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Abstract: Aiming at the problems of the large amount of model parameters and false and missing
detections of multi-scale drone targets, we present a novel drone detection method, YOLOv4-MCA,
based on the lightweight MobileViT and Coordinate Attention. The proposed approach is improved
according to the framework of YOLOv4. Firstly, we use an improved lightweight MobileViT as the fea-
ture extraction backbone network, which can fully extract the local and global feature representations
of the object and reduce the model’s complexity. Secondly, we adopt Coordinate Attention to improve
PANet and to obtain a multi-scale attention called CA-PANet, which can obtain more positional
information and promote the fusion of information with low- and high-dimensional features. Thirdly,
we utilize the improved K-means++ method to optimize the object anchor box and improve the
detection efficiency. At last, we construct a drone dataset and conduct a performance experiment
based on the Mosaic data augmentation method. The experimental results show that the mAP of
the proposed approach reaches 92.81%, the FPS reaches 40 f/s, and the number of parameters is
only 13.47 M, which is better than mainstream algorithms and achieves a high detection accuracy for
multi-scale drone targets using a low number of parameters.

Keywords: drone object detection; deep learning; lightweight network; coordinate attention

1. Introduction

In recent years, drone technology has developed rapidly. However, there are more and
more black flying and random flying problems of small drones, which pose a serious threat
to both society and individuals [1]. Therefore, it is very urgent to research the defense
technology of small drones. Drone targets have the characteristics of low flight altitudes,
slow speeds, and miniaturization [2]. This makes radar and radio frequency detection
methods very difficult and costly [3,4]. Although the sound detection method is easy, the
targets’ detection position can be interfered by noise [5]. At present, a new object detection
method for drones is very necessary.

With the widespread application of deep learning and the continuous updating of
GPUs, object detection has gradually moved from traditional pattern recognition to deep
learning and has been widely used in face recognition, medical image detection, automatic
vehicle driving, and other engineering tasks [6]. At present, deep learning algorithms
can be mainly divided into two-stage object algorithms and one-stage object algorithms.
The former extracts target candidate regions through a candidate box generator and then
classifies and regresses the candidate boxes. Its representative algorithms include R-
CNN and Faster R-CNN [7]. The latter does not need candidate boxes and can directly
extract image features through a convolutional network for classification and location. Its
representative algorithms include SSD (Single-Shot MultiBox Detector) and YOLO (You
Only Look Once) [8]. YOLOv4 is a classic version of the YOLO algorithm series [9]. It is the
first to use CSPDarkNet-53 as the backbone to extract feature information, PANet (Path
Aggregation Network) as the feature fusion network, and an SPP (Spatial Pyramid Pooling)
structure to enhance feature extraction [10], which makes YOLOv4 more effective in multi-
scale target detection and greatly improves the performance of one-stage algorithms.
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Deep learning algorithms have high accuracy and can implement the detection task
of different targets well. Therefore, many scholars use deep learning methods to study
drone detection. Fatemeh et al. use a CNN (Convolutional Neural Network) as a classi-
fication model to detect drones [11]. The model achieves 93% accuracy in the self-built
dataset, which is far better than the SVM (Support Vector Machine) and KNN (K Nearest
Neighbor) methods in the comparative experiment. However, the amount of parameters in
the convolution model is too large to perform detection tasks quickly, and the detection
performance of multi-scale targets is poor. To solve the problem that the convolutional
network does not fully extract the feature information of multi-scale targets, Zeng et al.
propose a detection algorithm using Res2net combined with a hybrid feature pyramid
structure to achieve multi-scale feature fusion, which achieves more than 93% mAP in the
self-built drone dataset [12]. However, the complex convolution and multi-scale structure
make the model have poor real-time performance. Aiming at the problems of large memory
consumption and poor real-time performance of the drone detection model, Tian et al.
propose an improved two-scale YOLOv4 [13]. Through model pruning and sparse training,
this method reduces the memory occupation by 60%, increases the FPS by 35%, and reaches
58 frames per second. However, the accuracy of the model has decreased. In drone de-
tection, Yew et al. construct a multi-scale drone dataset and integrate SSD and YOLOv3
for training, which greatly improves the confidence of the detection result [14]. However,
the integration method brings about the problems of slow speed and a complex process.
In the process of improvement, the above methods both have problems balancing the
accuracy and speed of their models.

