
Citation: Li, P.; Jin, H.; Xi, W.; Xu, C.;

Yao, H.; Huang, K. A Reconfigurable

Hardware Architecture for

Miscellaneous Floating-Point

Transcendental Functions. Electronics

2023, 12, 233. https://doi.org/

10.3390/electronics12010233

Academic Editor: Marco Vacca

Received: 13 December 2022

Revised: 28 December 2022

Accepted: 28 December 2022

Published: 3 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Reconfigurable Hardware Architecture for Miscellaneous
Floating-Point Transcendental Functions
Peng Li 1,†, Hongyi Jin 2,† , Wei Xi 1, Changbao Xu 3, Hao Yao 1 and Kai Huang 2,*

1 Digital Grid Research Institute, China Southern Power Grid, Guangzhou 510670, China
2 School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310030, China
3 Electric Power Research Institute, Guizhou Power Grid Co., Ltd., Guiyang 550002, China
* Correspondence: huangk@zju.edu.cn
† These authors contributed equally to this work.

Abstract: Transcendental functions are an important part of algorithms in many fields. However,
the hardware accelerators available today for transcendental functions typically only support one
such function. Hardware accelerators that can support miscellaneous transcendent functions are a
waste of hardware resources. In order to solve these problems, this paper proposes a reconfigurable
hardware architecture for miscellaneous floating-point transcendental functions. The hardware
architecture supports a variety of transcendental functions, including floating-point sine, cosine,
arctangent, exponential and logarithmic functions. It adopts the method of a lookup table combined
with a polynomial computation and reconfigurable technology to achieve the accuracy of two
units of least precision (ulp) with 3.75 KB lookup tables and one core computing module. In
addition, the hardware architecture uses retiming technology to realize the different operation times
of each function. Experiments show that the hardware accelerators proposed can operate at a
maximum frequency of 220 MHz. The full-load power consumption and areas are only 0.923 mW and
1.40× 104 µm2, which are reduced by 47.99% and 38.91%, respectively, compared with five separate
superfunction hardware accelerators.

Keywords: floating-point transcendental functions; reconfigurable; lookup table; polynomial

1. Introduction

Transcendental functions refer to functions that cannot be represented by finite quadric
operations, power operations or square root operations, such as trigonometric functions,
inverse trigonometric functions, exponential functions and logarithmic functions. They
are basic components of mathematical calculations and are widely used in algorithms in
various fields [1].

For some data-intensive algorithms with strict real-time requirements, the low-latency
computation of transcendental functions is of great significance. A large number of inten-
sive floating-point trigonometric functions, exponential and logarithmic operations are
usually required in the fields of motor control, noise filtering, digital signal processing,
etc. [2–6]. In the field of electric power, trigonometric functions are widely used in the
calculation of power quality, complex harmonic processing and phase calculation [7]. It
takes a lot of cycles for the software program to perform those function operations, which
cannot meet real-time requirements. Therefore, a low-latency high-precision transcendental-
function hardware accelerator is needed. Furthermore, multiple transcendental functions
are frequently required to be operated in some high-complexity algorithms. These tran-
scendental functions require a lot of hardware resources when implemented separately,
resulting in large area overheads [8,9]. Therefore, a hardware accelerator that supports
multiple transcendental functions is of great significance.

Researchers have also already proposed various hardware accelerators to implement
transcendental functions’ calculation, including the CORDIC algorithm [10–12] and the

Electronics 2023, 12, 233. https://doi.org/10.3390/electronics12010233 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12010233
https://doi.org/10.3390/electronics12010233
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12010233
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12010233?type=check_update&version=1

Electronics 2023, 12, 233 2 of 16

piecewise polynomial approximation method [13–15]. However, the CORDIC algorithm
requires multiple iterations to achieve a high accuracy, and it supports only limited transcen-
dental functions [16–18]. Although the lookup table method combined with polynomial
operation can easily and effectively implement a transcendental function [19–24], there are
often multiple data paths when implementing multiple transcendental functions, resulting
in a waste of hardware resources.

A reconfigurable hardware architecture for miscellaneous floating-point transcen-
dental functions is proposed in this paper. High-precision lookup tables for polynomial
coefficients of transcendental functions are generated by polynomial fitting. The whole
calculation is divided into preprocessing, core computing and postprocessing to achieve
a low-latency hardware design. With reconfigurable technology, multiple transcendental
function calculations can be implemented by the same core module, which leads to a lower
area cost of hardware.

This paper identifies two key challenges in designing a reconfigurable low-latency
hardware architecture for floating-point transcendental functions. Firstly, how to fit each
transcendental function using a piecewise lookup table combined with a polynomial
computation to obtain a high-precision polynomial coefficient lookup table in order to
achieve a low-latency hardware architecture. Secondly, how to design a core computing
unit that can implement multiple transcendental functions in the smallest possible area
while maintaining a high accuracy.

The current research cannot achieve the balance of low delay and high precision for
transcendental functions. For example, ref. [25] had high accuracy but a high computation
delay. Its error was no more than 1.5 ulp, and its delay was 15 cycles. In contrast, ref. [26]
only needed to spend 40.3 ns to compute the transcendental function with a maximum
error of 1× 10−9. In the present research, different transcendental functions have different
implementation processes, so they cannot be implemented using the same data path.

The reconfigurable hardware architecture for miscellaneous transcendental function
proposed in this paper uses only 3.75 KB of lookup tables to implement five high-precision
floating point transcendental functions, including sine, cosine, arctangent, exponential
and logarithmic functions. The difference between the calculation result of the hardware
circuit and that of the C language math library is most 2 ulp. Under the UMC 40 nm CMOS
process, the hardware can reach a maximum frequency of 220 MHz. The synthesis results
also show that the total area is 1.40× 104 µm2 and the full-load power consumption is
0.923 mW.

