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Abstract: Training a generalized reliable model is a great challenge since sufficiently labeled data are
unavailable in some open application scenarios. Few-shot learning (FSL) aims to learn new problems
with only a few examples that can tackle this problem and attract extensive attention. This paper
proposes a novel few-shot learning method based on double pooling squeeze and excitation attention
(dSE) for the purpose of improving the discriminative ability of the model by proposing a novel
feature expression. Specifically, the proposed dSE module adopts two types of pooling to emphasize
features responding to foreground object channels. We employed both the pixel descriptor and
channel descriptor to capture locally identifiable channel features and pixel features of an image (as
opposed to traditional few-shot learning methods). Additionally, in order to improve the robustness
of the model, we designed a new loss function. To verify the performance of the method, a large
number of experiments were performed on multiple standard few-shot image benchmark datasets,
showing that our framework can outperform several existing approaches. Moreover, we performed
extensive experiments on three more challenging fine-grained few-shot datasets, the experimental
results demonstrate that the proposed method achieves state-of-the-art performances. In particular,
this work achieves 92.36% accuracy under the 5-way–5-shot classification setting of the Stanford
Cars dataset.

Keywords: few-shot learning; metric learning; image classification; attention mechanism; feature
representation

1. Introduction

Various studies show that deep learning techniques will fail to produce generalized
reliable models when annotations are limited or unavailable [1,2]. To this end, research
on training an effective recognition model with scarce data has attracted the attention of
researchers. This includes the following directions used to solve the dependence problem
on the data of deep learning and reduce the cost of data annotation. Semi-supervised
learning works together on labeled data and unlabeled samples. Active learning aims to
select the most valuable unlabeled samples for collection. Self-supervised learning uses
the structures or characteristics of unlabeled data to construct artificial labels to supervise
network learning, while few-shot learning (FSL) is committed to learning new problems
with only a few examples.

To tackle the few-shot learning task, the methods [3–6] based on metric learning were
developed. The general framework of metric learning has two modules [7]: the embedding
module and metric module. Samples are embedded into the vector space through the
embedding module, and the similarity score is given according to the metric module. For
the few-shot image classification task, the most recent research studies on metric learning
focus on feature descriptions and relation measurements.
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Traditional metric learning methods, such as ProtoNet [8] and MatchingNet [9], both
use image-level features to represent query images and support classes. The authors
propose that local features of an image in a compact image-level representation could
lose considerable discriminative information, which shows that deep local descriptors can
achieve better representation than image-level feature representations [10]. In order to
obtain more critical or stable feature representation in images, local feature descriptions
are increasingly being employed in few-shot image classification tasks [11]. Most methods
commonly adopt single-matric ways [12–15]. For instance, the idea of ProtoNet [8] is to
compare the Euclidean distance (the mean vector) between the query vector and each
supporting class prototype. CovaMNet [16] designs a covariance metric to measure the
similarities between query samples and support classes. Zhang et al. [14] propose a method
of using the Earth mover’s distance as a distance measure, which is originally used in the
field of image restoration.

Although the existing methods pay more attention to feature descriptions and relation
measurements, there exist some embedded vectors whose foregrounds in the sample are
not prominent, i.e., the background of the image is too messy, the sample has a small
foreground object, the foreground object is blocked, or only part of the object is displayed
in the image [17]. The existing metric learning method-embedded CNNs usually have
poor discriminative abilities since simple CNN structures cannot learn the corresponding
object features well if the foregrounds are not prominent in some images [8,9]. Since the
channel mappings to high-level features can be regarded as category-specific responses,
and different semantic responses are interrelated (i.e., some channels correspond to noisy
background regions, while in theory, those correspond to foreground objects in the image
deserve more attention), we paid more attention toward improving the discriminative
ability of the model by proposing a channel-level feature expression with a novel attention
module instead of improving the embedded network structure in our work. The major
contributions of this work are summarized as follows:

1. We propose a novel few-shot learning method based on double pooling squeeze and
excitation attention (dSE) in order to improve the discriminative ability of the model.
In order to improve the robustness of the model, we also designed a new loss function.