Aiming at the problems of large model sizes and low multi-scale target detection
accuracy, we propose a drone target detection algorithm called YOLOv4-MCA that com-
bines the lightweight network MobileViT, coordinate attention, and improved K-means++.
The innovations of this paper are as follows:

• The proposed approach uses the lightweight network MobileViT as the backbone
of the detection model and adopts depth-wise separable convolution to replace the
standard convolution in the feature fusion network and the detection head network.
In exchange for a small loss of accuracy, the number of model parameters and the
model complexity are reduced, and the detection speeds are improved.

• The proposed approach adopts a new multi-scale attention feature fusion network CA-
PANet as the neck of the detection model. It can fuse multi-scale feature information
and enhance the flow of high-dimensional texture features and low-dimensional
positioning features. The introduced coordinate attention module can extract more
positional information. After improvement, the classification and positioning accuracy
of multi-scale targets have been improved.

• In the anchor box setting, we introduce the improved cluster algorithm K-means++ to
cluster data samples and update the anchor box size to improve detection efficiency.

Through the above improvements, our method has a lighter network structure, faster
detection speed, and greater accuracy than other detection algorithms. Thereby, we use
YOLOv4-MCA to conduct the drone detection research.

2. Related Work

This purpose of this section is mainly to introduce the development and applications
of relevant methods, including the development of lightweight networks, the methods of
attention mechanisms, and some research work on anchor boxes.

With the development of convolutional networks, models become larger and deeper.
Such development brings high accuracy to the model, but it also loses the advantages of
smaller sizes and higher speeds. Contrary to large convolutional networks, lightweight
networks are efficient models for mobile and embedded vision applications. With simple
architectures, small sizes, and short response delays, lightweight networks can better meet
the requirements for lightweight and fast models in drone detection tasks. At present,
the representative lightweight networks are EfficentNet, MobileNetV3, MobileViT, and so
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on [15–17]. With lightweight networks, we can design agile models to maintain a balance
between accuracy and speed. However, it is difficult to effectively combine lightweight
networks with detection models. In this regard, Zhao et al. conduct relevant research
in weed detection and propose an an improved YOLOv4 combined with MobileNetV3
and CBAM [18]. The mAP value of the improved model for weed detection in a potato
field reaches 98.52%, and the average detection time of a single image is 12.49 ms, which
shows that the improved YOLOv4 model is a feasible real-time weed identification method.
In addition to lightweight networks, model pruning is also used to construct drone de-
tection models. In view of small and fast drones, Zhang et al. propose a drone detection
method by pruning the convolutional channel and residual structures of YOLOv3-SPP3 [19].
The pruned model achieves good results on the self-built UAV dataset: the maximum detec-
tion speed increased by 10.2 times and the maximum mAP value increased by 15.2%, which
meets the requirements for the real-time detection of UAVs. Similarly, Liu et al. present a
YOLOv4 model for pruning the convolutional channel and shortcut layer to address the
threat of small and quick drones [20]. This pruned YOLOv4 model achieves 90.5% mAP,
and its processing speed is increased by 60.4%, which is an effective and accurate approach
for drone detection. Methods based on a lightweight network and model pruning can
obtain remarkable results in the transformation of drone detection models but have the
problems of performance degradation and network model instability.

Attention mechanisms have been proven to be helpful for solvingcomputer vision tasks
in many research works [21]. Therefore, we can apply attention mechanisms to improve
the accuracy of drone detection models. At present, the widely used attention mechanisms
include SE (Squeeze and Excitation), CBAM (Convolutional Block Attention Module), CA
(Coordinate Attention), and so on [22–24]. In the combination of attention mechanisms and
drone-based detection, Li et al. take the lead and propose a novel object detection algorithm
for drone cruising in large-scale maritime scenarios [25]. By introducing the self-attention
structure Transformer to enhance the feature extraction function, the improved method
increases the detection precision by 1.4% and the number of parameters is reduced by
11.6%. In the same way, Li et al. construct an inverted pyramid network based on the
spatial attention mechanism to improve the detection performance of small and dense
traffic signs [26]. Cao et al. add the CBAM attention module to improve the prediction
accuracy of complex small target detection by the YOLOv4 network [27]. These methods of
adding attention mechanisms have achieved good results in multi-scale target detection.
Thereby, selecting an appropriate attention mechanism is helpful for drone target detection.
However, the extraction of location information seems to be neglected, which leads to a
poor detection effect for small targets.

