) and New Classes and Instances (NCIs). The first one shows
the case in which all categories in the incremental dataset are different from the ones in the
previous dataset. The second scenario refers to the interference of some classes between
the target and the source memories.

3.1.1. The Incremental Data of New Classes (NCs)

For the NC type, all categories of a target dataset are different from the ones in the
source memory. In continual learning, a dataset (D1) is first given. It concludes s1 categories,
and each category has a unique label of y (y = 0, . . . , s1 − 1). Each category consists of a set
of C1 images {x = xi, (i = 0, . . . , C1)}, and C1 is the number of images in a class. The D1
dataset is shown as in Equation (1):

D1 = ∪
y=(0,...,s1−1)

{(x, y) : x = {xi}, i = (0, . . . , C1)} (1)
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The pre-trained CNN model (pre-trained on the ImageNet dataset [12]) is fine-tuned
by the D1 dataset. The size of the FC layer is s1. A memory is then constructed, and its
size is set by M. The images in each class are randomly selected by frd( frandom) from C1 to
obtain K1 = M/s1 images. The memory DM

1 is first created, as illustrated in Equation (2):

DM
1 = frd(D1) = ∪

y=(0,...,s1−1)
{(x, y) ∈ D1 : x = {xi}, i = (0, . . . , K1)} (2)

Given the (t + 1)th incremental dataset Dt+1 with zt+1 classes and the previous mem-
ory DM

t with st classes, the labels of zt+1 classes in the Dt+1 dataset are different from the
labels of st categories in the DM

t buffer memory. The tth buffer memory is presented as in
Equation (3):

DM
t = ∪

y=(0,...,st−1)
{(x, y) : x = {xi}, i = (0, . . . , Kt)} (3)

Additionally, the (t + 1)th incremental dataset is presented in Equation (4):

Dt+1 = ∪
y=(st ,...,st+1−1)

{(x, y) : x = {xi}, i = (0, . . . , Ct+1)} (4)

For the incremental data type NC, the number of classes in the next memory (DM
t+1)

increases from st to N. In addition, the output size of the CNN model is also changed from
st to N as in Equation (5):

N = st+1 = st + zt+1 (5)

The reconstructed memory of DM
t+1 contains samples that are randomly selected from

both the DM
t buffer and the Dt+1 dataset. The samples of DM

t (Kt images) and Dt+1 (Ct+1
images) are reduced to Kt+1 = M/N images, as shown in Equation (6):

DM
t+1 =


frd(DM

t ) = ∪
y=(0,...,st−1)

{(x, y) ∈ DM
t : x = {xi}, i = (0, . . . , Kt+1)}

frd(Dt+1) = ∪
y=(st ,...,N−1)

{(x, y) ∈ Dt+1 : x = {xi}, i = (0, . . . , Kt+1)}
(6)

3.1.2. The Incremental Data of New Classes and New Instances (NCIs)

In the NCI type, some categories in the incremental dataset have the same labels as
some classes in the memory. Therefore, memory reconstruction in an NCI incremental
dataset is more complex than in the NC case. For the first dataset D1, the initiation memory
DM

1 is similarly achieved as in Equation (2). In the NCI case, DM
1 is split into two parts:

DM(1)
1 and DM(2)

1 . Similarly, DM
2 is broken into DM(1)

2 and DM(2)
2 . The separation causes

DM(2)
1 have the same class labels as DM(1)

2 . In general, given the (t + 1)th incremental

dataset Dt+1 (Dt+1 = D(1)
t+1 ∪ D(2)

t+1) with zt+1 categories and the previous memory DM
t

(DM
t = DM(1)

t ∪ DM(2)
t ) with st categories, the separation for these are illustrated in

Equations (7) and (8), respectively.

Dt+1 =


D(1)

t+1 = ∪
y=(st−kt+1,...,st−1)

{(x, y) ∈ Dt+1 : x = {xi}, i = (0, . . . , Ct+1)}

D(2)
t+1 = ∪

y=(st ,...,N−1)
{(x, y) ∈ Dt+1 : x = {xi}, i = (0, . . . , Ct+1)}

(7)

DM
t =


DM(1)

t = ∪
y=(0,...,st−kt+1−1)

{(x, y) ∈ DM
t : x = {xi}, i = (0, . . . , Kt)}

DM(2)
t = ∪

y=(st−kt+1,...,st−1)
{(x, y) ∈ DM

t : x = {xi}, i = (0, . . . , Kt)}
(8)

The divisions in Equations (7) and (8) ensure that both D(1)
t+1 and DM(2)

t have kt+1

classes, in which kt+1 < zt+1 and kt+1 < st. The category labels in D(1)
t+1 and DM(2)

t
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are similar. The number of classes (N) of the reconstructed memory DM
t+1 is calculated

as follows:
N = st+1 = st + zt+1 − kt+1 (9)

Four subsets—D(1)
t+1, D(2)

t+1, DM(1)
t , and DM(2)

t —are used to choose the samples for
memory reconstruction of DM

t+1, as shown in Equation (10):

DM
t+1 = frd(DM

t ) ∪ frd(Dt+1) =


frd(D

M(1)
t ), y = (0, . . . , st − kt+1 − 1)

frd(D
M(2)
t ) ∪ frd(D

(1)
t+1), y = (st − kt+1, . . . , st − 1)

frd(D
(2)
t+1), y = (st, . . . , N − 1)

(10)

Both DM(1)
t and D(2)

t+1 have remaining samples of Kt+1 = M/N in each class; DM(2)
t

and D(1)
t+1 have (Kt+1/2) images as presented in Equations (11) and (12).

frd(DM
t ) =


frd(D

M(1)
t ) = ∪

y=(0,...,st−kt+1−1)
{(x, y) ∈ DM

t : x = {xi}, i = (0, . . . , Kt+1)}

frd(D
M(2)
t ) = ∪

y=(st−kt+1,...,st−1)
{(x, y) ∈ DM

t : x = {xi}, i = (0, . . . , Kt+1/2)}
(11)

frd(Dt+1) =


frd(D

(1)
t+1) = ∪

y=(st−kt+1,...,st−1)
{(x, y) ∈ Dt+1 : x = {xi}, i = (0, . . . , Kt+1/2)}

frd(D
(2)
t+1) = ∪

y=(st ,...,n−1)
{(x, y) ∈ Dt+1 : x = {xi}, i = (0, . . . , Kt+1)}

(12)

These exemplar memories will be used as a part of the training data for the CNN
model, as presented in Section 3.2.