2. Related Work

The CORDIC algorithm is generally used to achieve transcendental functions in digital
circuit design. Muñoz et al. [27] used the CORDIC algorithm and a Taylor series expansion
to calculate sine, cosine and arctangent functions, which implied floating-point operations
and a search in ROM method to achieve a high throughput. Sergiyenko et al. [25] applied
the CORDIC algorithm to achieve transcendental functions in three stages, whose angles
were, respectively, from the ROM table, a network of CORDIC microrotations and an
approximation network, so as to minimize the area and delay. It only took 15 cycles to
achieve an accuracy of 0.5 ulp for the sine and cosine calculations of a small angle.

In addition to the CORDIC algorithm, a lookup table method combined with a polyno-
mial computation is also an important approach to implementing transcendental functions.
Chen et al. [13] proposed a logarithmic function hardware accelerator based on lookup
tables with 7.8 KB of lookup tables and a large number of basic computing units, achieving
an accuracy of 3.5 ulp and a latency of 78 ns. Gener et al. [28] presented a lossless LUT com-
pression method which could be used to replace tables among other applications of LUTs.
Their method resulted in a 10% performance improvement, but only two transcendental
functions were supported in that work. The hardware unit of the high-speed transcendental
function proposed by Tian et al. [14] used a binomial operation, and its accuracy reached
1× 10−7. However, the multiple data paths that were necessary to implement multiple

Electronics 2023, 12, 233 3 of 16

transcendental functions resulted in an excessive area overhead. Nandagopal et al. [15] pro-
posed a novel piecewise-linear method to approximately represent nonlinear logarithmic
and antilogarithmic functions. In that study, the calculation delay reached 15.20 ns, but the
accuracy could only reach 5× 10−6.

In summary, the iterative CORDIC algorithm for transcendental functions is very
inferior in performance. It needs to spend more clock cycles to complete a single-precision
floating-point operation with high accuracy. The lookup table method combined with a
polynomial computation can achieve single-precision floating-point operations with low
latency by using a small amount of storage and hardware resources.

3. Methods

The polynomial algorithm of single-precision floating-point transcendental functions
based on the lookup table method has the following main steps:

1. Reduce the input range of the transcendental function to the convergence interval;
2. Select an appropriate polynomial to fit it and determine the values of the polynomial

parameters;
3. Hardware implementation.

3.1. Preliminary Range Reduction

According to the IEEE-754 standard, a 32-bit normalized single-precision floating-
point number consists of one signal bit S, an 8-bit exponent E and a 23-bit mantissa T, which
can be represented by Equation (1). Moreover, the range of normalized single-precision
floating-point values is (−2128,−2−126] ∪ [2−126, 2128) [29,30].

x = (−1)S × 2E−127 × (1 +
T

223) (1)

The expression of the sine function implemented in this paper is
Equation (2).

y = sin πx, x ∈ (−∞,+∞) (2)

The sine function has periodicity and symmetry, so any input can be transformed into
a new input within the interval [0, 0.5]. It can be transformed into Equation (3).

y = sin πx, x ∈ [0, 0.5] (3)

The inputs of the cosine function, like the sine function inputs, can be transformed into
a new input within the interval [0, 0.5] for an operation. Moreover, it can be implemented
using the sine function via Equation (4).

y = cos πx = sin ((0.5− x)π), x ∈ [0, 0.5] (4)

The expression of the arctangent function implemented in this paper is Equation (5) [31,32].

y = arctan (x)/π, x ∈ (−∞,+∞) (5)

The arctangent function is an odd function that can transform any input into the
interval [0,+∞) for an operation. For inputs in the interval [1,+∞), they can be computed
indirectly using a transformation, as shown in Equation (6). Therefore, the range of inputs
of the arctangent function can be reduced to the interval [0, 1].

y = arctan (x)/π = 0.5− arctan(
1
x
)/π, x ∈ [1,+∞) (6)

Electronics 2023, 12, 233 4 of 16

The expression of the exponential function implemented in this paper can be trans-
formed into Equation (7):

y = ex = 2x log2 e = 2i+d = 2i × 2d, x ∈ (−∞,+∞), d ∈ [0, 1) (7)

where i and d represent the integer part and fractional part of x log2 e. The IEEE-754
standard states that with a known floating-point number f , the calculation of f × 2i can be
accomplished by adding the exponent of f .

The expression of the logarithmic function implemented in this paper is Equation (8).

y = ln x, x ∈ (0,+∞) (8)

According to the IEEE-754 standard, Equation (8) can be transformed into Equation (9):

y = ln x = ln (2E−127 × (1 +
T

223)) = (E− 127)× ln 2 + ln (1 +
T

223) (9)

where E and T denote the exponent part and mantissa part of x, respectively, and 1 + T
223

falls within the range [1, 2).
The domains and codomain of the transcendental function and the core computing

unit after a preliminary range reduction are shown in Table 1.

Table 1. The domains and codomain of the transcendental function and the core computing unit.