2. We propose a novel attention module (dSE), which adopts two types of pooling.
Different from the conventional few-shot learning methods employing image-level or
pixel-level features, we innovatively used the pixel-level and channel-level informa-
tive local feature description to represent each image with image-to-class measures.

3. Experiments on four common few-shot benchmark datasets with two different back-
bones demonstrate that our proposed method shows more excellent classification
accuracy compared to other state-of-the-art methods. More importantly, our results
on more challenging fine-grained datasets are superior to those of other methods.

The rest of this paper is organized as follows: the related works are discussed in the
next section. The details of the proposed approach are described in Section 3. Section 4
presents our experimental settings and performances. In Section 5, we analyze the experi-
mental results. The conclusions are presented in Section 6.

2. Related Work
2.1. Few-Shot Learning

In the past few years, considerable progress has been made in few-shot learning
methods, including meta-learning and metric learning. Regarding the few-shot learning
tasks, meta-learning refers to learning meta-knowledge from a large number of prior
tasks, using the previous prior knowledge to guide the model to learn faster. MAML [18]
can quickly adapt to new tasks with only a small amount of data through one or more
steps of gradient adjustments based on the initial parameters. SNAIL [19] formalizes
meta-learning as a sequence-to-sequence problem, using a new combination of temporal
convolution (TC) and attention mechanism. MetaOptNet [20] combines differentiable



Electronics 2023, 12, 27 3 of 16

quadratic programming solvers and different linear classifiers and has greater benefits than
the nearest neighbor method with a small increase in computational costs.

Metric-learning-based methods mainly compare feature similarities after embedding
image samples into shared feature spaces [6]. Koch et al. [12] designed a method to solve
the task of few-shot image classification by using the Siamese network [21–23] structure,
which created a new era. Reference [8] utilized a clustering method to find the prototype
of the category in the metric space. Simon et al. [13] reduced the dimension of each
category to a specific subspace by the truncated singular value decomposition (TSVD).
DeepEMD [14] divides the image into multiple blocks, and then introduces the Earth
mover’s distance (EMD), i.e., the best-matching method between the blocks of the two
images is found through linear programming. The relational network proposed by Sung
et al. [15] is transformed from a predefined fixed similarity measurement function to a
learnable nonlinear similarity measurement function trained by the neural network.

2.2. Attention Mechanism

Attention mechanism is widely used in natural language processing (NLP) and image
processing (CV), speech classification, and other different types of machine learning tasks.
A non-local neural network [24] obtains inspiration from the traditional non-local means
method, directly integrating the global information, rather than just stacking multiple
convolutional layers to obtain relatively global information. SENet [25] utilizes a feature
calibration mechanism for the network model, which can selectively magnify valuable
feature channels and suppress useless feature channels from the perspective of global
information. CBAM [26] infers the attention map along the two separate channels and
spatial dimensions, and multiplies the attention map with the input feature map for
adaptive feature refinement. Unlike previous efforts to capture context through multi-
scale feature fusion, Fu et al. [27] propose a dual attention network (DANet) to adaptively
integrate local features and their global dependencies.

Recent work [28] optimized the feature map by using the attention mechanism so that
it has the ability to adaptively adjust according to the task (query set image). Lim et al. [29]
present an attentional mechanism for object detection, which can focus on objects in images
and contain contextual information from the target layer. MoCA [30] shows that prototype
memory with an attentional mechanism can improve the quality of image synthesis, learn
interpretable visual concept clustering, and improve the robustness of the model.

3. Methodology
3.1. Problem Definition

Unlike conventional classification problems, the purpose of the few-shot classification
task is to learn a small number of labeled samples to recognize new classes.