3.2. End-to-End CNN Model with Loss Combination for Continual Learning

Equation (13) shows learning without forgetting deployed for the CNN model with
a logistic loss function for data D = {(x, y); x = ∪xi; i = (1, C); y = (0, . . . , st, . . . , N)}
(obtained from the source data Dt and the target data Dt+1), as presented in Equation (13):

L = − ∑
(x,y)∈D

{
N

∑
y=st

(δy=yi log(gy(xi))) + δy 6=yi log(1− gy(xi)) +
st−1

∑
y=0

(qy
i log(gy(xi))) + (1− qy

i )log(1− gy(xi))} (13)

where {(x, y) (y = (0, 1, . . . , st − 1)}) are training images of the old classes and {(x, y)
(y = (st, . . . , N)}) are training images of the new classes.

In this study, our proposed CNN framework for continual learning contains parallel
CNN models:

• The CNN t model is trained on the previous dataset. The FC layer of the CNN t model
is equal to the label number st of the DM

t memory;
• The extension model of CNN t called CNN t+1 has the outputs N = st + zt+1 for the

NC case and N = st + zt+1 − kt+1 for the NCI case.

The optimal strategy for our continual learning framework is presented in Equation (14).
It is the optimal combination of the loss functions of CNN t (LCNNt ) and CNN t+1 (LCNNt+1 )
models.

Lt+1 = (1− α)LCNNt + αLCNNt+1 (14)

In Equation (14), the loss function of the previous CNN model is Lold (Lold = LCNNt )
and the new one is Lnew (Lnew = LCNNt+1). They are related to each other through a
hyperparameter α, which is also considered in our experiments. Although this formula
nearly looks like an optimization function of the LwF method in [7], the details of our
components are not similar to this. In [7], the authors blocked all parameters of the old
model and created a shared network to balance the weights between the old model and
the new one. Moreover, the old data do not participate in retraining the new model. In
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our work, we do not block the CNN t network. The deepest layers of the CNN t model are
frozen during fine-tuning on the top layers (the layers before the FC layer). Furthermore,
our strategy for data storage is different from the LwF method. In our research, we pass
Dold to the CNN t network with the loss function Lold, as illustrated in Equation (15):

Lold = LCNNt = −
CNN t

∑
(xi ,yi)∈Dold

{
st−1

∑
y=0

(Py
i log(gy(xi))) + (1− Py

i )log(1− gy(xi))} (15)

where the sub-dataset for fine-tuning the CNNt model is Dold = DM
t for the NC case and

Dold = DM
t ∪D

(1)
t+1 for the NCI scenario.

For the element Lnew = LCNNt+1 , it is different from the loss function of the iCaRL
method [22] that is shown in Equation (13). In this, the authors used the output of the
CNN t (qy

i ) for calculating the samples in Dt+1. In this work, we apply the ground-truth
samples Py

i in Dold. In addition, the method of [22] only concentrates on the Lnew element,
and our study balances the Lold part and the Lnew part. The remaining part of the loss
function is composed of two elements, as illustrated in Equation (16):

Lnew = LCNNt+1 = −
CNN t+1

∑
(xi ,yi)∈Dnew

{
N

∑
y=st

(δy=yi log(gy(xi))) + δy 6=yi log(1− gy(xi)) +
st−1

∑
y=0

(Py
i log(gy(xi))) + (1− Py

i )log(1− gy(xi))} (16)

where the sub-dataset Dnew for the NC incremental data is presented in Equation (17):

Dnew = DM
t ∪Dt+1 =

{
DM(1)

t , y = (0, . . . , st − 1)
Dt+1, y = (st, . . . , N − 1)

(17)

Additionally , the sub-dataset Dnew for the NCI data is indicated in Equation (18):

Dnew = DM
t ∪Dt+1 =


DM(1)

t , y = (0, . . . , st − kt+1 − 1)

DM(2)
t ∪D(1)

t+1, y = (st − kt+1, . . . , st − 1)

D(2)
t+1, y = (st, . . . , N − 1)

(18)

In both cases of NC and NCI, the continual learning CNNs utilize two inputs: an
incremental dataset and a new dataset. They output a reconstructed buffer memory and
the fine-tuned CNN model.

4. Experimental Results

In this section, we first investigated the efficiency of our memory reconstruction strat-
egy. The experiments for this were set in two scenarios: (1) using the network architecture
of iCaRL in [22] and our proposed memory reconstruction strategy (random-sample mem-
ory), and (2) using the proposed architecture with loss combination of CNN models and
random-sample memory (as shown in Figure 1). The results of the first scenario were
compared with those of iCaRL method to show the better performance of our memory
reconstruction strategy in comparison with iCaRL. In the second scenario, the performance
of our memory reconstruction strategy with loss combination was evaluated with the
different cases of the α coefficient in Formula (14). Based on this, the best α value was
chosen for further comparative evaluations with other SOTA methods.

