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Abstract: At present, the sparse recovery problem is mainly solved by convx optimization algorithm
and greedy tracking method. However, the former has defects in recovery efficiency and the latter
in recovery ability, and neither of them can obtain effective recovery under large sparsity or small
observation degree. In this paper, we propose a new sparse recovery algorithm based on arithmetic
optimization algorithm and combine the ideas of greedy tracking method. The proposed algorithm
uses arithmetic optimization algorithm to solve the sparse coefficient of the signal in the transform
domain, so as to reconstruct the original signal. At the same time, the greedy tracking technique is
combined to design the initial position of the operator before solving, so that it can be searched better.
Experiments show that compared with other methods, the proposed algorithm can not only obtain
more effective recovery, but also run faster under general conditions of observation number. At the
same time, It can also recover the signal better in the presence of noise.

Keywords: signal processing; compressed sensing; sparse recovery algorithm; arithmetic optimiza-
tion algorithm; greedy tracking method

1. Introduction

Mechanical vibration is a common phenomenon in machinery and equipment. Since it
contains rich information about the operation of the equipment, monitoring and extracting
useful information from the vibration process can help people to better diagnose and
monitor the condition of the equipment [1]. However, the mechanical vibration signal is a
dynamic complex non-stationary signal with high frequency [2]. To achieve undistorted
restoration, the sampling technique based on Nyquist sampling theory is often used, which
requires that the sampling frequency must be higher than twice the highest frequency of
the signal, otherwise the original signal will not be accurately reconstructed. In recent
years, the use of large equipment is increasingly diverse, and its operation process also pro-
duces more complex changes, such as equipment clearance, vibration conditions, friction,
collision, randomness of frequency, etc. The data generated by mechanical equipment is
also developing towards the direction of “big data” [3]. If we still use traditional Nyquist
sampling law for sampling at this time, it will inevitably require higher sampling frequency
and produce a huge amount of monitoring data, and the transmission and storage of these
data has become the bottleneck problem to be solved urgently.

The emergence of compressed sensing theory [4] (CS) better solves the above problems,
which can sample the signal at a frequency far less than Nyquist sampling and then recon-
struct it accurately. Since the sampling method can sample at much lower than the Nyquist
sampling rate, it greatly reduces the sampling speed of the device and avoids collecting a
large amount of useless data, saving data storage space and reducing signal processing time.
Therefore, compressed sensing is widely used in image compression [5,6], medical imag-
ing [7,8], communication system [9] and many other fields [10,11]. The recovery algorithms
of compressed sensing model mainly include greedy algorithm and convex optimization
algorithm [12]. When no noise exists, the greedy algorithm and its optimization algorithm
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need too many measurements and have low recovery accuracy, which cannot guarantee the
global optimal solution. The convex relaxation algorithm has high precision and requires
less observation times, but it has high computational complexity and is easy to produce
artificial effects. Computational intelligence method is an effective modern intelligence
method to solve combinatorial optimization problems. Literature [13] applies the hybrid
simulated annealing algorithm to the solution of compressed sensing, which improves the
reconstruction accuracy of images. Literature [14] applied it to SAR high-resolution range
image reconstruction based on genetic algorithm combined with compressed sensing, and
this method can reconstruct SAR scene targets with fewer measurements. Literature [15]
applied the forbidden search algorithm to DOA estimation, and the method was able to
obtain the global optimal solution and reduce the computational effort. Literature [16]
combines compressed sensing and convolutional neural network to propose an open-circuit
fault diagnosis method for photovoltaic inverters. Literature [17] propose a method of
optical fiber sensing signal processing based on Compressed Sensing (CS) to improve the
accuracy of vibration location information of the Φ-OTDR system. Although there are many
research algorithms for sparse recovery of compressed sensing models, few researches are
focused on mechanical vibration signals [18,19].

Aiming at these problems, for accurate recovery machinery vibration signal, this paper
propose a reconstruction method based on arithmetic optimization algorithm and com-
bined with greedy algorithm pruning technique. The proposed algorithm uses arithmetic
optimization algorithm to solve the sparse coefficient of the signal in the transform domain,
so as to reconstruct the original signal. At the same time, the greedy tracking technique
is combined to design the initial position of the operator before solving, so that it can be
searched better.