Each few-shot classification task contains a support set S and a query set Q [31].
Formally, in the training phase, given the training data Dtrain, the task of few-shot learning
in each episode is usually considered an N-way–K-shot classification task, i.e., the support
set S ⊂ Dtrain contains N classes with K-labeled samples for each randomly selected class. S
can be expressed as S = {(x1, y1), (x2, y2), . . . , (xN×K, yN×K)}, where xi represents the i-th
sample and its corresponding label is yi, and yi ∈ {1, . . . , N}. The query set Q ⊂ Dtrain can
be expressed as Q = {(xN×K+1, yN×K+1), . . . , (xN×K+T , yN×K+T)}, where Q has T samples,
and xi represents an image, and its corresponding label is yi, yi ∈ {1, . . . , N}. Specifically,
in the training phase, S and Q have labels. In the testing phase, given the testing data Dtest,
the goal is to train a classifier that can accurately map the query samples Q ⊂ Dtest to the
corresponding labels with only a small number of samples S ⊂ Dtest.

We will introduce each module in more detail in the following sections. The framework
of our method is illustrated in Figure 1.
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Figure 1. The framework of few-shot learning based on dSE attention. Features obtained by a
backbone are expressed as pixel-level features and channel-level features, respectively. The channel-
level features are fed into a double pooling squeeze and excitation (dSE) attention module to obtain
the channel-level attention features, which, along with the pixel-level features, are input into a
similarity metric to obtain the predicted class probability. Lbi is defined to improve the robustness of
the model by making the best of the bi-directional selection relationship between queries and support
classes.

3.2. Multi-Feature-Embedded Representation

Most metric-learning methods usually employ simple neural networks to obtain
features. Considering that a simple CNN structure [10,11] cannot learn the corresponding
object features well if the foregrounds of some images are not prominent, the embedded
networks are improved [19]. Inspired by DN4 [12], we propose a channel-level dSE
attention module to extract the discriminative local features. The pixel-level and channel-
level feature descriptions are applied to represent each image.

3.2.1. Pixel-Level Feature Representation

Given an image X of query set Q, the feature vector Fq(X) can be expressed as a
H ×W × C tensor with a CNN.

Fq(X) ∈ RC×M, (1)

where C is the number of channels, H and W are the height and the width, respectively, and
M represents the product of the H and W. The meanings of C, H, W in the latter equation
are the same as those above, so we will not repeat them.

For the general N-way–K-shot classification task, each class in the support set includes
K samples. When given a certain support class Sj, j = {1, . . . , N}, the feature representation
FSj(X) can be regarded as:

FSj(X) ∈ RK×C×M, (2)

The feature vector Fq(X) can be regarded as a set of M local descriptors with C

dimensions [12,13]. Fq(X) can be denoted as F pixel
q (X):

F pixel
q (X) =

[
vpixel

1 , . . . , vpixel
M

]
∈ RC×M, (3)
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where vpixel
i represents the i-th pixel-level feature descriptor of a query image X. When

given a support class Sj, the feature representation FSj(X) can be denoted as F pixel
Sj

(X):

F pixel
Sj

(X) =
[
v̂pixel

1 , . . . , v̂pixel
KM

]
∈ RC×KM, (4)

where v̂pixel
i represents the i-th pixel-level feature descriptor of the support class Sj.

3.2.2. Channel-Level dSE Attention Module

Because each channel mapping to the high-level features can be regarded as a category-
specific response and different semantic responses are related to each other, the three-
dimensional feature vector Fq(X) can also be considered a set of C-local descriptors of M
dimensions. Fq(X) can be denoted as F channel

q (X):

F channel
q (X) =

[
vchannel

1 , . . . , vchannel
C

]
∈ RM×C, (5)

where vchannel
j represents the j-th channel-level feature descriptor of the query image X.

Accordingly, FSj(X) can be denoted as:

F channel
Sj

(X) =
[
v̂channel

1 , . . . , v̂channel
KC

]
∈ RM×KC, (6)

where v̂channel
j represents the j-th channel-level feature descriptor of the support class Sj.