Transcendental
Function Domains Codomain Core Computing

Unit Inputs Outputs

y = sin πx (−2128,−2−126] ∪
[2−126, 2128)

[−1, 1] ŷ = sin πx̂ [0, 0.5] [0, 1]

y = cos πx (−2128,−2−126] ∪
[2−126, 2128)

[−1, 1] ŷ = sin πx̂ [0, 0.5] [0, 1]

y = arctan (x)
π

(−2128,−2−126] ∪
[2−126, 2128)

(−0.5, 0.5) ŷ = arctan (x̂)
π

[0, 1] [0, 0.25]

y = ex [−126ln2, 128ln2) [2−126, 2128) ŷ = 2x̂ [0, 1) [1, 2)
y = ln x [2−126, 2128) [−126ln2, 128ln2) ŷ = ln x̂ [1, 2) [0, ln 2)

3.2. Polynomial Fitting

Each function in Table 1 is a nonlinear function, and a segmented polynomial fit is
performed in order to obtain high-precision results. The higher level of polynomial fitting
brings a higher accuracy in the operation results, but also more basic operation units [33].
Each higher order of polynomial requires one more adder and one more multiplier, and the
data path delay will be longer at the same time [34].

Polynomials can be calculated in two ways, namely, floating point and fixed point [35,36].
A floating-point operation means that the entire operation is performed in floating-point
form. A fixed-point operation means that the operation is performed in fixed-point form,
while the inputs and outputs are in floating-point form. Floating-point arithmetic is simple
in design and obtains a high computational accuracy, but it brings greater side effects such
as a large latency and a large area. On the premise of ensuring the calculation accuracy [37],
a fixed-point operation has a smaller latency and area.

In order to improve the area and performance of the hardware design, this paper used
a fixed-point binomial operation. The specific implementation steps are shown below, and
the flow chart of the methodology is shown in Figure 1.

Electronics 2023, 12, 233 5 of 16

Divide into several

segments

Float point to fixed

point
Binomial fitting

Is last segment? noAccuracy test yes
 meet the

demand?
no

yes

Generate LUT

Figure 1. The flow chart of the methodology.

1. Transform the inputs and corresponding theoretical outputs into fixed-point form.
2. Divide the input range evenly into several segments.
3. Each segment is fitted with a binomial to obtain binomial coefficients (a, b and c),

and the binomial coefficients are in fixed form and stored in a lookup table. The ad-
dress of the lookup table comes from the high bits of the input, and the low bits of the
input and corresponding output are used to perform the binomial fit of the segment.
The process of binomial fitting is shown in Figure 2.

Figure 2. The process of binomial fitting. (a) Nonlinear function and the selected segment. (b) Fitting
curve obtained by binomial fitting according to the scatter point.

4. Run the operation of Equation (10) and perform accuracy tests to count the maximum
absolute error of the core computing unit.

y = ax2 + bx + c (10)

The testing process requires determining the data’s bit width of the core, including that
of the two multipliers and the two adders. In order to get a high accuracy, the data’s
bit width of the core computing unit should be consistent with the data’s bit width of
the input and the binomial coefficients.

5. If the accuracy does not meet the demand, reset the above parameters for segmented
binomial fitting and test again until the accuracy meets the demand. Finally, generate
the lookup table.

In the process of configuration, the fixed-pointing parameters, the number of segments
and the data’s bit width of the core computing unit all affect the accuracy of the final results.
In order to obtain a high-precision transcendental function binomial coefficient lookup
table, the control variable method was used to obtain the most suitable configuration
parameters for the binomial fitting.

Electronics 2023, 12, 233 6 of 16

Firstly, the data’s bit width of the core operation unit was set as large as possible to
ensure that no large error would be introduced in the binomial operation, and then different
segment numbers and different fixed-point parameters were set to compare the maximum
error of the results of each transcendental function. The relationship between the logarithm
based on 2 of the maximum error and the number of segments, the fixed-point parameter
of each transcendental function is shown in the Figure 3. When the number of segments
was 32 or 64, it was difficult to meet the high-accuracy requirements regardless of the fixed-
point parameters. When the number of segments was 128 or 256, there was no significant
difference in the accuracy of the two conditions when the degree of fixed-pointing was
low, and as the degree of fixed-pointing increased, the accuracy under the configuration of
256 segments was slowly higher than that of 128 segments. Correspondingly, the higher the
number of parameters, the larger the lookup table [38,39]. In order to get the most suitable
configuration combining precision and area, the number of segments in this paper was
determined to be 128 and the fixed-point parameter was 26.

Figure 3. The relationship between the maximum error and the number of segments, the fixed-
point parameter.

Then, the data’s bit width of the core computing unit was optimized for reduction,
which led to an overall upward shift of the maximum error curve. The degree of errors
introduced in different data’s bit width configurations was different, so we experimented
with each data’s bit width configuration, selected a few better configurations and compared
them together, as shown in Figure 4 and Table 2. According to the figure, it can be concluded
that the sine, cosine, arctangent, exponential and logarithmic functions could achieve the
highest accuracy, respectively, in the cases of configuration 5, configuration 3, configuration
3 and configuration 6.

Table 2. The normalized value of the maximum absolute error of functions under different configurations.

Functions cfg1 cfg2 cfg3 cfg4 cfg5 cfg6 cfg7 cfg8

Sine and cosine −23.60 −23.88 −23.60 −23.74 −24.18 −23.95 −23.03 −23.74
Arctangent −25.42 −25.48 −26.13 −25.45 −25.52 −25.95 −24.89 −25.45
Exponential −23.75 −24.21 −24.45 −23.37 −23.74 −24.29 −22.86 −23.37
Logarithmic −24.91 −24.72 −24.98 −24.93 −24.96 −25.06 −24.36 −24.84

Electronics 2023, 12, 233 7 of 16

Figure 4. The relationship between the maximum error and the different configurations.

The size of the lookup table under each configuration is shown in Figure 5. Combining
the accuracy and the lookup table size of each function under each configuration, this paper
used configuration 2 for the hardware design, which had binomial coefficients (a, b and c)
in the lookup table of 12 bits, 22 bits and 26 bits, because the maximum absolute error of all
functions and hardware resources were relatively balanced under this configuration.

