
Citation: Srokosz, M.; Bobyk, A.;

Ksiezopolski, B.; Wydra, M.

Machine-Learning-Based Scoring

System for Antifraud CISIRTs in

Banking Environment. Electronics

2023, 12, 251. https://doi.org/

10.3390/electronics12010251

Academic Editors: Celestine Iwendi

and Thippa Reddy Gadekallu

Received: 14 November 2022

Revised: 26 December 2022

Accepted: 27 December 2022

Published: 3 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Machine-Learning-Based Scoring System for Antifraud
CISIRTs in Banking Environment
Michal Srokosz 1,* , Andrzej Bobyk 2 , Bogdan Ksiezopolski 1 and Michal Wydra 3

1 Polish-Japanese Academy of Information Technology, 02-008 Warsaw, Poland
2 Faculty of Mathematics, Physics and Computer Science, Maria Curie-Skłodowska University in Lublin,

20-033 Lublin, Poland
3 Department of Computer Science, Lublin University of Technology, 20-618 Lublin, Poland
* Correspondence: msrokosz@pjwstk.edu.pl

Abstract: The number of fraud occurrences in electronic banking is rising each year. Experts in the
field of cybercrime are continuously monitoring and verifying network infrastructure and transaction
systems. Dedicated threat response teams (CSIRTs) are used by organizations to ensure security
and stop cyber attacks. Financial institutions are well aware of this and have increased funding
for CSIRTs and antifraud software. If the company has a rule-based antifraud system, the CSIRT
can examine fraud cases and create rules to counter the threat. If not, they can attempt to analyze
Internet traffic down to the packet level and look for anomalies before adding network rules to
proxy or firewall servers to mitigate the threat. However, this does not always solve the issues,
because transactions occasionally receive a “gray” rating. Nevertheless, the bank is unable to approve
every gray transaction because the number of call center employees is insufficient to make this
possible. In this study, we designed a machine-learning-based rating system that provides early
warnings against financial fraud. We present the system architecture together with the new ML-
based scoring extension, which examines customer logins from the banking transaction system. The
suggested method enhances the organization’s rule-based fraud prevention system. Because they
occur immediately after the client identification and authorization process, the system can quickly
identify gray operations. The suggested method reduces the amount of successful fraud and improves
call center queue administration.

Keywords: intrusion detection system; bank fraud detection; machine learning; CSIRT; IDS architec-
ture; autoencoder

1. Introduction

Fraud occurrences and theft and fraud rates are increasing each year in electronic
banking. Network infrastructure and transaction systems are constantly monitored and
verified by specialists in the field of cybercrime. Organizations employ dedicated threat
response teams (CSIRTs), which ensure security and prevent hacker attacks. Banking
systems undergo periodic security audits and penetration tests, and increasingly newer
security policies are implemented inside the institution to respond to current threats.

Banks are not the main target of cybercriminals, but they are an unaware user without
IT knowledge and awareness of the basic principles of security on the Internet. Despite
continuous education in the field of the safe use of electronic channels, the number of
successful attacks is increasing. In addition to the classic stealing of logins and passwords
(phishing), Trojans on mobile phones can intercept OTP SMS codes [1]. Advanced Trojans
(such as Zeus) can quickly replace an account entered by a customer with a thief’s account
in the transaction system.

Recently, organized crime groups have hired call centers with consultants to place
random calls to people claiming to be employees of the bank’s security department, asking

Electronics 2023, 12, 251. https://doi.org/10.3390/electronics12010251 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12010251
https://doi.org/10.3390/electronics12010251
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6061-1570
https://orcid.org/0000-0002-0854-3312
https://orcid.org/0000-0003-1904-3222
https://orcid.org/0000-0002-4541-2987
https://doi.org/10.3390/electronics12010251
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12010251?type=check_update&version=3

Electronics 2023, 12, 251 2 of 17

them to make transfers. The problem is so serious that the banks almost immediately
reacted and published press releases in applications for clients about the existing threat and
how to avoid it (banks do not use “transfer” methods, so this should worry the user). The
increasingly sophisticated and insidious theft attacks mean that the average Internet and
electronic banking user is unable to independently ensure the security of his/her personal
data and financial resources accumulated in the accounts.

Financial institutions are fully aware of this and invest capital in antifraud software
and increase employment in CSIRTs. They are constantly looking for new solutions to be
implemented by the organization that will help minimize the risk of losing their clients’
funds as a result of theft [2,3]. Specialists from the CSIRT react to new threats to the personal
data and money of the clients of their organizations on an ongoing basis. Various methods
of threat detection are used. For example, a new type of Trojan appears that was written
for a specific bank. The CSIRT investigates the fraud cases, and if the organization has
a rule-based antifraud system, the team writes rules to block the threat. Otherwise, they
can try to analyze Internet traffic even at the packet level to find anomalies and then add
network rules on proxy or firewall servers that neutralize the threat.

The above detection methods work on a post-mortem debugging basis. Therefore,
the actual fraud has already occurred, and the banks want to limit the scale of the attack
so that other customers are not affected by this type of attack. In the case of 0-day fraud,
CSIRTs need time to prepare their defense against the threat, which is a process that runs
continuously. From a business point of view, such situations negatively affect the perception
of the bank. The media describing cases of theft often describe it as “breaking into a bank”,
which substantially reduces its credibility and trustworthiness, even if the customer is
clearly at fault.

Unfortunately, creating rules is not a solution to all problems. Some transactions
fall into “gray” scoring; the bank cannot authorize every gray transaction, because it is
impossible due to an insufficient number of employees in the call center. The bank’s
business estimates the risk and bears its consequences in the form of financial losses.

In this study, we designed a machine-learning (ML)-based scoring system, which
introduces early warning against fraud in the banking environment. The proposed sys-
tem analyzes client logins from the banking transaction system and complements the
organization’s rule-based antifraud system. The system can find gray operations in the
early stage just after the client authentication and authorization process. The proposed
method decreases the number of successful fraud occurrences and improves call center
queue management.