In addition updating the network structure, the improvement in the anchor box is
also an important part of object detection. From the initial prior knowledge setting, to
K-means algorithm clustering, to the present anchor-free approach, anchor box setting in
model training and detection is becoming more and more reasonable and efficient. Cai et al.
significantly increased the detection speed by setting anchors of different sizes on multi-
scale feature maps [28]. Piao et al. propose a two-stage, anchor-free network to predict
regression results stage-by-stage, thereby reducing the scope of the prediction space and
improving the localization accuracy [29]. Hu et al. propose an adaptive approach based
on the ISODATA clustering algorithm to learn the anchor shape priors from data samples,
and this method solves the identification problems for small targets owing to the multiple
down-samplings performed in a deep-learning-based method [30]. It can be seen from
these methods that the improvements in anchor box methods are helpful to improve the
detection performance of these models and thus improve the detection performance on
drone targets.

Combined with the improvements and deficiencies of the relevant papers, we propose
a lightweight drone detection algorithm based on MobileViT and Coordinate Attention,
and the improved K-means++ clustering algorithm is used to reset the anchor box.
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3. Model Design

This section mainly introduces the overall model architecture of YOLOv4-MCA and
the principles of the relevant improvement methods.

3.1. YOLOv4-MCA Model

YOLOv4-MCA is the core algorithm of this paper. This section will introduce its basic
architecture, including its backbone, neck, and prediction head:

(1) Backbone Network: The algorithm uses lightweight MobileViT11 as the backbone
feature extraction network. In terms of network structure, the MobileViT backbone
prunes the full connection layer and prediction layer and leaves the initial convo-
lution layers, MV2 block and MVIT block. Its main structure is shown in Figure 1.
Functionally, the new backbone combines the advantages of CNNs and Vision Trans-
former. The combined network structure can fully extract the local and global sample
information and generate feature maps of different scales to the neck network.

(2) Neck network: The algorithm uses multi-scale attention CA-PANet as the neck feature
fusion network. CA-PANet has three feature fusion branches and adds a coordinate
attention module to the network input nodes. The multi-scale attention network can
promote the extraction of target location information, realize the fusion of deep and
shallow feature information, and achieve feature enhancement. Its network structure
mainly consists of CBR block, Upsample, Downsample, CA block, and SPP block.

(3) Prediction head: The algorithm uses the classic Yolohead as the prediction head. Its
main function is to predict the position and class of the target feature maps. Its main
structure is composed of a CBR block and DW convolution block, as well as loss
function and prediction box filtering algorithm.

Figure 1. YOLOv4-MCA model architecture diagram.
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In addition to the three parts, there are other small modules. CBR block is composed of
a convolution block, a normalization layer, and an activation function (Relu6). It is the main
operator for model extraction of convolution features. The MV2 block is a linear bottleneck
inverted residual structure, which is mainly composed of a 1 × 1 convolution block, a 3 × 3
DW convolution block, and an activation function (SiLU). When the input and output have
the same channel, it will make a residual connection to deepen the network. The MVIT
block is the main component module of the vision transformer in MobileViT, which is used
to extract the global information representation. The CA block is a coordinate attention
module. Conv3 and Conv5 are composed of CBR and DW convolution blocks. The SPP
block is composed of the maximum pooling layer and the full connection layer. Its function
is to convert input feature maps of different sizes into feature vectors of the same size.
Figure 1 shows the overall structure of YOLOv4-MCA and the structure of each block.