Figure 5. The relationship between the size of the lookup table and the different configurations.

3.3. Hardware Implementation

The reconfigured hardware architecture proposed in this paper depended on the fact
that all functions utilized the same core computing unit. There were also preprocessing and
post-processing modules besides the core computing unit, and these modules are further
explained in later sections. The whole architecture is shown in Figure 6.

The preprocessing module was used for reducing the input range, fixed-pointing and
providing the sideband signal required for the postprocessing of each function. Then, the
core module performed the corresponding binomial operations. At last, the postprocess-
ing module processed the sideband signal, turned the results into a floating-point form
and output them.

Electronics 2023, 12, 233 8 of 16

pre

lut
calc

post

lut_addr

Sign ln_add exp_int

lut_b

calc_out
lut_c

lut_a

outin
calc_data

mode

Figure 6. Floating-point transcendental function hardware architecture, where pre represents the
preprocessing module, lut represents the lookup table module, calc represents the calculation module
and post represents the postprocessing module.

3.3.1. Reconfigurable Hardware Architecture

The hardware architecture was reconfigurable because of the high reuse of hardware
resources. That is, all supported functions shared the same core computing unit, which
meant that the more transcendent functions were supported, the higher the hardware
resource utilization. In addition, the difference between data paths for different functions
only existed in the preprocessing and postprocessing stages, which were also reconfigurable.
In these two stages, the calculation of different functions reused the available hardware
resources as much as possible, and there was no combinatorial logic loop.

3.3.2. Preprocessing Module

The preprocessing module is shown in Figure 7. It receives floating-point data (in)
and function mode (mode) as inputs and outputs signal bit (sign), the address of the LUT
(lut_addr), calculates data (calc_data), the compensation value of exponent (exp_int) and
the compensation value of logarithm (ln_add), where exp_int represents 2i in Equation (7)
and ln_add represents (E− 127)× ln 2 in Equation (9). The preprocessing module includes
a floating-point-to-fixed-point module (f loat2int), a data inversion module (inv), a data
inversion selection module (inv_sel), an 8-bit subtracter, a 34-bit integer multiplier and
several multiplexers.

Sin and cosine

in
float2int

data_qn M
U

X

inv

sin_data_qn

mode

inv_sel

atan_data_qn

34x34 mul
mul_out

8-bit sub8'd127

M
U

X

ln_exp

M
U

X

d11629080
d6196328019

exp_data_qn

exp_int

M
U

Xln_data_qn

ln_add

lut_addr

calc_data

M
U

X

sign

arctangent

exponential

logarithmic

Figure 7. Preprocessing module.

Electronics 2023, 12, 233 9 of 16

The data pass through f loat2int, inv and inv_sel when operating sine and cosine
functions and passes through f loat2int when the arctangent function is operated. If an
exponent function is expected to be calculated, f loat2int and the 34-bit integer multiplier,
whose input of 6,196,328,019 is the Q32 fixed-point number of log2 e, are used. If we choose
to operate a logarithmic function, the data pass through the 8-bit subtracter and the 34-bit
multiplier successively, whose input of 11,629,080 is the Q24 fixed-point number of ln 2.

3.3.3. Core Computing Unit

The lookup table module is shown in Figure 8. It can output the binomial coefficients
based on the address and operation mode.

sin_lut

atan_lut

exp_lut

ln_lut

lut_addr

atan_lut_a,b,c M
U
X

lut_b

mode

sin_lut_a,b,c

exp_lut_a,b,c lut_c

lut_a

ln_lur_a,b,c

Figure 8. Lookup table module.

It contains four binomial-fitting coefficient tables in Table 1. Each table contains
128 sets of coefficients. The coefficients are 12 bits, 22 bits and 26 bits, respectively. The total
storage space of these tables is 3.75 KB.

The calculation module is shown in Figure 9.

12x19 mul
22bit

add_sub
22x19 mul

27bit add 26bit add

lut_a

calc_data

lut_b

M
U

Xsub

addmode

lut_c
calc_out

Figure 9. Calculation module.

The calculation module outputs the result (calc_out) based on the calculating data
(calc_data), binomial coefficients (lut_a, lut_b, lut_c) and the operation mode (mode). It is
composed of two multipliers, two adders and one adder/subtracter to calculate an output
with an input in Equation (11). Compared with Equation (10), this calculation method has
one fewer multiplier and a lower latency.

calc_out = (lut_a× calc_data + lut_b)× calc_data + lut_c (11)

The 12 × 19-bit integer multiplier calculates lut_a × calc_data. Then, the 22-bit
adder/subtracter outputs lut_a × calc_data + lut_b. Since the coefficients lut_b in the
sine and cosine functions are negative and are positive otherwise, the adder/subtracter per-
forms a subtraction in the sine and cosine functions and an addition otherwise. Then, after
the operation of the 22 × 19-bit integer multiplier and 27-bit adder, we can get the initial
result (lut_a× calc_data + lut_b)× calc_data + lut_c. Finally, the 26-bit adder performs a
rounding and we can get a fixed-point Q26 output result.

Electronics 2023, 12, 233 10 of 16

3.3.4. Postprocessing Module

The postprocessing module is shown in Figure 10. It can output floating-point results
(out) based on (calc_out), signal bit (sign), the compensation value of exponent (exp_int)
and the compensation value of logarithm (ln_add). It consists of a fixed-point-to-floating-
point module (int2 f loat), a sign-processing module (sign_proc), a 33-bit adder, an 8-bit
adder and several multiplexers.

int2float

calc_out

M
U

X

8-bit add33-bit addln_add

M
U

X

mode

float_data

sign_p

roc

sign

sign_proc

sin_data_flt

cos_data_flt

atan_data_flt

ln_data_flt

exp_data_flt

exp_int

out

Sin and cosine

arctangent

exponential

logarithmic

Figure 10. Postprocessing module.