Secondly, the two classification strategies the end-to-end method and the discrete
method were deployed in two cases of NC and NCI with two data protocols: (i) KinectLeap-
Creative Senz3D (Figure 2a) and (ii) Creative Senz3D-KinectLeap (Figure 2b):

• End-to-end method: Resnet18 was applied to the entire architecture from the first
layer to the last layer (FC layer) of both the training and testing phases.

• Discrete method: For the training stage, Resnet18 is an end-to-end system, but for the
testing stage, Resnet18 was only used as a feature extractor and KNN was utilized as
a classifier.
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Figure 2. Two data protocols are used for both NC and NCI evaluations: (a) KinectLeap-Creative
Senz3D protocol and (b) Creative Senz3D-KinectLeap protocol.

The experiments were conducted at different memory sizes and numbers of classes in
the CIFAR-10, CIFAR-100, and CORE-50 datasets. The memory size with the best result
was chosen for the evaluation of the continual learning of NC and NCI cases. The proposed
framework for continual learning was also evaluated and compared with other SOTA
methods. The evaluation schemes were written in Python on a Pytorch deep learning
framework and run on a workstation with a NVIDIA GPU 11G. The optimal function was
stochastic gradient descent (SGD). The learning rate (lr) was equal to 2.0 and automatically
reduced after each 30 epochs. Resnet18 was used as the backbone model.

4.1. Datasets and Protocols
4.1.1. Datasets

Five datasets, including CIFAR-10 and CIFAR-100 [34], CORE-50 [35], KinectLeap [36],
and Creative Senz3D [37], were used in the experiments to demonstrate the effectiveness of
our method. CIFAR-10 consists of 10 classes with 6000 color images of 32× 32 resolution for
each class. CIFAR-100 contains 100 classes with 600 images for each class. The 100 classes
in the CIFAR-100 were grouped into 20 superclasses. For example, a superclass insect
includes the classes (bee, beetle, butter f ly, caterpillar, cockroach) . Each image of a class
has two labels: one indicates the class, and the other presents the superclass to which it
belongs. CORe50 has 50 domestic objects belonging to 10 categories: plug adapters, mobile
phones, scissors, light bulbs, cans, glasses, balls, markers, cups, and remote controls. The
classification can be performed at the object level with 50 classes or at the category level with
10 classes. The first task is much more challenging because objects of the same category are
very difficult to distinguish in certain poses. In this work, the experiments were conducted
with the first task. KinectLeap includes 1400 gestures performed by 14 different people,
each performing 10 different gestures repeated 10 times each. The Creative Senz3D dataset
contains different static gestures acquired with the Creative Senz3D camera. Four different
people performed the gestures, each repeating 11 different gestures 30 times for a total of
1320 samples. For each sample, color, depth, and confidence frames are available. In our
work, the color frames were utilized for the experiments.

In this work, two datasets, CIFAR-100 and CORE-50, were utilized for evaluating
the case of NC continual learning. These datasets are the most challenging in the field of
continual learning. Several advanced methods use them for incremental learning evaluation.
KinectLeap and Creative Senz3D are the most commonly used datasets in the field of hand
gesture recognition. Ten classes of KinectLeaps (DKinectLeap = {Gj, j = (1, . . . , 10)}) and
eleven classes of Creative Senz3D (DCreativeSenz3D = {Gj, j = (1, . . . , 11)}) were used to
evaluate both cases of NC and NCI. The experimental protocols deployed for these datasets
are presented in detail in the next section.
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4.1.2. Data Protocols

For NC evaluation: two benchmark continual learning datasets, CIFAR-100 and
CORE-50, were individually utilized for this evaluation. The dataset contains P classes,
P = 100 for CIFAR-100 and P = 50 for CORE-50. We equally divided each dataset into T
subsets (T = 10). Thus, class labels in incremental datasets (zt = P/T, t = 0, . . . , T− 1) are
independent of each other. All images of the first category s0 = z0 (e.g., s0 = 10 and s0 = 5
for CIFAR-100 and CORE-50, respectively) were used for training and testing the first CNN
model. The classes for the incremental dataset at an instance in time were st+1 = st + zt+1,
(t = 1, . . . , T− 1), with st of the CIFAR-100 dataset at (20, 30, . . . , 100), and st of the CORE-50
dataset at (10, 15, 20, . . . , 50). At an instance in time, we applied the “leave-one-subject-out”
method [13] for data splitting in the training and testing phases of a continuous learning
CNN model.

Two published hand gesture datasets, KinectLeap and Creative Senz3D, contain
categories with various hand images . Both datasets were used to evaluate our incremental
learning method in both the NCI and NC types. Because five hand postures (G1, G2, G3,
G5, and G9) of the KinectLeap dataset are similar to those of the Creative Senz3D dataset
(G4, G6, G10, G1, and G11), we divided the KinectLeap dataset into two parts, as shown in
Equation (19):

DKL = D1
KL ∪ D2

KL =

{
D1

KL = G4 ∪ G6 ∪ G7 ∪ G8 ∪ G10

D2
KL = G1 ∪ G2 ∪ G3 ∪ G5 ∪ G9

(19)

Creative Senz3D is also separated into two subsets, as shown in Equation (20):

DZen = D1
Zen ∪ D2

Zen =

{
D1

Zen = G4 ∪ G6 ∪ G10 ∪ G1 ∪ G11

D2
Zen = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 ∪ G9

(20)

Based on these divisions, the categories of D2
KL are similar to those of D1

Zen, and
some pairs of hand gestures in D2

KL and D1
Zen are similar (G1–G4, G2–G6, G3–G10, G5–G1,

and G9–G11). The classes of D1
KL are different from those of D2

KL. Thus, we deployed
two evaluation protocols, as shown in Figure 2, in which the incremental classes were
divided into three parts. In order to compare the cross-evaluation between the datasets, we
deployed the scenarios for the NC evaluation as follows:

• KinectLeap was first used (Figure 2a). The incremental datasets Dt(t = 0, . . . , 2) were
consequently implemented by D1

KL, D2
KL ∪ D1

Zen, and D2
Zen.