We innovatively propose a novel attention module named double pooling squeeze
and excitation (dSE), which pays more attention to the channels that respond to objects and
favorable background features. The dSE is shown in Figure 2:
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dSE model. Attention maps shown by grad-cam activation describe the roles of the dSE model.

As illustrated in Figure 2, the first branch of the squeeze operation is employed to
compress the features from the spatial dimension H×W to obtain the global receptive field
of the vector to some extent, which represents the global distribution of the response on the
feature channel. The global pooling feature map Fap ∈ RC can be obtained as follows:

Fap =
1
M

H

∑
h=1

W

∑
w=1
F channel(X), (7)
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Average pooling tends to preserve the characteristics of the overall data and retain
more background information, while maximum pooling tends to learn the features of the
foreground object to a greater extent. By taking the point with the largest value in the local
receptive field, maximum pooling can learn the edge and texture structure of the image.
However, the maximum pooling approach ignores some features of valid background
information. In order to better preserve the texture features and background features of the
image, we applied both the global maximum pooling and the global average pooling in
dSE. The max pooling feature map Fmp ∈ RC can be obtained as follows:

Fmp = MaxF channel(X), (8)

where F channel(X) denotes F channel
q (X) and F channel

Sj
(X). The excitation operation uses

linear layers and element-wise addition and generates the weight for each feature channel
by introducing normalized weight parameters v between 0 and 1 through a sigmoid
activation function. In Figures 1 and 2, linear layers consist of two fully connected layers.
The first fully connected layer is followed by RELU. When entering the query image, the
weights are defined as follows:

vq = [v1, . . . , vC], (9)

Accordingly, the support class weights are formulated as:

vSj =
[
v′1, . . . , v′KC

]
, (10)

The original features are recalibrated on the channel dimension through weighted
features. The query feature vector Lchannel

q and support class feature vector Lchannel
Sj

can be
expressed as:

Lchannel
q =

[
v1vchannel

1 , . . . , vCvchannel
C

]
=
[
vchannel

1 , . . . , vchannel
C

]
∈ RM×C, (11)

Lchannel
Sj

=
[
v′1v̂channel

1 , . . . , v′KC v̂channel
KC

]
=
[
ṽchannel

1 , . . . , ṽchannel
KC

]
∈ RM×KC, (12)

where vchannel
j denotes the j-th channel-level feature descriptor of query image q, and ṽchannel

j
represents the j-th channel-level feature descriptor of the support class.

3.3. Similarity Metric

The classification involves measuring the similarity between the query sample and
support set S, and assigning the most similar category in the support set to the query.

The cosine similarity metric method on the pixel-level is defined as follows:

Opixel
i = cos

(
vpixel

i , v̂pixel
j

)
=

(
vpixel

i

)T
v̂pixel

j∥∥∥vpixel
i

∥∥∥‖ v̂pixel
j

∥∥∥ , (13)

where vpixel
i is the i-th channel-level feature descriptor of the query image, i ∈ [1, . . . , M];

and v̂pixel
j is the j-th channel-level feature descriptor of the support category, j ∈ [1, . . . , MK].

For each vpixel
i , select a v̂pixel

j that is most similar to vchannel
i , and finally obtain the feature

description of the support set category. The cosine similarity dpixel(xi, yj) between the
query image xi and category yj in the support set S is defined as:

dpixel(xi, yj) =
M

∑
i=1

Topθ(Opixel
i ), (14)

where Topθ(·) is the largest element selected in each row, and we take θ as 1.
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After obtaining the channel-level feature representation by the dSE of the query sample
and the support category, the correlation matrix Ochannel

i is calculated as:

Ochannel
i = cos

(
vchannel

i , ṽchannel
j

)
=

(
vchannel

i

)T
ṽchannel

j∥∥∥vchannel
i

∥∥∥‖ ṽchannel
j

∥∥∥ , (15)

where vchannel
i is the i-th channel-level feature descriptor of the query sample, i ∈ [1, . . . , C];

ṽchannel
j is the j-th channel-level feature descriptor of the support category, j ∈ [1, . . . , CK].