The architecture and workflow that we designed are innovative compared with ex-
isting antifraud systems for several reasons. The main advantage of our method is the
flexibility of the architecture, which enables the solution to be quickly implemented in
any organization. This is because costly and time-consuming modifications do not need
to be introduced to the system’s functioning in the organization. The solutions currently
used in the banking environment have a specific threat detection workflow, which limits
their implementation possibilities. Most often, these are systems that are not prepared for
trouble-free connection to the working infrastructure. Our market analysis of the available
threat detection systems motivated us to design the most-universal architecture possible.
We found that the inability to perform efficient integration and implementation is the
most-common reason hindering large organizations from extending their security.

This study provides the following contributions:

1. We developed a new flexible architecture for a scoring system with a machine learning
scoring extension in a banking environment.

2. We designed a machine learning model based on data from the early stage in banking
transaction processes.

3. We developed two autoencoder (AE) models (shallow and deep), which classify the
transactions into white, gray, and black.

Electronics 2023, 12, 251 3 of 17

2. Related Work

In the literature, antifraud systems in the banking environment are described. Here,
we briefly characterize the individual approaches of banking antifraud systems, and finally,
the major limitations of the current state-of-the art will be indicated.

In [4], the proprietary FraudFind framework was discussed along with its architecture
based on the publisher–subscriber architecture. In this case, the publisher (agent) delivers
data to the queue, which are then analyzed, processed, and presented in a web interface.
The authors committed to implementing the project in the coming years.

In [5], the TinAnt architecture was presented, which, in accordance with the assump-
tions of real-time performance (considering delays of milliseconds), qualifies transactions
as fraudulent. Which modules in the architecture should work “online” and which can be
performed “offline” to meet the speed requirements were indicated. The designed archi-
tecture is thoughtful and precise. It precisely indicates the positions of the implemented
antifraud components and the method of data penetration into the system from the outside.
This study is valuable because it shows the actual implementation. This system operates in
one of the largest fintech companies: Ant Financial.

In [6], an example of a rule-based expert system (RBESS) was described as a simple
implementation of artificial intelligence, which was converted into antifraud rules based
on expert knowledge. The authors presented two simple rules and hypothesized that it is
better to develop systems based only on artificial intelligence (supervised and unsupervised
learning) as they are more promising for future use and devoid of any of the weaknesses of
rule-based systems. They presented the proof-of-concept ALIDA system. They showed
its architecture and the use of public cloud solutions such as integration with Amazon
Web Services. In our opinion, the authors did not present a working system, provided no
methods of real integration with banking systems, and showed no awareness that financial
institutions in Europe cannot easily use public clouds (legal issues).

No examples exist of a generic architecture in the literature that would allow the
analysis of the issue from the general perspective of benefits for banks and financial
institutions. The reported studies are based on proof-of-concept issues. They do not
elaborate on the issue of fraud, but only signal their occurrence or describe a specific event.
No mention has been made of the proper procedure for dealing with cases of suspicious
transactions classified as gray due to the small amounts of operations. Currently, scientists
specializing in fraud research, rule-based methods, expert systems, or even deep learning
systems are focusing their attention on card fraud cases. This means that pretrade aspects,
which would reduce the number of thefts if detected early enough, are ignored. For this
reason, as an extension of the current research, we designed an early detection method. The
proposed early detection method detects suspicious transactions before any real operation
is attempted. The studies to date have shown a clear polarization: machine and deep
learning must be used to replace rule-based and expert antifraud systems. We think that
they should be extended with additional nondeterministic modules based on machine and
deep learning.

However, studies on the detection of anomalies among the login attempts within the
electronic channel remain scarce, except for the recently studied anomaly detection method
using graphs [7]. More recent reviews were performed of (rather general) anomaly detec-
tion techniques and methods in the context of both shallow and deep machine learning
approaches [8,9]. The authors of the former only briefly mentioned autoencoders (however,
the vast number of studies they quoted do not refer at all to the specific issue of detecting il-
legitimate login attempts), whereas the latter investigated and presented thorough analyses
of the most-popular and -effective anomaly detection techniques applied to detect financial
fraud, with a focus on highlighting the recent advances in the areas of semisupervised and
unsupervised learning.

For example, the researchers in [10] introduced a method that models a network login
structure by automatically extracting a collection of login patterns using a variation of the
market basket analysis algorithm. They employed an anomaly detection approach to detect

Electronics 2023, 12, 251 4 of 17

malicious logins that are inconsistent with the enterprise network login structure. In a
real scenario simulated attack, their system was able to detect 82% of the malicious logins,
with a 0.3% false positive rate. They used a real dataset of millions of logins collected over
five months from a global financial company for the evaluation of their work. However,
they only analyzed a subclass of malicious logins within enterprise networks, namely
those that do not obey certain patterns that are generated by the well-behaving enterprise
employees. They were only able to detect malicious logins that were inconsistent with the
login structure of the enterprise network, using attributes such as user/source/destination
type, user business unit, and the source/destination of the computer’s application and
location. Although the ideas presented in this paper are interesting in general, the study
was limited to one company and one type of enterprise, and therefore, the method cannot
be directly applied to the problem of detecting unauthorized logins in the general context.

The problem of distinguishing anomalous from regular events for unlabeled datasets
is a challenging task, which is even harder when considering that such a dataset is usually
highly imbalanced [11,12]. Several methods exist to solve this problem, involving, for
example, various clustering methods, self-organizing maps (SOMs), adaptive resonance
theory (ART), artificial neural networks, one-class support vector machine (OCSVM), and
many others [13–19]. In general, machine learning techniques (for a survey, see, for in-
stance, [17,20,21]) promise to be at least complementary (or even superior) to traditional
rule-based and human-defined methods [22–24]. The latter ones, because of attacks having
no constant patterns and a rapidly changing behavior over time, can make them cumber-
some, quickly obsolete, and therefore, unsustainable [24].