• The first incremental dataset belongs to Creative Senz3D, as illustrated in Figure 2b. It
has three incremental folds of Dt(t = 0, . . . , 2): D2

Zen, D1
Zen ∪ D2

KL, and D1
KL.

For NCI evaluation: the experiments were deployed for KinectLeap and Creative
Senz3D in the following two cases:

• KinectLeap was utilized in the previous dataset Dt = DKL = D1
KL ∪ D2

KL (Figure 2a),
and Creative Senz3D is an incremental dataset: Dt+1 = DZen = D1

Zen ∪ D2
Zen.

• Creative Senz3D was utilized in the previous dataset Dt = DZen = D2
Zen ∪ D1

Zen
(Figure 2b), and KinectLeap is an incremental dataset: Dt+1 = DKL = D2

KL ∪ D1
KL.

4.2. Efficiency Evaluation of the Memory Reconstruction Strategy

In this evaluation, two experimental datasets, CIFAR-100 and CORE-50, were utilized.

4.2.1. Scenario 1: Using the iCaRL Architecture with Random-Sample Memory

The solution of using the iCaRL architecture in [22] and our proposal of random
sample selection for memory is named RiCaRL (Random iCaRL). We compared RiCaRL
with the mean-sample method of iCaRL. The comparative results are shown in scenarios
with different memory sizes (1000, 2000, 3000, and 4000) and class number (CIFAR-100
includes the arithmetic progression from 10 to 100 with a step of 10; CORE-50 contains
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an arithmetic sequence from 5 to 50 with a deviation of 5). Tables 1 and 2 present the
experimental results for the CIFAR-100 and CORE-50 datasets, respectively. In general, the
recognition accuracy obtained by the RiCaRL method in all experimental cases is higher
than that of the iCaRL method.

Table 1. Comparison of gesture recognition accuracy (%) between random-sample method (RiCaRL)
and mean-sample solution (iCaRL) at different memory sizes and task sizes of the CIFAR-100 dataset.
The deviation values between RiCaRL and iCaRL are shown under the uparrow.

Task Size Memory Size = 1000 Memory Size = 2000 Memory Size = 3000 Memory Size = 4000
iCaRL RiCaRL (↑) iCaRL RiCaRL (↑) iCaRL RiCaRL (↑) iCaRL RiCaRL (↑)

10 82.18 86.02 3.84 85.8 88.1 2.3 86.19 88.14 1.95 87.92 88 0.08
20 73.02 74.97 1.95 75.35 76.85 1.5 75.69 78.51 2.82 76.25 80 3.75
30 68.05 70.78 2.73 70.23 72.4 2.17 71.23 75.81 4.58 71.66 76.03 4.37
40 62.71 64.07 1.36 64.52 66.8 2.28 66.47 68.79 2.32 66.52 70.4 3.88
50 57.08 60.52 3.44 61.04 62.06 1.02 61.29 64.62 3.33 62.28 65.84 3.56
60 54.39 57.33 2.94 57.55 59.02 1.47 58.37 60.18 1.81 58.91 62.08 3.17
70 51.21 53.46 2.25 54.96 56.14 1.18 55.61 58.43 2.82 56.92 60.52 3.6
80 48.47 50.77 2.3 51.56 52.6 1.04 52.83 54.15 1.32 53.41 55.72 2.31
90 44.96 47.81 2.85 48.57 50.14 1.57 50.96 52.39 1.43 51.88 54.8 2.92
100 41.19 43.65 2.46 45.93 47.24 1.31 47.11 48.68 1.57 49.19 49.48 0.29

Table 2. Comparison of gesture recognition accuracy (%) between random-sample method (RiCaRL)
and mean-sample solution (iCaRL) at different memory sizes and task sizes of the CORE-50 dataset.
The deviation values between RiCaRL and iCaRL are shown under the uparrow.

Task Size Memory Size = 1000 Memory Size = 2000 Memory Size = 3000 Memory Size = 4000
iCaRL RiCaRL (↑) iCaRL RiCaRL (↑) iCaRL RiCaRL (↑) iCaRL RiCaRL (↑)

5 95.24 98.06 2.82 100 100 0 100 100 0 100 100 0
10 92.79 95.61 2.82 99.08 98.74 −0.34 98.47 99.36 0.89 98.21 99.75 1.54
15 89.32 91.52 2.2 91.69 93.48 1.79 92.09 96.16 4.07 93 98.84 5.84
20 82.07 84.29 2.22 85.12 88.13 3.01 87.39 92.29 4.9 89.68 96.77 7.09
25 73.5 77.65 4.15 79.64 83.16 3.52 81.95 88.46 6.51 85.99 94.1 8.11
30 67.39 71.14 3.75 73.63 78.93 5.3 77.58 84.21 6.63 81.47 89.17 7.7
35 63.29 67.37 4.08 69.8 74.02 4.22 72.31 81.39 9.08 78.86 90.19 11.33
40 58.19 62.42 4.23 65.03 68.34 3.31 70.08 78.64 8.56 76.3 89.99 13.69
45 54.71 59.47 4.76 61.034 64.32 3.286 67.81 73.63 5.82 73.51 86.49 12.98
50 48.56 53.37 4.81 57.491 59.82 2.329 61.79 71.19 9.4 71.05 84.87 13.82

