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Abstract: The application of jointing multiple physical field sensing with electromagnetic (EM) wave
manipulation is a hot research topic recently. Refined perception and unit-level independent regula-
tion of metasurfaces still have certain challenges. In this paper, we propose a digital programmable
metasurface that can adaptively achieve various EM functions by sensing the color changes of the
incident light, which enables unit-level sensing and modulation. Integrating trichromatic sensors,
FPGA, and algorithm onto the metasurface has established a metasurface architecture for electro-
magnetic scattering field modulation from complex optics to microwave wavelengths, which enables
a wide variety of light sensing for modulation. The metasurface integrated with PIN diodes and
trichromatic color sensors forms a complete intelligent system of adaptive and reconfigurable coding
patterns, within the pre-designed control of FPGA. We fabricated the metasurface using standard
printed circuit board (PCB) technology and measured the metasurface in far-fields. The measurement
results show good agreement with the simulation results, verifying our design. We envision that
the proposed programmable metasurface with visible light sensing will provide a new dimension of
manipulation from this perspective.

Keywords: visible-light sensing; reprogrammable; metasurface; independent regulation

1. Introduction

Metamaterials [1,2] are artificial composite materials consisting of subwavelength
structure that have largely improved electromagnetic (EM) [3,4] control capability. They have
superior EM properties, which have led to the development of applications such as imag-
ing [5,6], stealth [7], and negative refraction [8]. Metasurfaces [9–11], as two-dimensional
versions of metamaterials, not only inherit the excellent EM properties of metamaterials,
but the two-dimensional versions are easier to process and apply. As a result, meta-
surface research has been aroused and a wider range of EM field modulation has been
realized, involving phase modulation [12–14], amplitude regulation [15–17], polarization
control [18], etc.

In 2014, Prof. Cui and his team proposed digital coding programmable metamateri-
als/metasurfaces [19], which integrates digital information into metamaterial/metasurface
design from the aspects of structure, EM parameters, and function, connecting physical
worlds and digital coding worlds [20–22]. Unlike traditional metasurfaces, which perform
specific functions only after the process is complete, digital coding metasurfaces allow
functional reuse by reassigning the phase response of meta-atom to “0” and “1” based on
numerical expressions. In addition, the digital metasurface can also introduce other regu-
lating mechanisms according to different requests, making it more flexible and convenient.
Using this approach, various digital coding metasurfaces with different functions have
been proposed [23], such as amplitude coding [24,25], phase coding [26,27], polarization
coding [28,29], and angular momentum coding [5,30]. More recently, intelligent meta-
surfaces [31–38] with adaptive reprogrammable functions without human involvement
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have been proposed. A typical intelligent metasurface system is a combination of sensors,
control circuits, and feedback systems to form a complete, intelligent system controlled by
the metasurface itself without the need for human control, such as infrared sensing [39],
ultraviolet sensing [40], and thermal sensing [33]. However, previous metasurface regula-
tion was carried out by controlling the whole metasurface or partial rows and columns of
the metasurface. There are still certain challenges in the completely independent perception
and regulation of metasurface units.

In this paper, we propose a digital programmable metasurface with element-independent
visible-light sensing; the metasurface can be adaptively reprogrammed to achieve various
EM functions by sensing the color changes of incident light. The metasurface is integrated
with trichromatic color sensors (TCS3200), microcontrollers, and a preloading coding algo-
rithm. Through the establishment of a feedback link with the programmable gate array
(FPGA), the metasurface forms a complete intelligent system of adaptive and reconfigurable
coding. As the proposed metasurface integrates trichromatic color sensors, it can simulta-
neously recognize EM waves in three frequency ranges, which is superior to the previous
optical control metasurface. Notably, the system can be adaptively reprogrammed without
human participation. In addition, we use light frequency to control the microwave phase.
We envision that this work will further expand the degrees of freedom for metasurface
sensing and manipulation, with potential applications in fields such as communications,
imaging, and displays [41]. Moreover, the digital programmable metasurface also can be
combined with customized control and computational programs and executive circuits to
extend into the adaptive light-sensing metasurface and establish software and hardware
control or intelligent meta-devices with autonomous adaptive programmable functions for
the next generation of wireless systems.

2. Principle and Design

The principle of the proposed digital programmable metasurface is shown in Figure 1a.
The metasurface consists of 16 × 16 meta-cells, with four meta-atoms in a group, each group
integrating a trichromatic sensor and microcircuit. Note that the algorithm links the process
of light-sensing metasurfaces from detection to sensory data, data comparison, and finally
the formation of different voltage distribution patterns on the metasurface. Specifically,
when the frequency information of the light is sensed by the trichromatic sensors and
output to the high-speed ADC, the ADC determines whether the threshold is exceeded,
and then the FPGA makes the threshold judgment and controls the PIN diode on the
metasurface to perform the coding patterns of the color corresponding to the current
threshold value. For instance, when the FPGA determines that the incident light is red,
the metasurface performs the coding pattern of dual-beam; when the incident light is green,
the metasurface performs the coding pattern of four-beam; and when the incident light
is red, the metasurface performs the coding pattern of RCS. In addition, in order to show
more clearly how our proposed metasurface works, we provide a schematic illustration,
as shown in Figure 1b.