Autoencoders are a class of ML models that have been previously used for anomaly
detection in the financial domain [25], but were solely limited to fraudulent activities,
mainly connected with credit card misuse [11,26,27] (see Table 11 in [9] or the reviews
provided by [28,29], where the authors briefly describe the advantages and disadvantages
of credit card fraud detection methods). The problem of account holder authentication, as
an important component of a fraud detection strategy for Internet banking security, was
previously mentioned [30], where the authors concluded that, despite the many techniques
available for intrusion detection, machine learning (especially neural networks) should
further be used to expand upon the models developed for transaction anomaly detection.
They also discussed data attributes that should be analyzed via neural networks for in-
trusion detection, hinting at IP address analysis, user geolocation, and session activation
based on the time of day.

3. New Antifraud CISIRT Scoring System: Architecture

Figure 1 presents the new architecture of the system supporting CSIRTs in a financial
institution (bank). Our approach extends the traditional one with an ML module as the
external scoring system, which expands the possibilities of the rule-based expert system.
Our solution can act as a proxy before such a system and behind the load balancer. As
such, the existing bank architecture does not need to be modified. In the next section, we
describe the modules and the data flow in the proposed architecture.

3.1. Modules

The architecture presented in Figure 1 includes 12 modules with the new ML-based
scoring extension.

Electronic channels: the channel customer service for the bank. Using various electronic
channels, the client or the bank’s service performs financial and non-financial operations
on behalf of the client.

Load balancer: an application that breaks down traffic into individual WAF instances to
ensure the high availability of services. The bank’s infrastructure and software should
handle occasional, sudden, and drastic increases in traffic.

Web application firewall (WAF): responsible for checking if requests from the outside
world are technically correct; whether they contain potential attacks; whether the requested

Electronics 2023, 12, 251 5 of 17

endpoints can be accessed from the given channel; whether the headers are properly signed
(HMAC or other algorithm); whether the SSL is correct.

Antifraud subsystem: A classic antifraud system should include a main processing module,
a rules editor, rules testing, a validation module, and an interface for administrators
and the CSIRT. Expanding the system with an integration subsystem enables the use of
additional, external scoring system. General processing is a module responsible for rule-
based processing of requests, as a result of which the following business decisions are
obtained:

• “OK” (white): The request is forwarded to the core financial system.
• “NOT OK” (black): The system automatically rejects the request and performs the

programmed actions (e.g., inform the client about an attempted instruction via the
notification subsystem and forward the report to the CSIRT).

• “MANUAL” (grey): The system provides information to the CSIRT about the need to
manually verify a given operation.

ML scoring extension (new module): The additional antifraud module proposed here has
the main task of supporting the CSIRT through the use of classic statistical methods, as
well as ML and deep learning methods. It enables the profiling of customer behavior and
the detection of unusual actions for the customer. Potentially gray transactions are sent
for manual confirmation, even if they do not exceed the minimum amount specified. This
module is presented in detail in Section 4.

CSIRT: the team responsible for protecting users against fraud from inside and outside the
organization, which controls the operations performed and reacts to unusual suspicious
requests by adding new rules to improve security. The team has access to sensitive data:
personal data, a list of enabled authorization tools, installed mobile applications of the
bank and devices, and the history of transfers and messages directly received from the core
financial service.

Notification subsystem: a separate system supporting the operation of the communica-
tion flow in the organization that sends banking messages via text messages (most often
integrated with several GSM operators using the SMSC protocol), e-mails, and pushes for
mobile devices (integration with Google Firebase and the Apple Push Notification Service).
Notifications can be of any sort: 2FA, authorization, or advertising.

Core financial service: the central banking system in the organization responsible for
handling general and analytical ledgers, sources of money, current and savings accounts,
intrabank settlements, and loans and that conducts full reporting. Optionally, it can be
extended with a card system, i.e., debit and credit cards.

Call center: a system that is a work tool for operators who are responsible for telephone
contact with customers. In addition to the tasks related to the authorization of operations,
they also perform sales and marketing work.

Customer file system: a system containing customer files, which include personal data,
information on contracts, customer address and correspondence data, information on
signed consents (PSD2 and marketing), and history of contact with the bank.

Auth module: This bank authorization system includes password hashes, the list of
client authorization tools, full journal logs/authorization, and the history of authorization
tool changes.

Support financial system: additional system supporting the core financial service. It
is responsible for verifying the operation limits. Currently, due to the need to support
modern payment methods, it is used as a generator of virtual card numbers (e.g., Apple
Pay or Google Pay). The core financial service, without the participation of the support
financial system, is not able to correctly decode a transaction from the clearing file that was
performed with a virtual card.

Electronics 2023, 12, 251 6 of 17

Figure 1. Proposed architecture with ML-based scoring module.

3.2. Data Flow in Proposed Architecture

The data flow in the proposed architecture is presented in Figure 1, which shows
the step numbers that refer to the order of data processing. In this section, these steps
are described:

Step 1: The customer or bank service on behalf of the ordering customer through electronic
channels performs financial and non-financial operations in the context of the customer.

Step 2: Load balancer receives the request from electronic channels.

Step 3: The received request, owing to the built-in algorithm, is transferred to a selected
WAF instance.

Step 4: The WAF verifies the correctness of the received request. In the case of correct
verification, the request is transferred to the antifraud system.

Step 5: General processing checks compliance with the rules and makes the following
business decisions:

• 5a “OK” (white): The request is sent for extended verification in external scoring services;
• 5b “MANUAL” (grey): The request is sent for extended verification at external scor-

ing services;
• 5c “NOT OK” (black): The request is rejected. The rejection information is sent to the

notification subsystem and to the CSIRT.