Sum the selected descriptors of the C channel as the channel-level similarity between the
query image and the support class yj:

dchannel(xi, yj) =
C

∑
i=1

Topθ(Ochannel
i ), (16)

where Topθ(·) is the largest θ element selected in each row; we take it as 1.

3.4. The Loss Function

The loss function is defined as:

Lbi = −λ1 log P
xi↔yj
pixel − λ2 log P

xi↔yj
channel , (17)

where
P

xi↔yj
pixel = P

xi→yj
pixel (y = yj|xi) · P

yj→xi
pixel (x = xi|yj), (18)

P
xi→yj
pixel (y = yj|xi) =

exp(−dpixel(xi, yj))

N
∑

n=1
exp(−dpixel(xi, yn))

, (19)

and P
yj→xi
pixel (x = xi|yj) =

exp(−dpixel(yj, xi))

N′

∑
i=1

exp(−dpixel(yn, xi))

, (20)

where y ∈ Rk′ represents the ground truth labels of query images, and ŷ ∈ RN′ is the one-
hot encoding of y. N′ = NK′, N and K′ denote the numbers of the images and categories in
the query set, respectively. j takes the value of the number of categories N. The polynomial
distribution P(y = yj|xi) is calculated by the similarity metric of the softmax operation on

the pixel-level and channel-level metric results. K′ is set to 15 in our experiment. P
xi↔yj
channel is

calculated with the same method as P
xi↔yj
pixel .

4. Experiments

In this section, we conduct extensive experiments to validate the proposed method.
we first describe the datasets and the specific settings of experiments. Then, we evaluate
and compare the classification performance of our method with other current methods.
Finally, ablation experiments were conducted to prove the effectiveness of each component
in our method further.

4.1. Datasets

We mainly performed our experiments on four common few-shot classification datasets,
i.e., miniImageNet, tieredImageNet, CIFAR-FS, FC100, and three fine-grained benchmark
datasets, i.e., Stanford Dogs, Stanford Cars, and CUB-200. All images are RGB-colored.
CIFAR-FS and FC100 are 32 × 32 pixels, and the rest were uniformly resized to 84 × 84 pix-
els by rescaling and center-clipping.
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4.2. Implementation Details

During the process of training, we employed the episode training mechanism to
perform the end-to-end training. We set the training epochs to 50, and randomly sampled
100,000 episodes in each epoch. Moreover, we set the batch size to 4 with an initial learning
rate of 5 × 10−3, reduced by half for every 10 epochs. The validation set was only used
to track model generalization in all experiments. In the testing process, we evaluated our
model of the average accuracy in the corresponding 95% confidence interval based on an
average of 1000 tasks. To make a fair comparison with other methods, we employed the
Conv-64F and ResNet-12 networks as our embedding network.

4.3. Experiments on Common Few-Shot Classification Datasets
4.3.1. Experimental Results on miniImageNet

We compare our approach with several state-of-the-art approaches reported in miniImageNet,
as illustrated in the first column of Table 1. The embedded networks are illustrated
in the second column of Table 1, e.g., Conv-64F and ResNet-12. The third and fourth
columns show the classification accuracies on 5-way–1-shot and 5-way–5-shot tasks with
95% confidence intervals of miniImageNet, respectively. When the model uses the ResNet-
12 backbone, our method outperforms the other methods both under the 5-way–1-shot
and 5-way–5-shot settings. When adopting a shallow-embedded backbone, Conv-64F,
our method can still achieve extraordinarily competitive results. Specifically, the accuracy
of our method is improved by 10.00%, 8.23%, 8.18%, and 7.64% when compared with
ProtoNet, CovaMNet, DN4, and DSN under the 5-way–1-shot settings, respectively.