3.2. Lightweight Backbone MobileViT11

To ensure the low parameter demand and real-time detection performance, we use
a lightweight MobileViT network to design the backbone MobileViT11. MobileViT is
a lightweight, general-purpose, and mobile-friendly vision transformer proposed by
Sachin et al. of Apple in 2021 [17]. Different from the single CNN backbone of YOLOv4,
MobileViT combines the architectures of CNNs and ViTs. Therefore, it not only has the
light weight and efficiency of CNNs, but it also has the self-attention and global vision of
transformer networks, which allows it to learn local features and global representations
better. Obviously, it is a lightweight model with more comprehensive performance.

As a classification model, MobileViT performs well in extracting feature information.
However, when being used as the backbone of the detection model, the network structure
needs to be adjusted. Considering that the classification layer and global pooling layer do
not participate in feature extraction, we prune these two layers and adjust the output nodes
of the model to obtain the MobileViT11 backbone network, which can output the multi-
scale feature information maps. Table 1 shows the structure information of the pruning
model. In Table 1, Floor represents the layer number of the module in the network, Input
represents the size of the input feature map, Operator indicates the type of module, Out
size indicates the number of output channels of each layer, L represents the number of
transformers in the MVIT block, and s is the step size of convolutional kernel movement.

Table 1. The structural information of MobileViT11.

Floor Input Operator Out Size L s

1 4162 × 3 Conv 16 - 2
2 2082 × 16 MV2 32 - 1
3 2082 × 32 MV2 64 - 2
4 1042 × 64 MV2 64 - 1
5 1042 × 64 MV2 64 - 1
6 1042 × 64 MV2 96 - 2
7 522 × 96 MVIT 96 2 1
8 522 × 96 MV2 128 - 2
9 262 × 128 MVIT 128 4 1
10 262 × 128 MV2 160 - 2
11 132 × 160 MVIT 160 3 1

The main components of the MobileViT11 are MV2 block and MVIT block. MV2 is a
linear bottleneck inverse residual block proposed in MobileNetV2 [31]. The function of this
structure is to expand the low-dimensional compressed data to higher dimensions, filter
the data with depth-wise separable convolution, and restore the feature data back to the
lower dimensions through the linear bottleneck block. This structure uses small tensor data
in the reasoning process, which reduces the demand on the embedded hardware for main
memory access and improves the response speed. Its structure is shown in Figure 2.
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Figure 2. The structure of linear bottleneck inverse residual block.

Another block, the MVIT block, consists of three parts: the local information coding
module, the global information coding module, and the feature fusion module. The corre-
sponding functions of the three parts are to extract local feature, extract global feature, and
fuse feature information, respectively. MVIT can fully extract the image feature information
with fewer parameters. The components of the MVIT block are shown in Figure 3.

Figure 3. The structure of MVIT block.

3.3. Multi-Scale Attention CA-PANet

The lightweight model has a simplified architecture, but it also brings about a loss
of accuracy. To reduce the decline in model accuracy, we propose a multi-scale attention
network CA-PANet, which introduces a coordinate attention module and depth-wise
separable convolution into the path aggregation network. The structure of CA-PANet is
similar to PANet. It adopts a top-down feature extraction branch and a bottom-up feature
enhancement path. Through feature fusion, the network can combine shallow positioning
information and deep semantic information to enhance the features richness. At the input
node of multi-scale features, coordinate attention blocks are added to group and code
the feature map to augment the representation of targets of interest. A lightweight DW
convolution block is used to replace the standard convolution to further decrease the model
complexity. The activation function uses SiLU instead of ReLU6 to improve the convergence
of the deep network model. The structure of the CA-PANet is shown in Figure 1.

The Coordinate Attention module was designed by Hou et al. for their Efficient Mobile
Network [24]. It can embed the positional information into channel attention, factorize
feature maps into direction-aware and position-sensitive attention maps by encoding.
In this way, the network can aggregate features along two spatial directions to generate
spatial selective attention maps. The resulting feature maps contain more positional
information, which has more advantages in object detection, semantic segmentation, and
other tasks. Figure 4 shows the structure of the coordinate attention module.
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Figure 4. The structure of coordinate attention module.