Electronics 2023, 12, 251 7 of 17

Step 6: The external scoring service checks compliance with external scoring systems and
issues business decisions that are returned to the antifraud subsystem:

• 6a “OK” (white): The request is sent for extended verification to the ML scoring
extension (new module);

• 6b “MANUAL” (grey): The request is sent for extended verification to the ML scoring
extension (new module);

• 6c “NOT OK” (manual): The request is rejected. The rejection information is sent to
the notification subsystem and the CSIRT.

Step 7: The ML scoring extension performs multi-faceted statistical and machine/deep
learning verification and issues business decisions that are returned to the antifraud sub-
system:

• 7a “OK”: The request is valid and passed to the core financial system;
• 7b “MANUAL”: The request is directed to the call center for manual verification by

the customer, and the CSIRT receives information about the incident;
• 7c “NOT OK”: The request is rejected. The rejection information is sent to the notifica-

tion subsystem and the CSIRT.

Step 8: The call center verifies the client and issues business decisions, which are returned
to the antifraud subsystem:

• 8a “OK”: The request is valid and passed to the core financial system;
• 8b “NOT OK”: The request is rejected and the rejection information is sent to the CSIRT.

3.3. Data Collection Process: Privacy Leakage

The storage of sensitive datasets in antifraud systems is an important task. Effective
protection is ensured by unique obfuscation and reversibility. The operation scheme is
based on generating a unique and real tax ID and a unique and false tax ID (which can
be changed back to a real one). The synchronization and cooperation of all systems in the
organization means that CSIRTs are able to use both real and false tax IDs. Most often, false
tax IDs are used to limit the number of people who have access to real data. This is an
additional protection layer of the stored sensitive data. The leakage of confidential data is a
high risk, which may lead not only to attempts to steal funds from a specific institution, but
also to the theft of identity data to falsify documents for later use in other organizations.
The issue of secure data processing is crucial in the area of antifraud systems; it requires the
use of the highest standards of current knowledge and technology. Additionally, rigorous
compliance with the procedures in the organization can effectively protect sensitive data
against illegal use. The possible theft of uniquely obfuscated data is not a threat, because
data encrypted in this way are useless.

4. ML Scoring Extension

In Figure 2, the ML scoring extension module is presented, which we discuss in
detail below.

4.1. ML Scoring Extension Modules

In this section, we describe the modules included in the ML scoring module. The
architecture of this module with numbers that indicate the steps in the data flow is presented
in Figure 2.

External gateways: These entry/access gates to the main ML scoring extension system
receive requests and forward them to the integration module in a standardized message.
An important aspect is the state of today’s IT and technological structure, which obliges
new systems to adapt to those already operating in the organization. New systems with
additional functionality are implemented without disturbing the current structure. This is
because of the value of old (often considered obsolete) systems that are stable, efficient, and
free from critical bugs. Their development and modernization would be costly, risky, and

Electronics 2023, 12, 251 8 of 17

time-consuming. The external gateways module is of key importance for us in future work,
because we will analyze login operations and financial operations that we will directly
connect with central systems. This will enable us to parallelize and accelerate the issuing of
decisions for the organization’s main antifraud system.

Integration module: In mature organizations, the supplier is responsible for the implemen-
tation of new software. It is their duty to integrate their system with the existing one. The
exceptions are fintech/startup companies that most often order a SAAS service, in which
the organization is responsible for the integration. The integration module receives as-is
information from the input gates and then converts these data into the internal ML scoring
extension structures. As such, the mentioned part of the software, in a standardized man-
ner, polls the internal API ML scoring extension. In real implementations, the integration
module is custom and cannot be a ready made as a universal “box”.

External API: This in a system access module that can be used if the organization can or
wants to integrate with external software. The benefit for the organization when using the
external API for external gateways is that the data it uses and the services it queries are
already in the well-known ML scoring extension format. As such, we ignore the loss of
performance in the transformation between different formats and simplify the physical
architecture of the solution. The external API issues access using modern technologies
using REST API (NodeJS) and AMQP (RabbitMQ). The external API, in calling the Internet
API, creates an abstraction layer that clearly separates the core from the implemented
systems. This results in the possibility of controlling permissions (the list of ML scoring
extension services available for individual internal systems of the organization may be
different) and additional verification of the entered data.

Internal API: This is the internal system API. Services have a specific scheme using OpenApi.
Owing to the standardization, each internal module of the system coherently communicates
with the core module. The Internal API orchestrates core services, completes missing data
from various services, and creates more complex core requests.

Core: the main module of the system, written in the CPP language. The core maintains
journal operations and executes and controls asynchronous recursive operations. A load
balancer for services is built in due to the possibility of each module working in several
instances. The core functionality also includes acting as a router for services. The request
received from the internal API redirects to the appropriate module.

Reporting module: the module used to generate daily and periodic reports. It allows
the issuing of a service that generates any report upon request. It has a dedicated, sepa-
rate database so that the creation of reports does not interfere with the operation of the
entire system.

Scoring module: provides scoring services based on ML solutions. Upon input, the opera-
tion is evaluated; upon output, it receives one of three possible responses (OK, NOT-OK, or
MANUAL). The scoring module uses the internal API to query the ML execution module,
which sequentially starts the processing of decisions into deep and shallow autoencoders.

ML tuning module: the service provider for tuning a new solution, which processes the
operations file to tune the autoencoders. The module is based on Keras and Tensorflow.

ML testing module: the module that provides services for versioning autoencoders, verifies
processed new adjustments, processes full historical tests, and evaluates performance
against historical tests.

ML execution module: the module that provides services for the processing of financial
and non-financial operations on autoencoders. In response to the request, the operation
similarity float value (predict) is returned. We developed the module using Keras.

Operator interface: the module that provides a web interface for a CSIRT operator. It
contains data on processing queues for the entire module and its history, the history of
module decisions, the currently analyzed operation, and the “MANUAL” decision list.

Electronics 2023, 12, 251 9 of 17

Administration interface: the module that provides a web interface for the administrator. It
allows the granting of privileges to CSIRT operators, viewing journal logs and operations,
and viewing operation statistics. Moreover, it provides information on system performance.