Table 1. Comparison of the state-of-the-art methods with 95% confidence intervals on miniImageNet.
The highest and second highest results are shown in red and blue bold font for easy observation and
analysis.

Method Backbone 5-way–1-shot 5-way–5-shot

BOIL [32] Conv-64F 49.61 ± 0.16 66.45 ± 0.37
ProtoNet [8] Conv-64F 49.42 ± 0.78 68.20 ± 0.66

CovaMNet [16] Conv-64F 51.19 ± 0.76 67.65 ± 0.63
DN4 [10] Conv-64F 51.24 ± 0.74 71.02 ± 0.64
DSN [13] Conv-64F 51.78 ± 0.96 68.99 ± 0.69
FEAT [33] Conv-64F 55.15 ± 0.20 71.61 ± 0.16

OURS Conv-64F 59.42 ± 0.51 77.36 ± 0.73
PSST [34] ResNet-12 64.05 ± 0.49 80.24 ± 0.45

ConstellationNet [5] ResNet-12 64.89 ± 0.23 79.95 ± 0.37
FRN [35] ResNet-12 66.45 ± 0.19 82.83 ± 0.13

DeepEMD [14] ResNet-12 65.91 ± 0.82 79.74 ± 0.56
BML [36] ResNet-12 67.04 ± 0.63 83.63 ± 0.29

Meta DeepBDC [37] ResNet-12 67.34 ± 0.43 84.46 ± 0.28
OURS ResNet-12 69.64 ± 0.44 87.95 ± 0.53

4.3.2. Experimental Results on tieredImageNet

Table 2 displays the results of our method and other classic or outstanding methods
on the tieredImageNet dataset. It can be seen that our method outperforms all the other
state-of-the-art methods on both the 5-way–1-shot and the 5-way–5-shot tasks. In particular,
when the model employs a deeper ResNet-12 as the embedding backbone, our method
achieves 16.26%, 7.86%, 4.09%, and 3.36% improvements over RelationNet, DSN, DeepEMD,
and DMF, on the 5-way–1-shot task, respectively. When adopting a shallow backbone
network, Conv-64F as a feature extractor, our method achieves 9.99%, 8.05%, and 5.11%
improvements over ProtoNet, CovaMNet, and DN4 on the 5-way–5-shot task, respectively.



Electronics 2023, 12, 27 9 of 16

Table 2. Comparison of the state-of-the-art methods with 95% confidence intervals on tieredImageNet.
The highest and second highest results are shown in red and blue bold font for easy observation and
analysis.

Method Backbone 5-way–1-shot 5-way–5-shot

ProtoNet [8] Conv-64F 48.67 ± 0.87 69.57 ± 0.75
BOIL [32] Conv-64F 49.35 ± 0.26 69.37 ± 0.12
DN4 [10] Conv-64F 53.37 ± 0.86 74.45 ± 0.70

CovaMNet [16] Conv-64F 54.98 ± 0.90 71.51 ± 0.75
IEPT [38] Conv-64F 58.25 ± 0.48 75.63 ± 0.46

OURS Conv-64F 61.47 ± 0.83 79.56 ± 0.64
RelationNet [15] ResNet-12 58.99 ± 0.86 75.78 ± 0.76

DSN [13] ResNet-12 67.39 ± 0.82 82.85 ± 0.56
MixtFSL [39] ResNet-12 70.97 ± 1.03 86.16 ± 0.67

FEAT [33] ResNet-12 70.80 ± 0.23 84.79 ± 0.16
DeepEMD [14] ResNet-12 71.16 ± 0.87 83.95 ± 0.58

RENet [4] ResNet-12 71.61 ± 0.51 85.28 ± 0.35
DMF [40] ResNet-12 71.89 ± 0.52 85.96 ± 0.35

OURS ResNet-12 75.25 ± 0.64 89.21 ± 0.46

4.3.3. Experimental Results on CIFAR-FS

The experimental results of CIFAR-FS are listed under the 5-way–1-shot and 5-way–
5-shot cases in Table 3. Our proposed method using the Conv-64F backbone achieves
significant improvements compared with the other methods and exceeds the others by at
least 4.40% and 4.86% in the 1-shot and 5-shot cases, respectively. When it comes to deeper
networks, ResNet-12, our approach is superior to the previous excellent methods under the
1-shot and 5-shot settings.