In Figure 4, Coordinate Attention divides feature map calculation into two parts:
coordinate information embedding and coordinate information generation. The embedded
part can be abstracted into two 1D feature-encoding formulas in the horizontal direction
and vertical direction, respectively. Given the input x and the size of (H, 1) or (1, W)
pooling kernel, the output of the c-th channel with height h can be formulated as:

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i), (1)

Similarly, the output of c-th channel with width w can be written as:

zw
c (w) =

1
H ∑

0≤j<H
xc(j, w), (2)

In the generation part, the input features will be concatenated, which can make full
use of the captured positional information and highlight the interesting regions. Finally,
after the convolution transformation function, the output y of the coordinate attention
block can be formulated as:

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j), (3)

where yc represents the output, xc represents the input, c represents the c-th channel, and gh
c

and gw
c represent the attention feature weights in the horizontal and vertical directions re-

spectively.
Depth-wise separable convolution is a convolution block proposed in MobileNetV1 [32].

It is composed of a 3 × 3 light depth convolution layer and a 1 × 1 heavy point convolution
layer, which separates the spatial filtering from the feature generation and greatly reduces
the number of convolution kernel operations. The structure of DW convolution is shown in
Figure 5.

The SiLU function is an improved version of Sigmoid and ReLU. It has the characteris-
tics of a lower bound but no upper bound and is smooth and non-monotonic. Moreover,
SiLU has better optimization performance than ReLU in deep models. Assuming that the
input of the activation function is x, the formula of SiLU can be written as:

SiLU[x] =
x

1 + e−x , (4)
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Figure 5. The structure of depth-wise separable convolution.

3.4. Improved K-means++ Anchor Box

An anchor box is a pixel box used to traverse the region of interest in an image to
determine the correct box in object detection. In model training, a reasonably designed
anchor box can help the model learn more accurate sample features and improve the
accuracy. In the traditional two-stage detection, the anchor box is set according to the prior
knowledge, which has a weak adaptive ability and poor learning effect on the diverse
scales of distribution samples. In this paper, we use K-means++ to cluster data samples to
obtain appropriate anchor boxes. This method has stronger robustness and can be designed
for different datasets.

The principle of K-means++ is to select the appropriate distance measure and criterion
function for iteration and finally select k clustering center points. Compared with the origi-
nal K-means algorithm, the improved K-means++ discards the Euclidean distance measure
and the method of randomly selecting the initial point, selects the IoU (Intersection over
Union) between the background box and the prediction anchor box as the measurement,
and finds the points with the longest distance from each other as the cluster center. This
method reduces the error in the calculation of different anchor boxes and the possibility of
obtaining weak clustering centers. The improved clustering method of K-means++ can be
formulated as:

f = arg max

k
∑

i=1

nk
∑

j=1
IIoU(B, A)

N
, (5)

In Formula (5), B represents the background box, A represents the prediction anchor
box, k represents the number of cluster centers, nk represents the number of background
boxes in the k-th cluster center, N represents the total number of background boxes, IIoU(B,A)

represents the IoU between the background box and the prediction anchor box, i represents
the cluster center number, and j represents the background box number in the cluster center.

Figure 6 shows the visualization results of the improved K-means++ algorithm on
Drone-dataset. And the final nine anchor boxes is obtained as (19, 20), (41, 39), (91, 78), (187,
151), (293, 251), (491, 283), (394, 414), (553, 405), and (578, 537).
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Figure 6. The visualization results of improved K-means++.

4. Dataset and Experiment Information
4.1. Dataset Preparation

The drone dataset used in the experiment is constructed from a public dataset [14] and
drone target image expansion. The drone dataset contains large-, medium-, and small-scale
drone targets, and there 3813 and 3834 images and targets, respectively. In the dataset
division, the ratio of training set and testing set is 4:1, and the ratio of the training set and
validation set is 9:1. All samples are annotated by Labelimg software. Table 2 shows the
detailed information of Drone-dataset.

Table 2. The table of Drone-dataset’s information.

Class Number Large Medium Small

train 2762 1610 582 570
validation 306 179 59 68

test 766 442 162 162
total 3834 2231 803 800

In addition to Drone-dataset, this paper also uses the PASCAL VOC 07+12 dataset
to conduct generalization performance experiment. VOC 07+12 is a combined version of
PASCAL VOC 2007 and PASCAL VOC 2012, which includes images and labels for object
detection, image classification, object segmentation, and action recognition. It has 20 types
of targets and 21,504 images, including 16,551 training set images and 4952 test set images
for object detection.