To verify our idea, we designed four metasurfaces; Figure 2 shows a three-dimensional
graph of a trichromatic-color-sensing meta-cell. The metamaterial unit has three layers.
The first layer is a metal patch, the middle layer is an FR-4 layer with a dielectric constant
of 4.3 and a dielectric loss angle of 0.025, and the bottom layer is a metal ground. To achieve
dynamic unit tunability, we embedded a PIN diode (Skyworks SMP1320) between two
symmetrical metal patches in the first layer. In addition, to connect the control circuit,
we set two through-holes with a diameter of 0.15 mm on the unit. In the process of
simulation verification using CST Microwave Studio, the EM metamaterial unit model
(shown in Figure 2a) was established with a period p of 14 mm, a thickness of medium
h of 3.5 mm, and a thickness of metal patch of 0.1 mm. Other parameters are shown as
follows: a = 12 mm, w = 3 mm, w1 = 4.5 mm, l = 1.7 mm, and l1 = 4.5 mm. PIN diodes
are equivalent, using a resist-inductor-capacitor (RLC) model, and the diode equivalent
diagram is shown in Figure 2b. The code “0” indicates that the PIN diode is in the OFF
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state, with R1 = 0, L1 = 0.4 nH, and C1 = 0.4 pF. The code “1” indicates that the PIN diode
is in the ON state, with R2 = 2.2, L2 = 0.4 nH, and C2 = 0 pF. The amplitude and phase
curves of the metamaterial element under y-polarization are shown in Figure 2c,d. At the
frequency point of 4.1 GHz, the phase difference between the two states of the element is π,
and the amplitudes of the two states are −0.27 dB and −0.99 dB, respectively, showing that
the metasurface wavefront is well manipulated [19].
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Figure 2. Description of the structure and EM response of meta-atom. (a) Three-dimensional
perspective view of the supercell. (b) Equivalent circuit of PIN diode in OFF/ON state. (c) Magnitude-
response of the element. (d) Phase-response of the element.
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To achieve independent control of small areas of the metamaterial, and to obtain EM
control that is more accurate, we used PCB technology to add an isolation layer and a control
circuit layer based on the original metasurface. The resulting complete structure consisted
of five layers, as Figure 2b shows. The dielectric layer was designed to isolate, and the circuit
layer was designed to control the small area of the metasurface independently. In Figure 3,
we show the stereoscopic graph of the meta-atom group structure. The circuit layer is
covered with 2 × 2 metamaterial cells in order from left to right. In addition, the microcircuit
and the metasurface are connected through the vias to realize the metasurface control mode
that is controlled by “point”. Figure 3c shows the circuit structure of the sensing module. In
the trichromatic sensor, the light-to-frequency converter reads an 8 × 8 array of photodiodes;
16 photodiodes have blue filters, 16 photodiodes have green filters, 16 photodiodes have
red filters, and 16 photodiodes are clear with no filters. Four colors of photodiodes are
connected to reduce the effect of uneven incident irradiance. Through control of the digital
state of the enabling ports SH2 and SH3, the sensing target is converted to one of the colors
of the enabling port, and the result is output at a certain frequency. A trichromatic sensor
sample is shown in Figure 3d, and Figure 3c shows the 8 × 8 photodiodes array. In this
work, the sensing modules are integrated into the fifth layer using PCB technology, and the
modules are connected to PIN on the metasurface through the vias. The integration of
trichromatic sensors on the metasurface allows the color information in incident light to
be detected; this can also be regarded as a light-coding input to guide the metasurface
to perform corresponding functions. For example, we marked the implementation of
electromagnetic functions, such as dual-beam, four-beam, and RCS, as detecting blue,
green, and red, respectively. As prototype proof, according to the theoretical knowledge
of coding metasurface [19], four typical coding patterns were selected for simulation and
measurement verification to prove the above ideas.
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Figure 3. The stereoscopic graph of the meta-atom group structure. (a) The digital programmable
metasurface. (b) The stereoscopic graph structure consists of four meta-atoms. (c) Microcontroller
module. (d) A sample of the color sensor. (e) Light-to-frequency converter. The light-to-frequency
converter reads an 8 × 8 array of photodiodes.
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3. Results