Table 3. Comparison of state-of-the-art methods with 95% confidence intervals on CIFAR-FS. The
highest and second highest results are shown in red and blue bold font for easy observation and
analysis.

Method Backbone 5-way–1-shot 5-way–5-shot

ProtoNet [8] Conv-64F 55.50 ± 0.70 72.00 ± 0.60
ConstellationNet [5] Conv-64F 69.30 ± 0.30 82.70 ± 0.20

OURS Conv-64F 69.70 ± 0.42 87.56 ± 0.44
MetaOpt
Net [20] ResNet-12 72.00 ± 0.70 84.20 ± 0.50

MABAS [41] ResNet-12 73.51 ± 0.92 85.49 ± 0.68
RENet [4] ResNet-12 74.51 ± 0.46 86.60 ± 0.32

OURS ResNet-12 77.12 ± 0.40 92.85 ± 0.30

4.3.4. Experimental Results on FC100

The experimental results with the 95% confidence interval for the few-shot classifica-
tion problem on the FC100 dataset are reported in Table 4. Different from the above datasets,
we only used ResNet-12 as our backbone network. Note that our method achieves state-of-
the-art results for both the 5-way–1-shot and 5-way–5-shot settings. Taking conventional
ProtoNet as an example, we have 50.32 ± 0.73% and 71.55 ± 0.75% for the 5-way–1-shot
and 5-way–5-shot tasks, respectively, which far exceed 41.54 ± 0.76% and 57.08 ± 0.76%.
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Table 4. Comparison of state-of-the-art methods with 95% confidence intervals on FC100. The highest
and second highest results are shown in red and blue bold font for easy observation and analysis.

Method Backbone 5-way–1-shot 5-way–5-shot

MetaOptNet [20] ResNet-12 41.10 ± 0.60 55.50 ± 0.60
ProtoNet [8] ResNet-12 41.54 ± 0.76 57.08 ± 0.76
E3BM [42] ResNet-12 43.20 ± 0.30 60.20 ± 0.30

ConstellationNet [5] ResNet-12 43.80 ± 0.20 59.70 ± 0.20
MixtFSL [39] ResNet-12 44.89 ± 0.63 60.70 ± 0.60

Meta Navigator [43] ResNet-12 46.40 ± 0.81 61.33 ± 0.71
DeepEMD [14] ResNet-12 46.47 ± 0.78 63.22 ± 0.71

TPMN [44] ResNet-12 46.93 ± 0.71 63.26 ± 0.74
OURS ResNet-12 50.32 ± 0.73 71.55 ± 0.75

4.4. Experiments on the Fine-Grained Few-Shot Classification Datasets

Figures 3–5 summarize the results of our method on three fine-grained datasets under
the 5-way–5-shot and 5-way–1-shot settings, respectively. Unlike the above-mentioned
conventional datasets, Stanford Dogs, Stanford Cars, and CUB-200 are fine-grained datasets,
which are even more challenging.
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Here, the feature extractor we adopt is the Conv-64F backbone. Our proposed method
achieves state-of-the-art performances in all three fine-grained datasets compared with the
other most advanced methods, especially the Stanford Dogs dataset. Under the 5-way–5-
shot setting, our method gained the largest absolute improvement over the second-best
method, i.e., DN4, by 13.74%.

4.5. Experiments on Fine-Grained Few-Shot Classification Datasets

In this section, we perform extensive ablation experiments. First, we explore the
effectiveness of different components in our proposed method. Then, we design some
visualization cases to analyze the effectiveness of the attention mechanism dSE.