In Table 1, at a memory size of 1000, the average increase in the recognition accuracy
of our solution RiCaRL compared with iCaRL is 2.61%. The results at other memory sizes
of 2000, 3000, and 4000 are 1.58%, 2.395%, and 2.793%, respectively. It can be seen that the
highest deviation in the accuracy between RiCaRL and iCaRL belongs to the memory size
of 4000, with the largest one being 4.37% at 30 classes. The results for the CORE-50 dataset
in Table 2 show that the average increase in the recognition accuracy of the RiCaRL method
compared with iCaRL is 3.58% at a memory size of 1000. The results for other memory
sizes of 2000, 3000, and 4000 are 2.64%, 5.59%, and 8.21%, respectively. In comparison with
the CIFAR-100 dataset, the results for the CORE-50 dataset are higher in all experiments,
and the highest variation in the accuracy between RiCaRL and iCaRL also belongs to the
memory case of 4000, with the biggest one being 13.82% at 50 classes.

From the above experimental analysis on both the CIFAR-100 and CORE-50 datasets,
we see that, as the memory size increases, the gesture recognition accuracy also climbs
up at all task sizes for both methods of iCaRL and RiCaRL. This shows that adding more
samples at each step of incremental learning will be helpful for leveraging the knowledge
from source tasks to target tasks. Accordingly, the performance of gesture recognition
will be improved. In the experiments, the memory size was increased from 1000 to 4000.
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At the maximum size of 4000, the perfect recognition accuracy of 100% was obtained for
the task size of 5. When the task size increases, the percentage rate of accuracy decreases.
This happens obviously in the classification problem. However, what we want to show
through these results is that the memory size of 4000 is a reasonable choice for having high
recognition accuracy (71.055% for iCaRL and 84.87% for RiCaRL). It ensures the balance
between memory capacity and recognition accuracy. The larger the memory capacity, the
more computing power and storage space there are. This is not suitable for real-world
applications. In the next evaluations, we apply a random-sample memory size of 4000 for
the experiments.

In addition, the higher experimental results of our RiCaRL method compared with
iCaRL prove the important role of random sample selection for memory reconstruction in
continual learning.

4.2.2. Scenario 2: Using the Incremental Architecture of CNN Models with Loss
Combinations and Random-Sample Memory

The recognition accuracy of the proposed architecture with loss combination and
random-sample memory (presented in Figure 1) was first evaluated on different coefficients
of α. Tables 3 and 4 show the recognition accuracy obtained at a memory size of 4000. The
learning rate was 2.0 and then reduced after 30 epochs. The values of α were tested at 0.25,
0.5, and 0.75.

Table 3. The recognition results (%) of the RLC-Resnet method on the CORE-50 dataset with different
α coefficients of 0.25, 0.5, 0.75; the task size was 5; and the memory size was 4000.

Alpha/Task Size 0.25 0.5 0.75

5 99.97 100 99.93
10 99.88 100 99.78
15 98.97 99.40 99.00
20 97.02 99.15 97.10
25 95.22 97.79 94.57
30 89.35 96.10 89.14
35 91.16 94.48 90.10
40 89.98 92.36 88.74
45 87.72 91.55 86.55
50 85.21 88.22 84.51

Table 4. The recognition results (%) of the RLC-Resnet method on the CIFAR100 dataset with different
α coefficients of 0.25, 0.5, 0.75; the task size was 5; and the memory size was 4000.

Alpha/Task Size 0.25 0.5 0.75

10 87.50 88.92 89.70
20 81.05 82.25 83.05
30 75.13 77.86 77.86
40 69.35 72.72 70.85
50 65.56 66.89 66.60
60 61.56 64.58 62.65
70 58.41 61.77 60.74
80 53.75 57.07 56.55
90 53.11 54.78 55.55

100 48.32 52.56 50.18

It can be seen from Table 3 that the best results belong to the α value of 0.5 at all task
sizes in the CORE-50 dataset. This is almost the same for the CIFAR-100 dataset (in Table 4),
except for the task sizes of 10, 20, and 90, with the best ones belonging to α = 0.75. From
these observations, we chose an α value of 0.5 for the experiments in the next sections.

The experimental results shown in Tables 3 and 4 prove the efficiency of using the
incremental architecture of CNN networks with loss combinations and random-sample
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memory. In comparison with the RiCaRL method, it has higher recognition rates. At α = 0.5,
memory size = 4000, and maximum task sizes of CORE50 and CIFAR-100, the results are
88.22% and 52.56%, respectively. These percentages are higher than the ones of RiCaRL
(presented in Tables 1 and 2), with 84.87% for CORE50 and 49.48% for CIFAR-100. These
results indicate that the combination of losses in training the end-to-end architecture of
Resnet networks (shown in Figure 1) helps to find a compromise between minimizing
LCNNt and minimizing LCNNt+1 , with the extent of compromise chosen by α = 0.5.

4.3. Evaluations with NC Type

In this section, two classification strategies are deployed: (1) end-to-end Resnet18
classification, and (2) a discrete method with a Resnet18 feature extractor and KNN classifier.
The first strategy was implemented in [7,22,38] with the LwF, iCaRL, and AOP methods,
respectively. In this work, we compare these methods with the solutions named RiCaRL-
Resnet (using the proposed memory reconstruction strategy and Resnet backbone as in [7]
or [22]) and RLC-Resnet (using the proposed memory reconstruction strategy and loss
combination of Resnet18 models). The second classification strategy is tested on three
solutions: iCaRL-Knn, RiCaRL-Knn, and RLC-Knn. The evaluations are deployed on the
four above datasets, and the data protocols are applied for the incremental NC type.