To overcome the large difference in target scales between images in the dataset, model
training uses the data augmentation method Mosaic. It is used in YOLOv4 to cut and
splice pictures. This method can enrich data diversity, increase background complexity,
and improve the scale robustness of the model. The following Figure 7 shows the effect
of Mosaic.
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Figure 7. Example of Mosaic data augmentation. Left: The original image. Right: The processed image.

4.2. Environment and Model Training

The experimental environment is based on the deep learning framework PyTorch and
the parallel computing platform CUDA 10.2. The computer operating system is a Windows
10 operating system with an Intel (R) Core (TM) i9-10900F CPU @ 2.80GHz 2.81 GHz, 64G
of memory, and an NVIDIA Quadro P4000 GPU with 8G of video memory.

In order to implement more accurate experiments, we adopt the following model
training strategies. First, we pre-train the model in a large sample dataset, PASCAL VOC
07+12. Then, we load the pre-training weights on the model through transfer learning and
set the appropriate training hyperparameters. At last, we train and verify the pre-training
model on Drone-dataset. Experiments show that this method is much better than training
the model from zero. Table 3 shows the hyperparameter information used in model training.
Figure 8 shows the trend of the model training loss.

Table 3. The hyperparameter setting of model training.

Type Parameter Note

Image size 416 × 416 Image input size
Epoch 300 Total training times

Batch size 16 or 8 Freeze size or Normal size
Learning rate 0.01 and 0.0001 Initial and Minimum rate

optimizer SGD Optimizer type
momentum 0.937 Momentum of optimizer

Weight decay 0.0005 The decay of weights

Figure 8. The loss value of YOLOv4-MCA on Drone-dataset.
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As can be seen from Figure 8, the train loss and validation loss of the model decrease
with the increase in epochs. The loss of the first 50 epochs decreases rapidly, indicating that
the span of the model weight update is large. The loss from 50 to 200 epochs decreases
gently, indicating that the model is in the fine-tuning stage and is constantly approach-
ing the optimal value. In the last 100 epochs, the loss curve is in a stable state, which
indicates that the model training reaches saturation, and the model basically achieves its
best performance.

4.3. Evaluation Metric

The evaluation metrics of the experiment include object detection accuracy AP (aver-
age precision), mAP (mean Average Precision), detection speed FPS (Frames Per Second),
model parameters, and model volume size.

mAP can comprehensively evaluate the localization and classification effect of the
model for multi-class and multi-target tasks. Calculating the mAP requires calculating
the AP for each class in the recognition task and then taking its average. The formula is
as follows:

mAP =
∑C

i=1 APi

C
, (6)

In Formula (6), C represents the number of total classes, and APi represents the AP
value of class i.

Calculating AP requires the values of P (Precision) and R (Recall). The formulas for
these three metrics are as follows:

P =
TP

TP + FP
, (7)

R =
TP

TP + FN
, (8)

AP =
∫ 1

0
P(R)dR, (9)

In Formulas (7)–(9), TP (True Positive) means that the input is a positive sample
and the predicted result is also a positive sample; FP (False Positive) means that the input
is a negative sample and the predicted result is a positive sample; FN (False Negative)
means that the input is a positive sample and the prediction result is a negative sample;
TN (True Negative) means that the input is a negative sample and the prediction result is a
negative sample.

The FPS metric is the time that a model takes to detect a picture or the number of
pictures detected in one second. The larger the FPS, the faster the model is detecting targets,
which can be used to measure the detection speed of model. The model parameters and
model volume size are both metrics of model complexity. They all represent the size of the
model, which can directly reflect model size.