The data pass through int2 f loat and sign_proc when operating the sine, cosine and
arctangent functions. If an exponent function is expected to be calculated, int2 f loat and
the 8-bit adder are employed, where the 8-bit adder is used to add exp_int to the output of
int2 f loat to obtain the real output value. If we choose to operate a logarithmic function,
the 33-bit adder, int2 f loat and sign_proc are employed, where the 33-bit adder is used to
add ln_add to calc_out.

3.3.5. Retiming Optimization

To support the pipeline architecture, we added several stages of pipeline registers in
the end module, as shown in Figure 11. Then, we set the command set_optimize_registers
for the retiming optimization to properly move pipeline registers, which aimed to ensure
that the combined logic delays between both stages were essentially the same. The more
pipeline registers there were, the higher the frequency the hardware circuit could work at,
but the more cycles it took to compute the transcendence function.

pre
in

core post reg reg
out

Figure 11. Pipelined architecture of hardware by adding several registers after the original hardware
design, where pre represents the preprocessing module, core represents the core computing unit, post
represents the postprocessing module and reg represents the register.

Different transcendental functions work with different data paths. Sine, cosine and
arctangent functions have shorter data paths in the preprocessing and postprocessing
modules, while the exponential and logarithmic functions have longer ones. The above
method of designing all functions with the same pipeline structure has performance losses
for the transcendental functions with a shorter data path. As a result, the pipeline registers
must be arranged according to the data path of the transcendent function before using
the command set_optimize_registers for the retiming optimization, as shown in Figure 12,
where path0 represents a shorter data path and path1 represents a longer one. After opti-
mization, with the same hardware circuit, the sine, cosine and arctangent functions with
shorter data paths will spend fewer clock cycles than the exponential and logarithmic
functions with longer data paths, which can improve performance.

Electronics 2023, 12, 233 11 of 16

pre1

in

core

post0

reg reg
out

post1

pre0

reg

M
U
X

reg

M
U
X

Figure 12. Optimizing the pipeline architecture of the hardware, where pre represents the preprocess-
ing module, core represents the core computing unit, post represents the postprocessing module, reg
represents the register, Mux represents multiplexers.

4. Experiment and Comparison
4.1. Accuracy

The test method was to traverse all normalized floating-point numbers and compare
the circuit calculation results with the results of the C language math library. The hardware
accuracy test results are shown in Table 3.

Table 3. Hardware accuracy.

Functions 0 ulp 1 ulp 2 ulp

Sine 77.065% 13.719% 9.216%
Cosine 77.065% 13.719% 9.216%

Arctangent 78.896% 10.669% 10.435%
Exponential 61.416% 38.546% 0.038%
Logarithmic 75.935% 11.376% 12.689%

The precision of the floating-point transcendental function hardware algorithm pro-
posed in this paper, according to the data in Table 3, could satisfy 2 ulp, that is, the maximum
error of the binary representation of the single-precision floating-point number between
the hardware output result and the C language math library result was two.

4.2. Performance, Power and Area

First, we synthesized the hardware circuit that supported all transcendental functions,
which was implemented by directly inserting pipeline registers, using Design Compiler
under the UMC 40 nm CMOS process library, 0.99 V, 125 ◦C and RVT conditions. The results
of the performance, power and area are shown in the Table 4.

Table 4. Performance, power and area of a hardware circuit which supports all transcendental
functions.

Pipelines Frequence/MHZ Area/µm2 Latency/ns Power/mW

2 100 13,907.42 20.00 0.274
3 170 14,414.78 17.65 0.453
4 230 15,062.91 17.39 1.234
5 290 16,852.14 17.24 1.084
6 340 16,191.11 17.64 1.567
7 380 15,745.48 18.42 2.618

As we can see, the floating-point transcendental function hardware circuit could
achieve a high performance of only 17.39 ns with fewer hardware resources when it worked
at a frequency of 230 MHz and cost four cycles. The full-load power consumption was
1.234 mW, and the area was 15,062.91 µm2. The area of each module was as shown in
Figure 13. As can be seen from Figure 13, because of the reconfigurable technology, the area
of the core calculation module only took up 28.18% of the total area.

Electronics 2023, 12, 233 12 of 16

Figure 13. The area ratio of each module.

Then, we synthesized the hardware circuits that only enabled one transcendental
function separately, under the same conditions, and set the frequency to 230 MHz. The per-
formance, power and area results of each function are shown in the Table 5. The data
in the Table 5 show that when different functions were implemented separately at the
same frequency, the number of cycles required was different. Among them, the cycle of
the sine, cosine and arctangent functions was shorter than that of the exponential and
logarithmic functions.

Table 5. Performance, power and area of a hardware circuit which supports a single transcenden-
tal function.

Functions Pipelines Area/µm2 Latency/ns Power/mW

Sine 3 6802.79 13.04 0.3132
Cosine 3 6802.79 13.04 0.3132

Arctangent 3 6187.03 13.04 0.3725
Exponential 4 7976.67 17.39 0.6075
Logarithmic 4 5968.74 17.39 0.2630

For comparison, the hardware circuit that was created by the direct combination of
the hardware circuit that independently realized the transcendental function had an area
and power consumption of 26,935.23 µm2 and 1.511 mW, respectively. Compared with the
hardware circuit without reconfigurable technology, the area and power consumption of
the proposed reconfigurable hardware architecture were reduced by 44.08% and 18.33%,
respectively.