The remainder of this paper is organized as follows. Section 2 briefly introduces the
Arithmetic Optimization Algorithm. Section 3 describes Compressed perception theory
model and the proposed sparse recovery algorithm based on arithmetic optimization
algorithm. Section 4 presents the experimental results conducted using the proposed
method. In addition, it compares the proposed method with traditional methods and
analyzes the effects of important factors. Finally, Section 5 states the conclusion.

2. Arithmetic Optimization Algorithm

The Arithmetic Optimization Algorithm (AOA) was proposed by Laith Abualigah
et al. in 2021, which exploits the distributional behavior of the main arithmetic operators in
mathematics, including (Multiplication (M), Division (D), Subtraction (S), and Addition
(A)). The mathematical modeling of AOA is also performed to evaluate the performance,
convergence behavior and computational complexity of the proposed object-oriented
method under different scenarios. Experimental results show that compared with other
11 common optimization algorithms, this algorithm has better effect and convergence
behaviors in solving optimization problems [20].

Consider the minimization problem min f (x), x ∈ Ω, where f is the fitness function
and the set Ω is the solution space. In the arithmetic optimization algorithm, the candidate
solutions cooperate and coexist with each other. Each solution is called an “operator”,
looking for the best position in the Ω. An operator updates its position through its own
“experience” and the “experience” of the surrounding operators in the process of searching.
Here, “experience” means memorizing and tracking the best position encountered. The
operator position is updated by the following equation:

xi,j(t + 1) =
{

best(xj)÷ (MOP + τ)× ((UBj − LBj)× µ + LBj)), r2 < 0.5
best(xj)×MOP× ((UBj − LBj)× µ + LBj), otherwise

(1)

xi,j(t + 1) =
{

best(xj)−MOP× ((UBj − LBj)× µ + LBj), r3 < 0.5
best(xj) + MOP× ((UBj − LBj)× µ + LBj), otherwise

(2)
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Equation (1) is the operator updating strategy adopted in global search, and Equation (2)
is the operator updating strategy adopted in local search. When r1 > MOA, the operator
updates position by Equation (1), that is Division (D) and Multiplication (M) are used for
global search. When r1 < MOA, operator updates position by Equation (2), that is Subtrac-
tion (S) and Addition (A) are used for local search. MOA is given by the following equation.

MOA(t) = Min + t× (
Max−Min

M_Iter
) (3)

where MOA(t) denotes the function value at the tth iteration.t denotes the current iteration,
which is between 1 and the maximum number of iterations (M_Iter), where xi,j(t + 1) denotes
the ith solution in the next iteration, xi,j(t) denotes the j th position of the i th solution at the
current iteration, and best(xj) is the j th position in the best-obtained solution so far. τ is
a small integer number, which is determined in the AOA algorithm. UBj and LBj denote
to the upper bound value and lower bound value of the j th position, respectively. µ is a
control parameter to adjust the search process, which is fixed equal to 0.5. Min and Max
denote the minimum and maximum values of the accelerated function. r1,r2,r3 are random
numbers. MOP is given by the following equation:

MOP(t) = 1− t1/ω

M_Iter1/ω
(4)

where MOP(t) denotes the function value at the t th iteration, and t denotes the current
iteration. ω is a sensitive parameter and defines the exploitation accuracy over the iterations,
which is fixed equal to 5.

3. Sparse Recovery Algorithm Based on Arithmetic Optimization Algorithm

Compression perception theory proposes that if a signal itself is sparse, or can be
represented as sparse by some transformation basis, it can be observed by a measurement
matrix uncorrelated with the transformation basis with a certain number of observations to
obtain a set of observations much smaller than the length of the original signal, and then
use the correlation recovery algorithm to recover the original signal from the lesser number
of observations.

In this section, a sparse recovery algorithm is proposed based on arithmetic opti-
mization and greedy tracking. The following three aspects are carried out from operator
position and fitness, initialization and operator position update mechanism. It does not
need to adjust many parameters except the population size and stopping criterion, which
are standard parameters in all optimization algorithms.