4.5.1. Effectiveness of Different Components

We performed ablation experiments on three challenging fine-grained datasets to
prove the universality of the performance of each component. The experimental results are
listed in Figures 6–8. The baseline is the model with only channel-level feature embedding
representation and cross-entropy loss. We also mark the growth rate with gray arrows.
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Dogs dataset for the 5-way–1-shot/5-shot classification tasks with 95% confidence intervals. The best
results are shown in bold red fonts.

Compared with the baseline, the model with the “channel+dSE” set performed well,
as shown in Figures 6–8. For the Stanford Cars dataset, the performance had a significant
improvement from the baseline by 9.85% (70.36% vs. 60.51%) when employing the dSE.
The accuracy of the model using pixel-level and channel-level feature representations is
higher than those of the methods only using channel-level feature representation. As shown
in Figure 8, the method using channel-level feature representation improved by almost
4.18% (from 64.16% to 68.34%) on the 5-way–5-shot task. Comparing the results of the last
two groups of experiments in Figures 6–8, we found that the accuracy improved when
employing our loss function instead of the cross-entropy loss in our mode for fine-grained
few-shot image classification tasks.
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4.5.2. Effectiveness of Attention Mechanism dSE

To show the benefits of attention mechanism dSE in our model, we compare the
grad-cam activation maps of SE and dSE, respectively, in Figure 9. These experiments were
conducted on Stanford Dogs, CUB-200, and miniImageNet with the Conv-64F backbone.
As Figure 9 shows, the backbone with dSE can obtain more discriminative features of the
object. For example, on the Stanford Dogs dataset, the model can clearly highlight the dog’s
eyes, ears, and feet (if not obscured in the image) when using dSE, which are the parts of
the dogs that are easy to distinguish. For miniImageNet, the last three columns show that
the model employing dSE pays more attention to the foreground objects rather than the
background with noise.
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visualization results of the dSE-integrated network (Conv-64F + dSE) and SE-integrated network
(Conv-64F + SE) in the next two rows.
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5. Experimental Analysis

In this paper, we conducted extensive experiments on four common few-shot clas-
sification datasets and three challenging fine-grained benchmark datasets to validate the
proposed method. We took the 5-way–1-shot and 5-way–5-shot classification tasks, and
Conv-64F and ResNet-12 networks were employed as the embedding networks. Tables 1–4
show the results of the experiments on four common few-shot classification datasets, which
demonstrate that our proposed method performs better compared with other state-of-the-
art methods. By employing the shallow network Conv-64F as the embedding network,
we carried out experiments on the more challenging fine-grained benchmark datasets to
further verify the validity and feasibility of our model. The results show that our method
gains significant improvement. Notably, the accuracy for the 5-way–5-shot classification
task on the Stanford Cars dataset approached 92.36% when employing our model. To verify
the efficacy of different components in our method, extensive ablation experiments were
performed on fine-grained few-shot classification datasets. Our method gained significant
improvement in precision compared with the benchmark on Stanford Dogs due to the
utilization of multi-feature embedding representation, dSE attention, and our loss function.
To verify the value of the proposed dSE attention module, we show the results of the SE
attention and dSE attention by the Grad-class activation maps. The backbone with dSE can
extract more discriminative features of the object. Various experiments demonstrate the
effectiveness of our method on few-shot image classification tasks.

6. Conclusions

In this work, we propose a novel few-shot learning method based on double pooling
squeeze and excitation attention (dSE) for the purpose of improving the discriminative
ability of the model by proposing a novel feature expression. Both the pixel descriptor
and channel local descriptor are employed to capture locally identifiable channel features
and pixel features of an image. Global max pooling and average pooling are designed
to emphasize features responding to foreground object channels in the proposed dSE
module. Additionally, our loss function is designed to capture the bi-directional selection
relationships between query classes and support classes. A great number of compara-
tive experiments and ablation results demonstrate that the classification performance of
the method is superior to other existing approaches. In future work, we will explore
more appropriate and efficient metric methods to measure query images and support set
relationships.
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