Log viewer module: the module that provides a web interface for viewing logs, based
on Kibane, Elasticsearch, and APM. It offers multidimensional viewing of system logs,
creating data views, and collecting metrics.

Notification module: the module providing notifications within the ML scoring extension
system, e.g., whether the ordered report is ready for viewing/downloading.

Figure 2. ML scoring extension module architecture.

Electronics 2023, 12, 251 10 of 17

Gateway out: the output gates necessary for communication between ML scoring extension
and external systems and for integration with services within the organization (e.g., data
warehousing and sending requests to services).

4.2. Data Flow for Decision-Making Operation in Proposed ML Scoring System

The data flow for the decision-making operation in the proposed ML scoring extension
system is presented in Figure 2. In this figure, one can find the step numbers, which refer
to the order of data processing:

Step 1: The organization’s core systems trigger a request for a decision in the context of an
ongoing financial or non-financial operation:

• 1a: In the event that the organization’s systems are not adapted to use the issued
API by the ML scoring extension system, technical integration occurs through the
interfaces that these systems understand. The request is sent to the external gate-
way. At this point, there is a contact between the organization’s systems and the
gates, which translate one transport into the transport understood by the ML scoring
extension system.

• 1b: In the event that integration with the organization’s systems occurs through
development and integration from their side, these systems can directly use the
external API. Requests to our system are natively understood by the system, and no
extra layer of transformation is needed.

• 1c: Then, the request is sent to the integration module, where the technical and
business transformation of the request coming from the organization’s systems into an
abstraction understood by our system occurs. The business data create a valid request
to the internal API native to our system.

Step 2: The internal API verifies the parameters of the operation and authorizations to
invoke services. When a decision is made, this service takes the operation upon entry and
issues the decision upon exit. It is a high-level service that is completely transparent for the
client (they do not know what services are called or in what order).

Step 3: The request is sent to the core from the internal API. The core has data on active
instances of the ML execution module and knows what addresses they have and what
the load is. The core selects the best instance according to the load-balancing algorithm
(choosing the least-loaded, where the request has the fastest chance to process).

Step 4: A financial or non-financial operation is processed. The input vector for Keras/
Tensorflow is created here, which is called in the “predict” method in Tensorflow. On the
basis of the threshold from the previously trained autoencoder (AE), one of three types of
decisions is determined: “OK” (white), “MANUAL” (gray), or “NOT OK” (black).

Step 5: When notified that the decision is “MANUAL” (gray) or “NOT OK” (black), the
ML execution module sends a message via the core to the notification module that an
email notification should be sent to the CSIRT. The notification module uses ready-made
email templates. If the organization’s systems are responsible for sending the message, it
forwards the content of such an email to the gateway out.

Step 6: In the gateway out, various support systems of the organization are integrated, in
this case with the email-sending service. The previously prepared email is pushed to the
service within the organization for further processing and sending the email.

Step 7: The organization’s external system performs the received requests in accordance
with the agreed functionalities.

5. ML Execution Module

In our approach, we created the ML execution module based on data stored during
users’ logging into the banking system. Based on these data, we designed the ML models
described in the following sections.

Electronics 2023, 12, 251 11 of 17

5.1. Data Acquisition and Preparation

We based our ML experiments on unlabeled real-world data of actual login attempts
(Table 1) that were collected over two months from the server of one of the largest banks in
Poland.

Table 1. Characteristics of the training dataset.

Characteristics of the training dataset

Data collection period 26 January–31 March 2018 (65 days)

Number of records (raw data) over 5.7 million

Number of discarded records (hart-beats) approximately 3.8 million

Number of training records (effective) 1,918,349

Features extracted (raw) • Server-side event timestamp
• Session ID
• Client’s IP address
• Client’s operating system type
• Client’s browser type and version

Features engineered (effective) • Server-side event timestamp
• Client’s autonomous system number

(ASN)
• Client’s operating system type
• Client’s browser type
• Client’s browser version
• Whether client IP is trusted (bank

LAN)
• Part of the day (working hours,

afternoon/evening, or night/early
morning)

• Working/nonworking days
(weekends or holidays)

Total number of features
(including one-hot encoding)

36

Training/test split of dataset (%) 80:20

The raw data consisted of over 5.7 million records, from which we filtered out ap-
proximately 3.8 million records from technical (heart-beat) logins. We then flattened the
remaining records (effectively over 1.9 million) (by parsing the user–agent string) to extract
the following features:

• Date and time of the server-side event;
• Session ID;
• Client’s IP address;
• Operating system type;
• Browser type and version.

We did not directly obtain the client’s IP address from the collected data (because
it is often randomly assigned by an ISP), but we used it to find the autonomous system
number (ASN) and the client’s physical location (geographic latitude/longitude) based
on high-accuracy commercial databases. We also discarded the session ID because we did
not separate individual logins, but rather, concentrated on the characteristics of the client
environment. Additionally, we introduced three virtual features into our dataset (based
on the original attributes) to distinguish logins originating from the trusted bank network,
the part of the day (working hours, afternoon/evening, and night/early morning), and
working days from weekends or holidays. We one-hot-encoded all the categorical variables,

Electronics 2023, 12, 251 12 of 17

for example the operating system type and the browser type and version, which produced
36 distinct features. We normalized the remaining continuous variables to the [0, 1] range.
We randomly split the data into a training set consisting of 80% records; we treated the
remaining 20% as a test set.

5.2. ML Model Descriptions

We concentrated our subsequent studies on two autoencoder models:

(A) Classical (AE), which is shallow, consisting only of the input layer I with 36 inputs,
encoding data vector features, the code (representation) layer C with 3 neurons, and
the symmetrical output layer O, also consisting of 36 neurons (Figure 3);

(B) Deep AE with additional (also symmetrical) hidden layers H1 and H2, composed of
10 neurons each in the encoder/decoder section (Figure 4).