3.1. Operator Position and Fitness

The compressed sensing recovery model is the l0 norm of the following equation:

min‖θ‖0 s.t.y = Φx = ΦΨθ = Aθ (5)

where: x ∈ RN is the original signal, Φ ∈ RM×N is the measurement matrix, y is the M-
dimensional observation, θ is the sparse coefficient expressed by the sparse transform base
Ψ, A ∈ RM×N (A = ΦΨ ) is the perceptual matrix.||•|| represents the 0 norm, i.e., the
number of non-zero elements in the vector. If ||θ ||≤ K ≤ N, say x is K-sparse on Ψ, And
say K is the sparsity of x. Figure 1 shows the vibration signal of length 512 and its sparse
transformation under the DCT orthogonal basis.
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The set of indicators corresponding to the non-zero elements of the vector θ is called
the support of θ. If the projection θ of x on Ψ is known to be K sparse, problem (5) can be
transformed into its equivalent form [21]:

min
θ∈RN
‖Aθ− y‖2, s.t. ‖θ‖0 ≤ K (6)

where ||•||2 stands for the 2-norm. To solve Equation (6), the strategies adopted by many
methods can be divided into two steps: the first step is to obtain the position set β of the
reconstructed signal solution, In the second step, the least square method is used to obtain
the original signal estimation solution.

θβ = A+
β y, θL−β = 0 (7)

where, |•| represents the number of elements in the set, and L = {1,2,3, . . . , N} represents
the complete set. θβ and θL-β respectively represent the components of θ with β or its
complement as indexes. Aβ is the submatrix of A indexed by the elements in β, and

A+
β = (AT

βAβ)
−1AT

β is its Moore-Penrose generalized inverse. If θ is the solution to
problem 5, then

min
‖θ‖0≤K

‖Aθ− y‖2 =
∥∥∥AβA+

β y− y
∥∥∥

2
(8)
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Namely:
β = argmin

|β|=K

∥∥∥AβA+
β y− y

∥∥∥
2

(9)

This transforms problem (8) into solving the combinatorial optimization problem (9),
which is essentially solving the support estimate |β| = K for β.

So in the algorithm proposed in this paper, the operator position is defined as the
support estimate β of θ. The fitness function of the operator is defined as

f (β) =
∥∥∥AβA+

β y− y
∥∥∥

2
(10)

Ultimately, problem (6) is transformed into the minimization problem to be addressed:

min
|β|=K

f (β) (11)

The algorithm proposed in this paper obtains the position of the operator by solving
Equation (11), namely, the support estimation of the signal to be recovered in the sparse
domain. Since the signal is sparsely transformed, the estimated solution obtained by
Equation (7) is the sparse coefficient θ of the signal in the transform domain. After obtaining
the sparse coefficients by Equation (7), the signal is reconstructed by x = Ψθ. So far the
purpose of solving the sparse recovery problem is reached.

3.2. Initialization

Assume the operator size is Q and the initial operator population is denoted as
{αi (0)|i = 1, 2, . . . , Q}. The following is the initialization of the operator.

The first operator: the operator position α1(0) is set to the set of indicators correspond-
ing to the largest absolute value of K components in ATy. The ith operator: A random
selection of q (K ≤ q ≤ spark(A)) elements in L forms the ci. The operator αi(0) is the set of
indicators corresponding to the K components with the largest absolute value in A+

ci
y.

At this point, the initial population is generated. In AOA algorithm, population
initialization is carried out randomly. In this paper, the selection of the first operator
adopts the simple greedy tracking threshold method [22], When the sparsity of the sig-
nal to be restored is small, it can always accurately estimate the support of the signal
to be restored. The positions of the remaining operators are the results obtained by us-
ing the greedy tracking threshold method for the random components, creating condi-
tions for the search and fast exploitation of the population in space. Further it is nec-
essary to initialize the individual and group optimal positions. The optimal position
Si,best(0) of the ith operator is set to αi(0), and the population optimal position is set to
Sgbest = argmin

αi(0)
f (αi(0)), (i = 1, 2, . . . , Q).