To verify the above ideas, we designed metasurface arrays with the coding “0000111100001111”,
“0001111100000111”, a chessboard metasurface with the code “0001111100000111”, and a
randomly coding RCS reduction metasurface. Figure 4 shows the far-field simulation
results of the above four metasurfaces. We marked the metasurface array with the codes
“0000111100001111” as pattern A, the metasurface array with the codes “0001111100000111”
as pattern B, the chessboard metasurface as pattern C, and the RCS metasurface as pat-
tern D. Figure 4e–h show the far-field simulation results of patterns A–D at 4.1 GHz,
and Figure 4i–l show the two-dimensional display of far-field results of patterns A–D at
4.1 GHz. The above results show that patterns A and B realized dual-beam scattering
with different pointing angles under normal electromagnetic irradiation. The scattering
angle of pattern A was approximately 39◦ and its beam energy was approximately 3.2 dB;
the scattering angle of pattern B was approximately 34◦ and its beam energy was approxi-
mately 3.7 dB. Pattern C achieved four-beam scattering with good symmetry. Pattern D
implemented RCS reduction.
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A–D at 4.1 GHz.
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The generalized Snell’s law [19,42,43] is to arrange the units with different abrupt
phases in a gradient or a specific phase distribution on a plane, which can realize the
functions of anomalous deflection (negative reflection) [44], anomalous reflection [45],
and focusing the incident electromagnetic waves [46,47]. When this design idea is applied
to a 1-bit coding metasurface [48], two units with 180◦ phase difference are encoded as “0”
and “1”, and these two units are arranged on a two-dimensional plane in a predetermined
sequence, forming a metasurface with a regulatory function for electromagnetic waves.
For example, when the coding sequence is “0101 . . . ”, the vertically incident electromag-
netic waves will be divided into dual-beam, and when the coding becomes a checkerboard
distribution, the radiation direction will form as four beams. Our proposed pattern A,
with the code “11100001111000”, and pattern B, with the code “11000001111100”, were both
dual-beam. The simulation results of pattern C, with “11100001111000” chessboard coding,
were indeed four beams; that is, our results were consistent with the theory, which proves
the feasibility of our proposed light-sensing coding metasurface.

Figure 5 shows the sample of the metasurface and the far-field experimental results.
Figure 5a shows the fabricated metasurface sample, with a metasurface composed of
16 × 16 cells. There were four meta-atoms in a group, and each group integrated a
trichromatic sensor and microcontroller. The trichromatic sensor and micro control module
were connected to a 1-bit coding metasurface. As illustrated in Figure 5a, to realize the
flexible and independent regulation of each meta-atom group, a light-tight plastic sheet
was inserted between the groups to prevent interference from light information.
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(a) The metasurface is composed of 16 × 16 units. (b) The measurement configuration for the
far-field test.

In the experimental demonstration, we fabricated the metasurface and verified the
far-field results in a standard microwave chamber. The measuring device is shown in
Figure 5b. The fabricated metasurface sample and feed source were fixed on a rotatable
table. Two rectangular horn antennas were used as the feed and receiver, respectively.
When the rotatable table rotated, the far-field data on the two-dimensional plane could be
measured. To obtain quasi-plane waves, the source antenna was placed 1 m away from the
metasurface sample, while the receiver was placed 10 m away from the turntable.

To compare the measured and simulated results more intuitively, the results of both
were recorded as shown in Figure 6a–c. The simulated and measured data were identified
using blue and red colors, respectively. The dual-beam feature or the four-beam feature
can clearly be seen in the figures, and the simulation and the measured beam features
were in good agreement. Furthermore, the simulated and measured blue and red lines had
approximately the same trends, demonstrating a high degree of consistency between the
measured and simulated results. The minor measurement deviation between the simulated
and measured results was primarily owing to the manual operation of the experiments and
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manufacturing errors. There are other reasons for the extra reflection of the light control
module and the non-ideal excitation of the horn antenna.
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Figure 6. The far-field experimental results of three patterns. (a–c) present a comparison of far-field
simulation and the experimental results of patterns A, B, and C, respectively.

4. Conclusions

This paper presents a digital programmable metasurface with element-independent
visible-light sensing. The metasurface consists of 16 × 16 units, with four meta-units in a
group, each group integrating a trichromatic sensor and microcontroller. The trichromatic
sensor and micro control module are connected to a 1-bit coding metasurface. The light
field distribution can be regulated by controlling these meta-atom groups independently.
The metasurface obtains different coding sequences according to changes in optical fre-
quency, and dynamically modulates the reflected phase to produce different beam de-
flections. Three patterns were designed to verify the performance of the metasurface.
The results show that analog and measurement results have good consistency. In this work,
we have achieved a wide range of electromagnetic modulations, such as dual-beam, four-
beam, and RCS, as well as color detection of incident light, by integrating trichromatic color
sensors, high-speed ADC, FPGA, and algorithms onto a metasurface. Moreover, we have
established a metasurface architecture for electromagnetic scattering field modulation from
complex optics to microwave wavelengths, which enables a wide variety of light sensing
for modulation. This is valuable for developing hybrid electronic-photonic devices for
more advanced electronic and communication systems. We believe that our study will
broaden the degrees of freedom for metasurface sensing and manipulation, with possible
applications in communications, imaging, and displays.
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