...
...

I1

I2

I3

I36

C1

C2

C3

O1

O2

O3

O36

Input
layer

Code
layer

Ouput
layer

Figure 3. Shallow autoencoder model (A).

...
...

... ...

I1

I2

I3

I36

H1
1

H1
2

H1
10

C1

C2

C3

H2
1

H2
2

H2
10

O1

O2

O3

O36

Input
layer

Hidden
layer

Code
layer

Hidden
layer

Ouput
layer

Figure 4. Deep autoencoder model (B).

We built the ML models with Keras Version 2.2.4 based on the TensorFlow framework
(Version 1.13.1). In both models, we used sigmoid as the activation function in the last
(output) layer. For the input and intermediate layers, we tested both ReLU and Swish [31]
(with β = 1) as activation functions for all layers, but the last one in both models. For both
models, we finally used the Swish function, because of the faster convergence of the results.

5.3. Training Procedure

We trained our shallow autoencoder model (A) for 40–50 epochs to reach convergence,
obtaining an MSE of 0.01558 on the test set. The deep model (B) needed substantially
more training epochs (200–300) than the shallow model. In both models, we applied no
regularization in the code layer of our autoencoders, and we used the adaptive moment

Electronics 2023, 12, 251 13 of 17

estimation algorithm (Adam) [32] as the optimizer, along with a batch size for training of
1024 records. We chose the mean-squared error (MSE) as the loss function for both models.
We also tried other possibilities, such as categorical cross-entropy (log loss) or the R2 score,
but we encountered problems with the convergence of our models. The discussion of this
finding is beyond the scope of this study, which we will examine separately.

5.4. Results

After training, with our shallow autoencoder model (A), we obtained the total value
of the MSE (the measure of reconstruction error) equal to 0.01558 for the test set. The
distribution of the reconstruction errors both for the training set and the test set is shown in
Figures 5 and 6.

0.000

0.025

0.050

0.075

0.100

0.125

Train Test

Dataset role

M
S

E

Figure 5. Mean-squared reconstruction error (MSE) for Model A (shallow). Blue and red dotted lines
mark the µ + 2σ and µ + 3σ limits, respectively.

10
+0

10
+1

10
+2

10
+3

10
+4

10
+5

10
+6

0.000 0.025 0.050 0.075 0.100

MSE

N
u

m
b

e
r

o
f

re
c
o

rd
s

Role

Test

Train

Figure 6. Histogram of the MSE distribution for Model A (shallow). Blue and red dotted lines mark
the µ + 2σ and µ + 3σ limits, respectively. Note the logarithmic scale on the y-axis.

Electronics 2023, 12, 251 14 of 17

The mean value µ of the combined data is equal to 0.0156, and the standard deviation
σ is 0.0180. One can notice quite a high number of outliers in the boxplot (which could be,
potentially, anomalous events), corresponding to high-value MSE bins in the histogram.

For the deep autoencoder model (B), we obtained a total reconstruction error (MSE) of
0.0127, which is smaller than that of the shallow model and indicates its higher restoration
capacity and higher representation learning power due to its more complicated structure.
The distribution of events and their MSE values (with a mean value µ of the combined data
of 0.0127 and a standard deviation σ of 0.0164) are shown in Figures 7 and 8.

0.00

0.05

0.10

Train Test

Dataset role

M
S

E

Figure 7. Mean-squared reconstruction error (MSE) for Model B (deep). Blue and red dotted lines
mark the µ + 2σ and µ + 3σ limits, respectively.

10
+0

10
+1

10
+2

10
+3

10
+4

10
+5

10
+6

0.000 0.025 0.050 0.075 0.100

MSE

N
u

m
b

e
r

o
f

re
c
o

rd
s

Role

Test

Train

Figure 8. Histogram of the MSE distribution for Model B (deep). Blue and red dotted lines mark the
µ + 2σ and µ + 3σ limits, respectively. Note the logarithmic scale on the y-axis.

This time, the high-value MSE bins are invisible in the histogram, which was due to
the substantially fewer outliers in the boxplot than in the shallow model.

We interpreted these results, after analyzing the boxplots and histograms presented
in Figures 5–8, as follows (see Table 2): The first cluster of more than 106 cases with an

Electronics 2023, 12, 251 15 of 17

MSE close to zero most probably represents regular events, resulting from legitimate logins
executed by the bank customers. The second cluster, with MSE values of approximately
0.030 (accounting for approximately 6× 105 elements), could be an effect of a small (perhaps
one-variable) change in a customer’s record (e.g., upgrading to a newer version of his/her
browser). They lie within the µ + 2σ limit (which is why they are usually denoted as white
cases) and contained 1,765,415 (92.03%) for Model A and 1,825,370 (95.15%) for Model B of
all the records.

These results, after analyzing the boxplots and histograms presented in Figures 5–8,
can be interpreted as follows (see Table 2): The first cluster of more than 106 cases with the
MSE close to zero represents most probably regular events, resulting from legitimate logins,
executed by the bank customers. The second cluster, with an MSE of approximately 0.030
(with approximately 6 × 105 elements), could be an effect of a small (perhaps one-variable)
change in a customer’s record (e.g., upgrading to a newer version of his/her browser).
They lie within the µ + 2σ limit (which is why they are usually denoted as white cases),
which contained 1,765,415 (92.03%) for Model A or 1,825,370 (95.15%) for Model B. The
third cluster, containing slightly more than 105 events with an MSE of approximately 0.06,
could be attributed to slightly larger variations in the login data, such as access attempts
from some irregular geographic location (such as during holidays or a business trip) or an
unusual time of day. These events (counting 146,146, i.e., 7.62% for Model A, and 91,374,
i.e., 4.76% for Model B) were clearly discriminated by our model (with the deep version of
Model B performing better). However, due to their abundance and presence within the
µ + 3σ limit, they could not actually be regarded as really anomalous cases; notably, they
may need further attention and can be regarded as gray cases. Only those lying above
µ + 3σ, i.e., 0.0697, for the shallow model (6788 records, accounting for only 0.35% in total)
and 0.0619 for the deep model (1605 records, again accounting for only 0.08% of the total),
should be treated and further analyzed as suspicious (black) events and/or verified by
another, independent authentication channel. Therefore, in the latter case (Deep Model A),
the burden of the manual discrimination of potentially fraudulent actions can be reduced
to less than five instances per day.