Finally, we synthesized a hardware circuit after pipeline register optimization, which
supported the calculation of the sine, cosine and arctangent functions in three cycles
and the calculation of the exponential and logarithmic functions in four cycles. The results
compared with those of the hardware circuits supporting all functions with four cycles are
shown in the Table 6. The results show that the highest working frequency became lower,
and the working performance for the exponential and logarithmic functions was degraded
by 4.35%. However, the performance for the sine, cosine and arctangent functions was
improved by 21.59% and the area and power consumption were both improved.

Electronics 2023, 12, 233 13 of 16

Table 6. Hardware comparison before and after optimization.

Hardware
Circuit

Max
Frequency/MHz Area/µm2 Latency/ns Power/mW

Before
optimization 230 15,062.91 17.39 1.234

After
optimization 220 14,009.35 18.18/13.63 0.923

−4.35% −7.00% +4.35%/−21.59% −25.20%

As shown in Table 7, the area and power consumption of the hardware circuit after
pipeline register optimization were reduced by 47.99% and 38.91%, respectively, when
compared to the hardware circuit without reconfigurable technology. The proposed hard-
ware supported five different transcendental function operations, and its performance was
improved by 1.3 times and the area was reduced by 27.2% compared with those of [37].
In addition, the accuracy was improved by 75% compared with that in [26]. Compared
with state-of-the-art hardware accelerators for transcendental functions, the reconfigurable
hardware architecture proposed in this paper had certain advantages in performance,
accuracy and area, which can be seen in Table 8.

Table 7. Comparison with the hardware circuit without reconfigurable technology.

Hardware
Circuit

Max
Frequence/MHz Area/µm2 Latency/ns Power/mW

Separate
implementation 230 26935.23 17.39 1.511

After
optimization 220 14009.35 18.18/13.63 0.923

−4.35% −47.99% +4.35%/−21.59% −38.91%

Table 8. Comparison of results with state-of-the-art hardware architectures.

Paper This [26] [36] [37] [27]

Function All Logarithmic Sine, cosine exp All
Technique UMC 40 nm 65 nm FPGA STM 65 nm −
Accuracy 2 ulp 3.5 ulp 1.5 ulp 1× 10−9 −

Performance 17.39 ns 96 ns 15 cycles 40.3 ns 14.5 τ
Power 1.234 mW − − 0.959 mW −
Area 15,062 60,000 gate − 20,700 −

5. Conclusions

In order to support multiple floating-point transcendental function operations with a
small hardware circuit area, this paper proposed a reconfigurable hardware architecture
for miscellaneous floating-point transcendental functions. This paper utilized a reconfig-
urable technology to implement multiple transcendental functions, including sine, cosine,
arctangent, exponential and logarithmic functions. The transcendental function hardware
accelerator with a high accuracy and low latency, which is significant for many applica-
tion scenarios, cost a small quantity of hardware resources. In this paper, the method of
combining lookup tables with binomial operations, which generated lookup tables oc-
cupying 3.75 KB of space, was used to design a hardware accelerator of high-precision
transcendental functions.

The experimental results showed that the difference between the calculation results of
the proposed hardware circuit and those of the C language math library was at most 2 ulp.
Under the UMC 40 nm CMOS process library, the clock frequency could reach 220 MHz
with a latency of 18.18 ns, a full-load power consumption of 0.923 mW and an area of
1.40× 104 µm2. Compared with five separate superfunction hardware accelerators, the area

Electronics 2023, 12, 233 14 of 16

was reduced by 47.99% and the power was reduced by 38.91%. In some area-sensitive appli-
cation scenarios that require a low latency and a high precision for transcendental function
operations, the floating-point transcendental function hardware architecture proposed
in this paper has important application value. Moreover, the reconfigurable architecture
proposed in this paper will play an even greater role in the future as various fields pursue
high-performance computing.

Author Contributions: Conceptualization: P.L. and H.J.; methodology: P.L., H.J. and W.X.; validation:
H.Y. and C.X.; formal analysis: K.H.; investigation: P.L. and W.X.; data curation: H.Y. and C.X.;
writing—original draft preparation: H.J.; writing—modified and polished: P.L. and K.H.; supervision:
K.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work is funded by the National Key R&D Program of China (2020YFB0906000,
2020YFB0906001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Many thanks to editors and reviewers for their comments and help.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lin, K.J.; Hou, C.C. Implementation of trigonometric custom functions hardware on embedded processor. In Proceedings of the

2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE), Makuhari, the Greater Tokyo Area, Japan, 1–4 October 2013;
pp. 155–157.

2. Moore, L.D.; Haddad, R.J. Using Exponential and Logarithmic Thresholds to Optimize Scalable Video Traffic Over Passive Optical
Networks. In Proceedings of the 2019 SoutheastCon, Huntsville, AL, USA, 11–14 April 2019; pp. 1–6.

3. Xiong, B.; Li, Y.; Li, S.; Fan, S.; Chang, Y. Half-Precision Logarithmic Arithmetic Unit Based on the Fused Logarithmic and
Antilogarithmic Converter. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022, 30, 243–247. [CrossRef]

4. Patil, V.; Manu, T.M. FPGA Implementation Radix-2 DIT FFT Using Fixed Point Arithmetic and Reduced Arithmetic Complexity.
In Proceedings of the 2021 International Conference on Intelligent Technologies (CONIT), Karnataka, India, 25–27 June 2021;
pp. 1–4.