5. Experimental Results and Analysis

In this section, we conduct a series of experiments to demonstrate the performance
of the proposed approach. Firstly, we perform a general method experiment based on
PASCAL VOC 07+12 to investigate the advantages of our method compared with other
common algorithms. Next, we utilize the proposed approach on Drone-dataset as a validity
experiment to observe the effectiveness of drone target detection. Finally, we conduct the
ablation experiment of YOLOv4-MCA on Drone-dataset. The experiment takes YOLOv4 as
the baseline and combines different improvement strategies to explore the contribution of
each improved components in the proposed approach.
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5.1. The Universality Experiment

To demonstrate the general performance of YOLOv4-MCA, we conduct an experi-
ment using Faster R-CNN, SSD, YOLOv3, YOLOv4, YOLOv5-m, and YOLOv4-MCA. All
algorithms are trained and validated on the PASCAL VOC07+12 dataset. The metrics used
in the experiment are mAP (IoU = 0.5), FPS, model parameters, and model volume size.
In this way, we can compare the advantages and disadvantages of the model in all aspects.
Table 4 shows the detection results of each algorithm on PASCAL VOC 07+12.

Table 4. The performance comparison of algorithms on PASCAL VOC 07+12.

Model Backbone Input Size mAP (%) FPS (f/s) Parameter (×106) Volume (MB)

Faster R-CNN ResNet50 416 × 416 77.02 12 137.10 522.99
YOLOv4 CSPDarkNet53 416 × 416 84.29 26 63.94 243.90
YOLOv3 DarkNet53 416 × 416 80.24 35 61.63 235.08

SSD VggNet16 300 × 300 78.27 43 26.29 100.27
YOLOv5-m Focus-CSPNet 640 × 640 80.46 35 20.95 79.91

YOLOv4-MCA MobileViT11 416 × 416 80.70 40 13.47 51.39

From the experimental results in Table 4, the mAP of our approach is 80.70%, which
has the highest accuracy of all algorithms except YOLOv4. This indicates that our method
has not significantly reduced the performance of model detection due to its light weight
after various improvements. In FPS, our approach improves the model by 14 f/s compared
to YOLOv4, which is the same as SSD and better than other algorithms. The lightweight
method give the model a faster detection speed, which has more advantages in real-time
detection tasks. In model complexity, the proposed algorithm achieves the best performance
in model parameters and model volume. It has one-fifth of the model parameters of
YOLOv4, which shows that our model is very friendly to the migration of mobile devices.

To sum up, the proposed approach combines the lightweight MobileViT network and
the improved multi-scale attention network CA-PANet. These improvements greatly reduce
the number of parameters, accelerate the detection speed, and achieve good performance
metrics on the PASCAL VOC 07+12 dataset. Compared with one-stage or two-stage
detection algorithms such as YOLOv3, YOLOv4, and Faster R-CNN, YOLOv4-MCA shows
better performance, fully demonstrating the universality of the algorithm.

5.2. The Validity Experiment

To investigate the performance of our approach in drone detection task. We perform
the model validity experiment according to the universality experiment. Similarly, all
algorithms used in the experiment are trained and verified on Drone-dataset. In addition,
we adopt more metrics such as APSmall , APMedium, and APLarge (IoU = 0.50:0.95), which
can help us to observe the effectiveness of the algorithm on multi-scale targets and better
evaluate the model’s performance. Table 5 shows the detection results of each algorithm on
Drone-dataset. Figure 9 shows the drone detection comparison results of YOLOv4 and the
proposed algorithm.

Table 5. The performance comparison of algorithms on Drone-dataset.

Model mAP APSmall APMedium APLarge

YOLOv4 92.45 25.10 39.42 57.05
YOLOv5-m 91.82 30.80 41.58 65.07

YOLOv3 90.88 25.10 38.00 57.93
Faster R-CNN 88.26 12.37 39.78 62.45

SSD 86.62 8.77 38.24 65.24
YOLOv4-MCA 92.81 24.65 38.26 58.46
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Figure 9. The comparison results of YOLOv4 and YOLOv4-MCA.

As can be seen from Table 5, the mAP accuracy of our approach at IOU = 0.5 reaches
92.81%, which is the best result among all algorithms and is 0.36% higher than YOLOv4.
The proposed model also performs well on the AP accuracy metrics of three scales. The AP
accuracy on small-scale, medium-scale, and large-scale targets is 24.65%, 38.26%, and
58.46%, respectively. In particular, the APSmall of small-scale target detection is 15.88% and
12.28% higher than SSD and Faster R-CNN, respectively. This indicates that the coordinate
attention mechanism has a good effect on the extraction of target positional information
and enhances the detection ability of small targets. In medium- and large-scale target
detection, the proposed model has also maintained good performance and has higher
APMedium and APLarge accuracy. After comparing the results, we argue that the MobileViT
network combines the advantages of the ViTs model to enhance the extraction of global
features, thus improving the detection performance of the model. In addition, it can be
seen in Figure 9 that our approach detects more targets than YOLOv4 and effectively
avoids the problems of false detection and missing detection, achieving an overall better
detection effect.