Firstly, the CORE-50 and CIFAR-100 datasets are used in the experimental results pre-
sented in Figures 3 and 4, respectively. Figures 3a and 4a show the results for the first classi-
fication strategy. The results for the second strategy are presented in Figures 3b and 4b. It
can be seen from these figures that the experimented methods show decreases in accuracy
as the number of classes increases. This happens for both classification strategies. However,
the RLC-Resnet method has the least reduction compared with the other methods. This
is indicated more clearly in the first classification strategy (Figures 3a and 4a) than in the
second one (Figures 3b and 4b). In a comparison between the two classification strategies
on the same experimental dataset, either CORE-50 or CIFAR-100, in general, we find that
the second strategy has higher accuracy than the first one for all class numbers. This
is remarkable for all solutions but not the RiCaRL-Resnet and RLC-Resnet methods. In
practical applications, an end-to-end architecture is more prefered than a discrete one. This
means that our end-to-end solutions, RiCaRL-Resnet and RLC-Resnet, balance both high
recognition accuracy and applicability.

Figure 3. The recognition accuracy for the CORE-50 dataset at different class numbers and methods
with two classification strategies: (a) End-to-end Resnet18 classifier, (b) Resnet18 feature extractor
and KNN classifier.
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Figure 4. The recognition accuracy for the CIFAR-100 dataset at different class numbers and methods
with two classification strategies: (a) End-to-end Resnet18 classifier, (b) Resnet18 feature extractor
and KNN classifier.

In a detailed analysis of the CORE-50 dataset, we see that, with the first classification
strategy (Figure 3a), the LwF method has the lowest accuracy, with 86.72% for 10 classes,
followed by the methods of iCaRL-Resnet, with 98.21%; AOP, with 98.42%; RiCaRL-Resnet,
with 99.75%; and the highest one, RLC-Resnet, with 100%. These results are reduced
significantly when the class number increases. For 50 classes, LwF gains only 54.49%, iCaRL-
Resnet gains 71.05%, AOP gains 80.53%, RiCaRL-Restnet and RLC-Resnet gains 84.87% and
88.22%, respectively. In the second classification strategy ((Figure 3b), iCaRL-Knn has the
lowest accuracy, with 99.43% and 87.74% for 10 and 50 class numbers, respectively. These
are 1.22% and 16.69% higher than those of the first strategy. RiCaRL-Knn and RLC-Knn
have higher accuracy compared with iCaRL-Knn, with 99.81% and 100% for 10 classes, and
86.05% and 91.03% for 50 classes, respectively. In comparison with the ones from the first
strategy, these numbers are only about 2% to 3% higher.

The experimental results on the CIFAR-100 dataset also show the same progress as
CORE-50. Figure 4a shows the results of the first classification strategy. It can be seen that
LwF has the lowest accuracy, with 84.51%, for 10 classes compared with the other four
methods: AOP (86.31%), iCaRL-Resnet (87.92%), RiCaRL-Resnet (88%), and RLC-Resnet
(88.92%). However, for 100 classes, these numbers decrease significantly to 39.04%, 51.38%,
49.19%, 49.48%, and 52.56% for each. In the second classification strategy (Figure 4b), we
see slight decreases in accuracy for 10 classes of iCaRL-Knn (86%) and RiCaRL-Knn (86.1%)
compared with the ones with the first strategy. However, RLC-Knn has a tiny increase in
accuracy of 89.9% in comparison with 88.92% for the first strategy. The modest reduction
also occurs in class numbers 20, 30, and 40 for the methods RiCaRL-Knn and RLC-Knn,
but for other class numbers, the trend increases slightly. For 100 classes, iCaRL-Knn has an
accuracy of 49.79%, while RiCaRL-Knn and RLC-Knn have accuracies of 54.74% and 58.32%,
respectively. These numbers are all higher than the those of the first classification strategy.

In addition to experiments on two commonly used databases for continual learning,
CORE-50 and CIFAR-100, the NC incremental evaluation is also investigated on two hand
gesture datasets: KinectLeap and Creative Senz3D. The memory size is 500 images, and
down-sampling of the buffer is implemented as presented in Section 3.2. The two data
protocols for these datasets are deployed as shown in Section 4.1. The learning rate (lr) is
equal to 2.0, which is then reduced after 30 epochs. Resnet18 is used as the backbone for
both models.

Table 5 shows the recognition accuracy of the various continual learning methods
with two data protocols: KinectLeapCreative Senz3D (the left side of Table 5), and Creative
Senz3D - KinectLeap (the right side of Table 5). In the first data protocol for NC type, three
tasks are set up, in which task 1 contains 5 classes, task 2 includes 10 classes, and task 3 has
16 classes (as shown in Figure 2a). The second data protocol for the NC type also has three
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tasks: task 1 contains 6 classes, task 2 has 11 classes, and task 3 has 16 classes (as indicated
in Figure 2b). All values of recognition accuracy in Table 5 are the averages of five runs,
with the standard deviation shown beside each result.

It can be seen from Table 5 that the RLC-Resnet method obtains a higher accuracy on
both data protocols, as well as the entire continual learning step of the tasks. For protocol
1, for tasks with 5, 10, and 16 classes, the RLC-Resnet method stably reduces from 94.06%
to 86.58%. For a task with five classes, it is slightly higher than the LwF, iCaRL, and AOP
methods. However, for tasks sizes of 10 and 16, it is extremely larger than the LwF method
and about 6% higher than the iCaRL method. This trend is similar to protocol 2, with
the RLC-Resnet method obtaining 98.61%, 92.37%, and 85.85% for task sizes of 6, 11, and
16, respectively.