3.3. Operator Position Update Mechanism

The position update of the operator in the AOA algorithm is carried out through its
own experience and the neighborhood experience. In this paper, the algorithm AOA-CS
is based on the population evolution strategy and process, and incorporates a random
component to perform location updates [22–26]. Each time the operator starts searching,
it first updates MOA and MOP values, and then generates three random numbers r1, r2
and r3 that obey uniform distribution between 0 and 1. Operator position initialization
and group-optimal position initialization have been completed in Section 3.2. During the
trajectory of repetition, Division (D), Multiplication (M), Subtraction (S) and Addition
(A) estimate the feasible positions of the near-optimal solution. Each solution renews its
positions from the best-obtained solution. To emphasize exploration and exploitation, the
parameter MOA is increased linearly from 0.2 to 0.9. Candidate solutions seek to diverge
from the near-optimal solution when r1 > MOA and converge towards the near-optimal
solution when r1 < MOA.The overall position update mechanism is as follow:
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When r1 > MOA, if r2 > 0.5, the j th position of the i th solution is updated by the
division operation in Equation(1), if r2 < 0.5, the jth position of the i th solution is updated
by the multiplication operator. When r1 < MOA, if r3 > 0.5, the j th position of the ith
solution is updated by the division operation in Equation (2), if r3 < 0.5, the jth position
of the i th solution is updated by the multiplication operator in Equation (2). The current
position of the ith operator iteration is Si,t (1 ≤ i ≤ Q ) and the historical best position
is Si,best. After all positions of the i th solution are updated and before the start of the
(t+1)th iteration, the fitness value of the current number of iterations of the i th operator
is calculated by Equation (8). If the operator fitness is less than its individual optimal
fitness, namely f (Si,t) < f (Si,best), then update the individual optimal position Si,best = Si,t,
otherwise it remains unchanged. If the individual optimal fitness is less than the population
optimal fitness, namely f (Si,best) < f (Sgbest), then update the population optimal position
Sgbest = Si,best, otherwise it remains unchanged.

The algorithm has been introduced so far, and the flow chart of the algorithm and the
flow chart of the mechanical vibration signal reconstruction is shown in Figure 2.
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Figure 2. Flowchart of optimization algorithm and reconstructed signal.

4. Experiment and Analysis

In this section, we experimentally investigate the performance of the proposed algo-
rithm and compare it with the basis pursuit algorithm (BP) [27,28], a typical algorithm in
convex optimization, and the orthogonal matching tracking algorithm (OMP) [29,30], a
typical algorithm in greedy algorithms. The experimental data in this paper comes from
the bearing database of Case Western Reserve University, the object of this experiment is
deep groove ball bearing, the sensors are installed in the drive end and fan end respectively
for fault data collection, SKF620 is the drive end bearing, SKF6203 is the fan end bearing.
The experiment uses acceleration sensors for vibration signal acquisition, including normal
data, bearing inner and outer ring fault data, ball fault data, sampling frequency 48 kHz
and 12 kHz, the size of the fault diameter is different, respectively 0.018, 0.036, 0.053 CHI,
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etc. The state load of the fault is divided into 0, 1, 2, 3 HP (1 HP = 746 W). In this experiment,
we select the experimental data of 0.018 cm outer ring diameter of the drive end bearing
with a bearing load of 0 and a sampling frequency of 12 kHz. We randomly draw data from
this dataset each time to ensure its generalizability.

4.1. Sparsity Analysis of Mechanical Vibration Signals

As shown in Figure 3, the distribution of the coefficients of the vibration signal
transformed under the DCT orthogonal basis is arranged in descending order from the
largest to the smallest in absolute value. As can be seen from the figure: the sparse
coefficients of mechanical vibration signals under the DCT orthogonal basis all show an
obvious trend of decay, and the slope of the coefficient decay curve decreases sharply and
is close to zero after several experiments, so the experimental sparsity K is estimated to be
200. This experiment further verifies that the mechanical vibration signal is compressible
under the DCT quadrature basis.
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The experiments in this paper use the compression rate to measure the compressibility
of mechanical vibration signals, which is defined as follows:

Compression Rate (CR): Indicates the compressibility of the vibration signal. The larger
the compression rate, the fewer measurements are required and the more compressible the
vibration signal is.

RC =
N −M

N
× 100% (12)
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where N is the length of the original mechanical vibration signal, M denotes the length
of the signal after compression. In order to ensure the high probability reconstruction of
the original vibration signal, the compressed measurement number M must satisfy the
following inequalitys.