5. Borysenko, O.; Matsenko, S.; Bobrovs, V. Binomial Number System. Appl. Sci. 2021, 11, 11110. [CrossRef]
6. Benammar, M.; Alassi, A.; Gastli, A.; Ben-Brahim, L.; Touati, F. New Fast Arctangent Approximation Algorithm for Generic

Real-Time Embedded Applications. Sensors 2019, 19, 5148. [CrossRef] [PubMed]
7. Pawelek, R.; Wasiak, I.; Gburczyk, P.; Mienski, R. Impact of wind power plant on electrical power system — Comparison of

calculation method and measurements. In Proceedings of the 11th International Conference on Electrical Power Quality and
Utilisation, Lisbon, Portugal, 17–19 October 2011; pp. 1–5.

8. Ortiz, F.E.; Humphrey, J.R.; Durbano, J.P.; Prather, D.W. A Study on the Design of Floating-Point Functions in FPGAs. In Field
Programmable Logic and Application; Cheung, P.Y.K., Constantinides, G.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2003;
Volume 2778.

9. Mohamed, S.M.; Sayed, W.S.; Radwan, A.G.; Said, L.A. FPGA Implementation of Reconfigurable CORDIC Algorithm and a
Memristive Chaotic System With Transcendental Nonlinearities. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 2885–2892.
[CrossRef]

10. Volder, J.E. The CORDIC Trigonometric Computing Technique. IRE Trans. Electron. Comput. 1959, EC-8, 330–334. [CrossRef]
11. Walther, J.S. A unified algorithm for elementary functions. In Proceedings of the Spring Joint Computer Conference, New York,

NY, USA, 18–20 May 1971; pp. 379–385.
12. Garrido, M.; Källström, P.; Kumm, M.; Gustafsson, O. CORDIC II: A New Improved CORDIC Algorithm. IEEE Trans. Circuits

Syst. II Express Briefs 2016, 63, 186–190. [CrossRef]
13. Chen, J.; Liu, X. A High-Performance Deeply Pipelined Architecture for Elementary Transcendental Function Evaluation. In

Proceedings of the 2017 IEEE International Conference on Computer Design (ICCD), Boston, MA, USA, 5–8 November 2017;
pp. 209–216.

14. Ze, T.; Feihu, F.; Jun, Z.; Xianglong, R.; Yang, W. High-Speed Transcendental Function Operation Unit Design. In Proceedings of
the 2022 IEEE 9th International Conference on Cyber Security and Cloud Computing (CSCloud)/2022 IEEE 8th International
Conference on Edge Computing and Scalable Cloud (EdgeCom), Xi’an, China, 25–27 June 2022; pp. 160–165.

http://doi.org/10.1109/TVLSI.2021.3136229
http://dx.doi.org/10.3390/app112311110
http://dx.doi.org/10.3390/s19235148
http://www.ncbi.nlm.nih.gov/pubmed/31775303
http://dx.doi.org/10.1109/TCSI.2022.3165469
http://dx.doi.org/10.1109/TEC.1959.5222693
http://dx.doi.org/10.1109/TCSII.2015.2483422

Electronics 2023, 12, 233 15 of 16

15. Nandagopal, R.; Rajashree, V.; Rao, M. Accelerated Piece-Wise-Linear Implementation Of Floating-Point Power Function. In
Proceedings of the 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Glasgow, UK, 24–26 October
2022; pp. 1–4.

16. Lu, H.-Y.; Yen, M.-H.; Chang, C.-W.; Cheng, C.-W.; Hsu, T.-C.; Lin, Y.-C. Efficient Hardware Implementation of CORDIC-
Based Symbol Detector for GSM MIMO Systems: Algorithm and Hardware Architecture. IEEE Access 2022, 10, 114232–114241.
[CrossRef]

17. Sharma, R.; Shrestha, R.; Sharma, S.K. Low-Latency and Reconfigurable VLSI-Architectures for Computing Eigenvalues and
Eigenvectors Using CORDIC-Based Parallel Jacobi Method. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022, 30, 1020–1033.
[CrossRef]

18. Fu, W.; Xia, J.; Lin, X.; Liu, M.; Wang, M. Low-Latency Hardware Implementation of High-Precision Hyperbolic Functions Sinhx
and Coshx Based on Improved CORDIC Algorithm. Electronics 2021, 10, 2533. [CrossRef]

19. Hsiao, S.-F.; Huang, K.-C.; Chen, Y.-H. Multi-Precision Table-Addition Designs for Computing Nonlinear Functions in Deep
Neural Networks. In Proceedings of the 2019 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Bangkok,
Thailand, 11–14 November 2019; pp. 182–185.

20. Neto, H.C.; Vestias, M.P. Very low resource table-based FPGA evaluation of elementary functions. In Proceedings of the 2013
International Conference on Reconfigurable Computing and FPGAs (ReConFig), Cancun, Mexico, 9–11 December 2013; pp. 1–6.

21. de Dinechin, F.; Joldes, M.; Pasca, B.; Revy, G. Multiplicative Square Root Algorithms for FPGAs. In Proceedings of the 2010
International Conference on Field Programmable Logic and Applications, Milan, Italy, 31 August–2 September 2010; pp. 574–577.