In the drone target detection task, the detection object contains more small-scale targets,
and has higher requirements on the real-time performance of the algorithm. Therefore, it is
necessary to comprehensively consider all aspects of the model’s metrics for comparison.
Considering the detection accuracy, detection speed, and model complexity, our approach
has better performance than other algorithms, which reflects the validity of YOLOv4-MCA
for drone target detection tasks.

5.3. Method Ablation Experiment

In order to explore the effectiveness of each improved component in the proposed
approach, we conduct an ablation experiment. In the experiment, we train each part of the
improved component of YOLOv4-MCA on Drone-dataset and record its mAP (IoU = 0.5),
FPS, and model parameters metrics to observe their improvement effects. Table 6 shows
the metric comparison of the improvement component on Drone-dataset.
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Table 6. The ablation experiment based on Drone-dataset.

Model CSPNet53 MobileViT PANet CA-PANet Kmeans++ mAP FPS Parameter

1 X X 92.45 26 63.94
2 X X 89.83 41 13.43
3 X X 93.16 25 64.08
4 X X X 93.85 27 63.94
5 X X X 92.81 40 13.47

The models 1 to 5 in Table 6 represent YOLOv4, YOLOv4+MobileViT, YOLOv4+CA-PANet, YOLOv4+Kmeans++,
and YOLOv4-MCA, respectively. YOLOv4+MobileViT is the model with lightweight trunk and neck,
and YOLOv4+CA-PANet means that coordinate attention is added to PANet. CSPNet53 is the abbreviation
of CSPParkNet53.

According to the results in Table 6, the mAP accuracy, FPS, and model parameters of
YOLOv4 algorithm are 92.45%, 26 f/s, and 63.94 M, respectively. Compared with YOLOv4,
our approach performs better in these metrics. Among them, the lightweight improvement
based on the backbone has a relatively obvious improvement effect on the model. At the
cost of reducing the mAP by 2.62%, the FPS is improved to 41 f/s and the number of
model parameters is reduced to 13.43M. The improvement based on coordinate attention
mechanism also performs well, improving the mAP accuracy of the model by 0.71%, but the
FPS decreases by 1 frame/s and the number of parameters increase by 0.03M. The anchor
box clustering method based on improved K-means++ improves the mAP of the model
by 1.4% and the detection speed of 1 f/s. Finally, compared with YOLOv4, the mAP of
YOLOv4-MCA reaches the highest value at 92.81%, an increase of 0.36%. The FPS reaches
40 f/s, increasing by 14 f/s. The number of parameters reduces to 13.47M, which is only
one-fifth of the number of parameters in YOLOv4. This shows the efficient balance of
YOLOv4-MCA in terms of accuracy, speed, and model complexity and also reflects its
excellent performance in drone target detection tasks.

6. Conclusions

Aiming at the problem of a large number of parameters in detection models and
the difficulty of detecting multi-scale drone, we adopt a variety of improved methods
on the basis of YOLOv4 and present a novel drone target detection algorithm named
YOLOv4-MCA. First, we use the pruned MobileViT lightweight network as the backbone
feature extraction network to simplify the model complexity and improve the detection
speed. Secondly, we utilize the improved multi-scale attention CA-PANet as the feature
fusion network to enhance the extraction of location information and promote the fusion of
information from low- and high-dimensional features, thereby enhancing the identification
and robustness of multi-scale targets. Finally, we adopt the improved K-means++ clustering
method to cluster the target dataset, optimize the anchor box parameters, and improve
the detection efficiency. The experimental results demonstrate that our approach performs
well on our Drone-dataset and the PASCAL VOC 07+12 dataset at various target scales.
Our proposed YOLOv4-MCA provides a practical and feasible research idea for the fast
detection of drone targets.
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