The experimental results on KinectLeapCreative and Senz3Dshow with two data
protocols for the NC type show the prospect of our RLC-Resnet method for improving the
hand gesture recognition system on various hand gesture datasets of the NC type. This also
shows its meaning in the practical implementation of hand gesture recognition systems, in
which the hand gesture datasets belong mainly to the NC case.

Table 5. Hand gesture recognition results (%) of the RLC-Resnet method and other solutions on
two data protocols—KinectLeap-Creative Senz3D and Creative Senz3D-KinectLeap—for different
task sizes of the NC case. All values are averaged over five runtimes, and the standard deviation is
shown beside each result.

KinectLeap-Creative Senz3D

Task Size LwF iCaRL AOP RLC-Resnet

5 93.22 ± 0.5 92.37 ± 0.4 93.67 ± 0.5 94.06 ± 0.2
10 24.31 ± 0.8 84.00 ± 0.7 86.32 ± 0.4 90.25 ± 0.3
16 20.73 ± 0.7 80.88 ± 0.4 82.39 ± 0.5 86.58 ± 0.5

Creative Senz3D-KinectLeap

Task Size LwF iCaRL AOP RLC-Resnet

6 98.07 ± 0.5 97.91 ± 0.6 98.54 ± 0.5 98.61 ± 0.4
11 23.15 ± 0.7 86.57 ± 0.9 89.25 ± 1.1 92.37 ± 0.7
16 17.68 ± 0.8 79.59 ± 0.5 82.91 ± 0.7 85.85 ± 0.5

Further evaluations are shown in Table 6 to show the comparative results between the
RLC-Resnet method and other solutions on the CIFAR-10 and CIFAR-100 datasets. The
memory sizes and task sizes for these experiments are chosen as the best ones in [25], with
memory sizes of 5000 and 1000 and task sizes of 10 and 5 for the CIFAR-100 and CIFAR-10
datasets, respectively. In addition, in this work, we also evaluate the proposed solution
of RLC-Resnet on the CORE-50 dataset, with a memory size of 4000 and a task size of 5.
All experimental results are averaged over fifteen runtimes, and the standard deviation is
shown beside each result.

It can be seen that, in comparison with the results of the best methods—OCM [25],
with 81.09% for the CORE-50 dataset, and AOP [38], with 80.53% and 51.38% for the
CIFAR-10 and the CIFAR-100 datasets, respectively—the results obtained with our RLC-
Resnet method are higher, with 88.46%, 85.37%, and 53.84% for the CORE-50, CIFAR-10,
and CIFAR-100 datasets, respectively.
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Table 6. Recognition results in the NC case of different solutions and RLC-Resnet method on the
datasets of CORE-50 (5 tasks), CIFAR-10 (5 tasks), and CIFAR-100 (10 tasks). All values are averaged
over 15 runtimes, and the standard deviation is shown beside each result.

No Method CORE-50
Dataset (%)

CIFAR-10
Dataset (%)

CIFAR-100
Dataset (%)

1 iCaRL, 2017 [22] 71.28 ± 0.6 64.28 ± 0.9 50.29 ± 0.5

2 AGEM, 2018 [27] - 22.6 ± 0.7 6.5 ± 0.2

3 LwF, 2018 [7] 54.61 ± 0.7 31.16 ± 1.2 41.28 ± 0.7

4 GSS, 2019 [44] - 40.1 ± 1.4 17.4 ± 0.1

5 MIR, 2019 [45] - 41.0 ± 0.6 24.1 ± 0.2

6 ER, 2020 [48] - 44.3 ± 0.4 14.4 ± 0.9

7 GDumb, 2020 [43] 63.5 ± 0.5 36.0 ± 0.5

8 DER++, 2020 [30] - 54.7 ± 2.2 27.0 ± 0.7

9 ASER, 2021 [46] - 44.7 ± 1.2 27.1 ± 0.3

10 SCR, 2021, [47] - 64.1 ± 1.2 36.5 ± 0.2

11 IL2A, 2021 [28] - 58.2 ± 1.2 22.4 ± 0.2

12 Co2L, 2021 [49] 62.17 ± 0.5 58.8 ± 0.4 32.2 ± 0.5

13 OCM, 2022 [25] 81.09 ± 0.4 77.2 ± 0.5 42.4 ± 0.5

14 AOP, 2022 [38] 72.81 ± 0.5 80.53 ± 0.7 51.38 ± 0.6

15 RLC-Resnet (our) 88.46 ± 0.4 85.37 ± 0.6 53.84 ± 0.5

4.4. Evaluations with NCI Type

This evaluation is implemented on two hand gesture datasets. For the NCI type,
the data protocols and the optimization function are presented in detail in
Sections 3.1.2, 4.1.2 and 3.2. The memory size, learning rate, and Resnet18 model are
similar to the ones in the previous section. The task size is 16 for both data protocols:
KinectLeap-Creative Senz3D and Creative Senz3D-KinectLeap.

The continual learning methods of LwF, iCaRL, AOP, and RLC-Resnet are compared
with the original transfer learning of Resnet18 [33], as illustrated in Table 7. In the case
of the pre-trained Resnet model on KinectLeap dataset and testing on Creative Senz3D,
the recognition result is 30.38%. Compared with the continual leaning methods with Dt
being KinectLeap and Dt+1 being Creative Senz3D, this result is a little higher than that for
LwF (29.75% for the NC case and 30.25% for the NCI case) but much lower than that for
the iCaRL (80.88% for the NC case and 81.74% for the NCI case), AOP (81.67% for the NC
case and 83.03% for the NCI case), and RLC-Resnet (86.58% for NC and 88.21% for NCI
case) method. This also happens to the case of Dt with Creative Senz3D and Dt+1 with
KinectLeap. Transfer learning of ResNet18 obtains only 32.08% compare with LwF, with
28.56% and 30.26%; iCaRL, with 79.59% and 81.40%; AOP, with 80.46% and 82.34%; and
RLC-ResNet, with 85.85% and 87.91%, for the cases of NC and NCI, respectively.