22. de Dinechin, F.; Tisserand, A. Multipartite table methods. IEEE Trans. Comput. 2005, 54, 319–330. [CrossRef]
23. Kusaka, T.; Tanaka, T. Fast and Accurate Approximation Methods for Trigonometric and Arctangent Calculations for Low-

Performance Computers. Electronics 2022, 11, 2285. [CrossRef]
24. An, M.; Luo, Y.; Zheng, M.; Wang, Y.; Dong, H.; Wang, Z.; Peng, C.; Pan, H. Piecewise Parabolic Approximate Computation Based

on an Error-Flattened Segmenter and a Novel Quantizer. Electronics 2021, 10, 2704. [CrossRef]
25. Sergiyenko, A.; Moroz, L.; Mychuda, L.; Samotyj, V. FPGA Implementation of CORDIC Algorithms for Sine and Cosine Floating-

Point Calculations. In Proceedings of the 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications (IDAACS), Cracow, Poland, 22–25 September 2021; pp. 383–386.

26. Nilsson, P.; Shaik, A.U.R.; Gangarajaiah, R.; Hertz, E. Hardware implementation of the exponential function using Taylor series.
In Proceedings of the 2014 NORCHIP, Tampere, Finland, 27–28 October 2014; pp. 1–4.

27. Muñoz, D.M.; Sánchez, D.F.; Llanos, C.H.; Ayala-Rincón, M. Tradeoff of FPGA design of floating-point transcendental functions.
In Proceedings of the 2009 17th IFIP International Conference on Very Large Scale Integration, Florianopolis, Brazil, 12–14 October
2009; p. 239.

28. Gener, Y.S.; Gören, S.; Ugurdag, H.F. Lossless Look-Up Table Compression for Hardware Implementation of Transcendental
Functions. In Proceedings of the 2019 IFIP/IEEE 27th International Conference on Very Large Scale Integration (VLSI-SoC),
Cuzco, Peru, 6–9 October 2019; pp. 52–57.

29. Hu, Z.-W.; Duan, D.-X.; Xie, Z.-Y.; Yang, X. Pipeline Design of Transformation between Floating Point Numbers Based on IEEE754
Standard and 32-bit Integer Numbers. In Proceedings of the 2009 Second International Symposium on Intelligent Information
Technology and Security Informatics, Moscow, Russia, 23–25 January 2009; pp. 92–96.

30. Mocerino, L.; Calimera, A. AxP: A HW-SW Co-Design Pipeline for Energy-Efficient Approximated ConvNets via Associative
Matching. Appl. Sci. 2021, 11, 11164. [CrossRef]

31. Ukil, A.; Shah, V.H.; Deck, B. Fast computation of arctangent functions for embedded applications: A comparative analysis. In
Proceedings of the 2011 IEEE International Symposium on Industrial Electronics, Gdansk, Poland, 27–30 June 2011; pp. 1206–1211.

32. Texas Instruments. Available online: http://www.ti.com/microcontrollers/c2000-performance-mcus/real-time-control/
overview.html (accessed on 1 December 2022).

33. Gao, J.; Ji, W.; Zhang, L.; Shao, S.; Wang, Y.; Shi, F. Fast Piecewise Polynomial Fitting of Time-Series Data for Streaming Computing.
IEEE Access 2020, 8, 43764–43775. [CrossRef]

34. Xusheng, Y. The design and implementation of Matlab-based nonlinear data fitting for infrared sensors. In Proceedings of the
2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), Changchun, China, 25–27
February 2022; pp. 97–102.

35. Chang, C.-H.; Chen, S.-H.; Chen, B.-W.; Ji, W.; Bharanitharan, K.; Wang, J.-F. Fixed-Point Computing Element Design for
Transcendental Functions and Primary Operations in Speech Processing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2016, 24,
1993–1997. [CrossRef]

36. Pineiro, J.-A.; Ercegovac, M.D.; Bruguera, J.D. Algorithm and architecture for logarithm, exponential, and powering computation.
IEEE Trans. Comput. 2004, 53, 1085–1096. [CrossRef]

37. Maire, J.L.; Brunie, N.; Dinechin, F.D.; Muller, J.-M. Computing floating-point logarithms with fixed-point operations. In
Proceedings of the 2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH), Silicon Valley, CA, USA, 10–13 July 2016;
pp. 156–163.

http://dx.doi.org/10.1109/ACCESS.2022.3217523
http://dx.doi.org/10.1109/TVLSI.2022.3170526
http://dx.doi.org/10.3390/electronics10202533
http://dx.doi.org/10.1109/TC.2005.54
http://dx.doi.org/10.3390/electronics11152285
http://dx.doi.org/10.3390/electronics10212704
http://dx.doi.org/10.3390/app112311164
http://www.ti.com/microcontrollers/c2000-performance-mcus/real-time-control/overview.html
http://www.ti.com/microcontrollers/c2000-performance-mcus/real-time-control/overview.html
http://dx.doi.org/10.1109/ACCESS.2020.2976494
http://dx.doi.org/10.1109/TVLSI.2015.2477312
http://dx.doi.org/10.1109/TC.2004.53

Electronics 2023, 12, 233 16 of 16

38. Selina, R.R. VLSI implementation of Piecewise Approximated antilogarithmic converter. In Proceedings of the 2013 International
Conference on Communication and Signal Processing, Melmaruvathur, India, 3–5 April 2013; pp. 763–766.

39. Nam, B.-G.; Yoo, H.-J. An Embedded Stream Processor Core Based on Logarithmic Arithmetic for a Low-Power 3-D Graphics
SoC. IEEE J. Solid-State Circuits 2009, 44, 1554–1570. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JSSC.2009.2016698

	Introduction
	Related Work
	Methods
	Preliminary Range Reduction
	Polynomial Fitting
	Hardware Implementation
	Reconfigurable Hardware Architecture
	Preprocessing Module
	Core Computing Unit
	Postprocessing Module
	Retiming Optimization

	Experiment and Comparison
	Accuracy
	Performance, Power and Area

	Conclusions
	References