Table 2. Number and percentage of events that fall into the white, gray, and black categories.

Model
White Gray Black

% # % # %

Shallow (A) 1,765,415 92.03 146,146 7.62 6788 0.35

Deep (B) 1,825,370 95.15 91,374 4.76 1605 0.08

6. Conclusions and Future Work

In this paper, we presented a new architecture for an antifraud system with an ML
scoring extension module. We described the modules that participate in the architecture and
the data flow. We designed an ML-based scoring extension module, which is responsible
for decision-making, classifying operations as white, gray, or black. We developed an
unsupervised method to distinguish between rogue and legitimate bank account login
attempts, using two autoencoder models (shallow and deep), which we trained to detect
bank fraud attacks based on real data. The obtained results indicated that the proposed
autoencoders can be used as an ML-based scoring system for an antifraud system in the
banking environment. Our system is based on data that can be gathered at an early stage,
before the transaction is defined by the user.

Basic antifraud systems detect the most-suspicious and largest transactions, but the
scale of small crimes generates the largest losses. The proposed antifraud system can
financially benefit institutions because it can detect potentially harmful operations, which
are forwarded to the CSIRT for verification. These operations are identified before the
actual financial operation begins, already at the login stage. This produces the effect of

Electronics 2023, 12, 251 16 of 17

eliminating the risk of low-value operations, which were previously included in the costs
of running the organization.

In future studies, we will expand the system with behavioral models that can further
address the issue from the customer side. This involves profiling and identifying the
customer by how he/she navigates the system for finding suspicious activities.

Author Contributions: Conceptualization, M.S., A.B. and B.K.; methodology, M.S., A.B. and B.K;
software, M.S.; validation, M.S. and A.B.; formal analysis, M.S. and A.B.; resources, M.S.; data
curation, M.S.; writing—original draft preparation, M.S., A.B. and B.K.; writing—review and editing,
M.S., A.B., B.K. and M.W.; visualization, M.S. and A.B.; supervision, M.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This study received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: 3rd Party Data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cabaj, K.; Torres, J.; Kotulski, Z.; Ksiezopolski, B.; Mazurczyk, W. Cybersecurity: Trends, issues, and challenges. EURASIP J. Inf.

Secur. 2018, 2018, 10. [CrossRef]
2. Srokosz, M.; Ksiezopolski, B. A new WAF-based architecture for protecting web applications against CSRF attacks in malicious

environment. In Proceedings of the 5th International Conference on Cryptography and Security Systems, Poznan, Poland, 9–12
September 2018.

3. Kozlowski, M.; Ksiezopolski, B. A New Method of Testing Machine Learning Models of Detection for Targeted DDoS Attacks. In
Proceedings of the 18th International Conference on Security and Cryptography, Online, 6–8 July 2021.

4. Sánchez, M.; Torres, J.; Zambrano, P.; Flores, P. FraudFind: Financial fraud detection by analyzing human behavior. In
Proceedings of the IEEE 8th Annual Computing and Communication Workshop and Conference, Nevada, LV, USA, 8–10 January
2018; pp. 281–286.

5. Cao, S.; Yang, X.; Chen, C.; Zhou, J.; Li, X.; Qi, Y. TitAnt: Online real-time transaction fraud detection in Ant Financial. Proc. VLDB
Endow. 2019, 12, 2082–2093. [CrossRef]

6. Aschi, M.; Bonura, S.; Masi, N.; Messina, D.; Profeta, D. Cybersecurity and Fraud Detection in Financial Transactions. In Big Data
and Artificial Intelligence in Digital Finance; Soldatos, J., Kyriazis, D., Eds.; Springer: Cham, Switzerland, 2022; pp. 269–278.

7. Powell, B.A. Detecting malicious logins as graph anomalies. J. Inf. Secur. Appl. 2020, 54, 102557. [CrossRef]
8. Ruff, L.; Kauffmann, J.R.; Vandermeulen, R.A.; Montavon, G.; Samek, W.; Kloft, M.; Dietterich, T.G.; Müller, K.-R. A Unifying

Review of Deep and Shallow Anomaly Detection. arXiv 2021, arXiv:2009.11732v3.
9. Hilal, W.; Gadsden, S.A.; Yawney, J. Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances. Expert

Syst. Appl. 2022, 193, 116429. [CrossRef]
10. Siadati, H.; Memon, N. Detecting Structurally Anomalous Logins Within Enterprise Networks. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 1273–1284.
11. Wei, W.; Li, J.; Cao, L.; Ou, Y.; Chen, J. Effective detection of sophisticated online banking fraud on extremely imbalanced data.

World Wide Web 2013, 16, 449–475. [CrossRef]
12. Amirneni, S. Anomaly Detection in Highly Imbalanced Dataset. Master’s Thesis, University of Dublin, Trinity College, Dublin,

Ireland, August 2019. Available online: https://www.scss.tcd.ie/publications/theses/diss/2019/TCD-SCSS-DISSERTATION-20
19-029.pdf (accessed on 1 January 2022).

13. Chan, P.K.; Mahoney, M.V.; Arshad, M.H. A Machine Learning Approach to Anomaly Detection; Technical Report CS-2003-06; Florida
Institute of Technology: Melbourne, FL, USA, 2003. Available online: https://www.researchgate.net/publication/228858008_A_
machine_learning_approach_to_anomaly_detection (accessed on 1 January 2022).