The cross-dataset evaluation results of Resnet18 on two different datasets—KinectLeap
and Creative Senz3D—are much lower than the cases of training and testing ResNet on one
dataset. For KinectLeap, the recognition result of ResNet is 72%, and for Creative Senz3D,
the result is 72.04%. This is obvious in classification problems, in which cross-dataset
evaluation is much more challenging than using a unified dataset for evaluation. However,
when deploying these datasets for our continual learning method RLC-Resnet, the hand
gesture recognition results are higher than those of ResNet18. In the case of Dt being
KinectLeap and Dt+1 being Creative Senz3D, the recognition results are 86.58% for the NC
type and 88.21% for the NCI type. In the case of Dt being Creative Senz3D and Dt+1 being
KinectLeap, RLC-ResNet obtains 85.85% and 87.91% for NC and NCI, respectively. All
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values of recognition accuracy are the averages of five runs with the standard deviation,
shown beside each result.

Based on the above analysis of experimental results, we see that the RLC-Resnet
method not only outperforms other continual learning methods such as LwF, iCaRL, and
AOP but also is extremely higher than the cross-dataset evaluation of ResNet18.

Table 7. The recognition results (%) of the RLC-Resnet method and other solutions on two data
protocols of KinectLeap-Creative Senz3D and Creative Senz3D-KinectLeap in the NC and NCI cases
with a task size of 16 classes. All values are averaged over five running times, and the standard
deviation is shown beside each result.

Dt KinectLeap Creative Senz3D KinectLeap Creative Senz3D

Dt+1 Creative Senz3D KinectLeap KinectLeap Creative Senz3D

Resnet18 30.38 ± 0.2 32.08 ± 0.3 72.00 ± 0.3 72.04 ± 0.2

LwF NC 29.75 ± 0.3 28.56 ± 0.4 - -
NCI 30.25 ± 0.2 30.26 ± 0.6 - -

iCaRL NC 80.88 ± 0.4 79.59 ± 0.3 - -
NCI 81.74 ± 0.5 81.40 ± 0.6 - -

AOP NC 81.67 ± 0.6 80.46 ± 0.3 - -
NCI 83.03 ± 0.4 82.34 ± 0. - -

RLC-Resnet NC 86.58 ± 0.4 85.85 ± 0.3 - -
NCI 88.21 ± 0.2 87.91 ± 0.3 - -

In addition, Table 7 shows that the scenario of NCI incremental data obtains a little
higher accuracy than the NC type for a task size of 16 classes. For KinectLeap-Creative
Senz3D, the NCI type obtains 30.25%, 81.71%, 83.03%, and 88.21% for the LwF, iCaRL, AOP,
and RLC-Resnet methods, respectively. They are approximately 1% higher than those of the
NC type. For Creative Senz3D-KinectLeap, the results for NCI types are 30.26% for the LwF
method, 81.40% for the iCaRL method, 82.34% for AOP, and 87.91% for the RLC method.
The corresponding results for the NC type are 28.56%, 79.59%, 80.46%, and 85.85%.

From the above analysis of the experimental results, we see the efficiency of our
RLC-Resnet method in incremental learning on two different datasets: KinectLeap and
Creative Senz3D. Although these datasets have some similar labels for hand gestures, they
were captured by different camera types at distinctive environments. When deploying
these datasets for our RLC-Resnet method in both the NC and NCI types, the performance
of hand gesture recognition is remarkably improved in comparison with other methods
and even with a one-dataset evaluation of ResNet18. In addition, the higher recognition
performance of the NCI type compared with the NC type proves the efficiency of our
framework for continual learning, even for the more complex case of NCI. This result also
shows the meaning of adding source task samples with similar class labels to the target
task into the memory. This helps boost the performance of hand gesture recognition.

5. Conclusions

In this paper, an efficient solution for continual learning is proposed. It takes advantage
of the simplicity of the rehearsal-based approach but gains efficiency with two strategies:
(1) a random sample selection strategy for replay memory and (2) end-to-end continual
learning with a loss combination strategy. The first strategy helps avoid the overfitting
phenomenon commonly seen in rehearsal-based methods. The second one is useful for
reducing catastrophic forgetting in DNNs. The enhanced experiments are conducted on
various data distribution scenarios for standard datasets. Two popular datasets, CIFAR-100
and CORE-50, for lifelong learning are experimented with. Furthermore, two other common
datasets of hand gesture recognition are first utilized for evaluating the proposed improve-
ments in continual learning. These are the KinectLeap and Creative Senz3D datasets. In
this work, different classification strategies are also tested to prove the outperformance
of our proposal compared with the corresponding SOTA methods. Besides the positive
results, this work also has some limitations. It requires memory for storing samples at each



Electronics 2023, 12, 2265 19 of 21

step of incremental learning. The optimal size of memory depends on the experimental
dataset. As in this work, the reasonable memory size is 4000. In addition, the experiments
are only conducted on Resnet18 as the backbone. For further improvement in recognition
accuracy, other cutting-edge networks can take its place.

In the future, some enhancements can be applied to the proposed framework. A multi-
criteria strategy could be applied for memory reconstruction in continual learning. The
random-sample memory can be enhanced with additional criteria such as the intra-class
variation in source task and target task or the distance to the prototype. In order to apply
the proposed framework for hand gesture recognition and other fields in the future, more
experiments on various datasets of different fields should be implemented.
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