14. Li, K.-L.; Huang, H.-K.; Tian, S.-F.; Xu, W. Improving One-Class SVM for Anomaly Detection. In Proceedings of the Second
International Conference on Machine Learning and Cybernetics, Tianjin, China, 14–17 July 2013; pp. 3077–3081.

15. Chapple, M.J.; Chawla, N.; Striegel, A. Authentication Anomaly Detection: A Case Study On A Virtual Private Network. In
Proceedings of the MineNet 2007 Workshop on Mining Network Data, San Diego, CA, USA, 12 June 2007; pp. 17–22.

16. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection for Discrete Sequences: A Survey. IEEE Trans. Knowl. Data. Eng. 2012,
24, 823–839. [CrossRef]

17. Omar, S.; Ngadi, A.; Jebur, H.H. Machine Learning Techniques for Anomaly Detection: An Overview. Int. J. Comput. Appl. 2013,
79, 33–41. [CrossRef]

http://doi.org/10.1186/s13635-018-0080-0
http://dx.doi.org/10.14778/3352063.3352126
http://dx.doi.org/10.1016/j.jisa.2020.102557
http://dx.doi.org/10.1016/j.eswa.2021.116429
http://dx.doi.org/10.1007/s11280-012-0178-0
https://www.scss.tcd.ie/publications/theses/diss/2019/TCD-SCSS-DISSERTATION-2019-029.pdf
https://www.scss.tcd.ie/publications/theses/diss/2019/TCD-SCSS-DISSERTATION-2019-029.pdf
https://www.researchgate.net/publication/228858008_A_machine_learning_approach_to_anomaly_detection
https://www.researchgate.net/publication/228858008_A_machine_learning_approach_to_anomaly_detection
http://dx.doi.org/10.1109/TKDE.2010.235
http://dx.doi.org/10.5120/13715-1478

Electronics 2023, 12, 251 17 of 17

18. Yao, D.; Shu, X.; Cheng, L.; Stolfo, S.J.; Bertino, E.; Sandhu, R. Anomaly Detection as a Service: Challenges, Advances, and Opportunities;
Springer: Cham, Switzerland, 2018.

19. Abu Sulayman, I.I.M.; Ouda, A. User Modeling via Anomaly Detection Techniques for User Authentication. In Proceedings of
the IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference, Vancouver, BC, Canada,
17–19 October 2019; pp. 0169–0176.

20. Chalapathy, R.; Chawla, S. Deep Learning for Anomaly Detection: A Survey. arXiv 2019, arXiv:1901.03407v2.
21. Sarker, I. H. Deep Cybersecurity: A Comprehensive Overview from Neural Network and Deep Learning Perspective. SN Comput.

Sci. 2021, 2, 154. [CrossRef]
22. Plössl, K.; Federrath, H.; Nowey, T. Protection Mechanisms Against Phishing Attacks. In Trust, Privacy, and Security in Digital

Business; Gritzalis, S., Weippl, E.R., Kotsis, G., Tjoa, A.M., Khalil, I., Eds.; Springer: Cham, Switzerland, 2005; pp. 20–29.
23. Arora, R.; Behal, S. Phishing Defense Mechanism. Int. J. Comput. Sci. Technol. 2012, 3, 141–144.
24. Sankhwar, S.; Pandey, D. A Comparative Analysis of antiPhishing Mechanisms: Email Phishing. Int. J. Adv. Res. Comput. Sci.

2017, 8, 567–574.
25. Ahmed, M.; Mahmood, A.N.; Islam, M.R. A survey of anomaly detection techniques in financial domain. Future Gener. Comput.

Syst. 2016, 55, 278–288. [CrossRef]
26. Chen, J.; Shen, Y.; Ali, R. Credit Card Fraud Detection Using Sparse Autoencoder and Generative Adversarial Network. In

Proceedings of the IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference, Vancouver, BC,
Canada, 1–3 November 2018; pp. 1054–1059.

27. Lima, S. Deep Learning for Fraud Detection in the Banking Industry; Human IST Institute, University of Fribourg: Fribourg,
Switzerland, 2018. Available online: https://www.researchgate.net/publication/329894393_Deep_learning_for_fraud_detection_
in_the_banking_industry (accessed on 1 January 2022).

28. Zareapoor, M.; Seeja, K.R.; Alam, M.A. Analysis on Credit Card Fraud Detection Techniques: Based on Certain Design Criteria.
Int. J. Comput. Appl. 2012, 52, 35–42. [CrossRef]

29. Wang, D.; Chen, B.; Chen, J. Credit card fraud detection strategies with consumer incentives. Omega 2018, 88, 179–195. [CrossRef]
30. Bignell, K.B. Authentication in an Internet Banking Environment; Towards Developing a Strategy for Fraud Detection. In

Proceedings of the International Conference on Internet Surveillance and Protection, Côte d’Azur, France, 26–29 August
2006; p. 23.

31. Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for Activation Functions. arXiv 2017, arXiv:1710.05941v2.
32. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980v9.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s42979-021-00535-6
http://dx.doi.org/10.1016/j.future.2015.01.001
https://www.researchgate.net/publication/329894393_Deep_learning_for_fraud_detection_in_the_banking_industry
https://www.researchgate.net/publication/329894393_Deep_learning_for_fraud_detection_in_the_banking_industry
http://dx.doi.org/10.5120/8184-1538
http://dx.doi.org/10.1016/j.omega.2018.07.001

	Introduction
	Related Work
	New Antifraud CISIRT Scoring System: Architecture
	Modules
	Data Flow in Proposed Architecture
	Data Collection Process: Privacy Leakage

	ML Scoring Extension
	ML Scoring Extension Modules
	Data Flow for Decision-Making Operation in Proposed ML Scoring System

	ML Execution Module
	Data Acquisition and Preparation
	ML Model Descriptions
	Training Procedure
	Results

	Conclusions and Future Work
	References