M ≥ Klg(
N
K
) (13)

When N = 512 and K = 200, we can get M ≥ 82 by substituting into Equation (13),
and RC ≤ 85% by combining Equations (12) and (13). It can be seen that: mechanical
vibration signal compression sampling, the compression rate should not exceed 85% at
most, otherwise when the number of measurements is too small, the original vibration
signal can not be accurately reconstructed phenomenon.

And when the compression rate is too small, the number of measurements is too many,
and there is no meaning for compressive sampling. The analysis shows that the compression
rate cannot be too large or too small, so this experiment sets the compression rate to take a
range of 50% ≤ RC ≤ 85%. The corresponding sampling value range is 82 to 260.

When no noise is present, this paper uses the relative error defined by Equation (14) to
measure the recovery performance of the mechanical vibration signal.

σ =

∥∥∥ -
x− x

∥∥∥
2

‖x‖2
(14)

where:
-
x is the recovered signal, x is the original signal. The smaller the relative error is,

the more accurate the reconstruction is. When noise is present, this paper uses the mean
square error (MSE) defined by Equation (15) to measure the recovery performance of the
mechanical vibration signal.

EMS =

∥∥∥ -
x− x

∥∥∥2

2

‖x‖2
2

(15)

where the smaller the mean square error, the better the signal recovery.
All data for the experiments in this paper were run through MATLABR2021a software

on a 16 G running memory, dual-core desktop computer. The experimental results are the
average of 50 independent experiments.

4.2. AOA-CS Algorithm Performance Analysis

Since too high or too low compression rate will have an impact on the original sig-
nal compression sampling, storage and transmission, and reconstruction accuracy, this
experiment selects the compression rate fixed at 60% and the number of measurements
M = 200 to verify the reconstruction relative errors and recovery waveform plots of different
algorithms for mechanical vibration signals, and the experimental results are shown in
Table 1 and Figure 4.

Table 1. Comparison of Reconstruction Performance of Different Algorithms with Fixed Compres-
sion Rate.

Algorithm AOA-CS OMP BP

Relative error 0.1038 0.1887 0.1490
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As can be seen from Table 1, when the compression rate is set at 60%, the reconstruction
error of OMP algorithm is the largest, and the reconstruction error of AOA-CS proposed in
this paper is the smallest, only 55% of that of OMP algorithm.

It is intuitively seen from Figure 4: when the fixed compression rate is 60%, the
mechanical vibration signal recovered by using the proposed algorithm AOA-CS in this
paper has the smallest difference with the original vibration signal and is almost perfectly
reconstructed, which is consistent with the results of the reconstruction relative error of the
vibration signal recovered by different algorithms in Table 1. Therefore, combined with
Figure 4 and Table 1, it can be seen that: the proposed algorithm AOA-CS mechanical
vibration signal has the best recovery effect, the smallest reconstruction relative error and
better adaptability.

4.3. Performance Analysis a of AOA-CS Algorithm When the Measured Value Changes

This experiment sets the range of measurement value variation to 85 ≤M ≤ 260 to
verify the reconstruction performance of AOA-CS algorithm with the variation of measure-
ment value. The experimental results are shown in Figures 5 and 6.
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From Figure 5, it can be seen that the relative error of reconstruction of different
algorithms in both sets of experiments is decreasing as the measured value increases,
i.e., when the compression rate decreases. Among them, the reconstruction relative error
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of OMP is the largest, the reconstruction relative error of BP algorithm is the second,
the reconstruction relative error of the proposed algorithm AOA-CS algorithm is the
smallest, and the reconstruction effect for mechanical vibration signal is the best. And
when the measured value is greater than 200, the trend of curve changes of different
algorithms are no longer obvious and close to the minimum value, which is consistent
with the aforementioned analysis of the range of changes of measured values: when the
number of measured values is too large, compression does not have any meaning, and the
number of measured values is too small, the original mechanical vibration signal cannot be
accurately reconstructed.

From Figure 6, it can be seen that the proposed algorithm is more capable of recovering
the vibration signal and has higher computational efficiency than the BP algorithm. It
is worth mentioning that the algorithm in this paper has a natural parallelism capability,
which makes it possible to run on a distributed processor and obtain a greater degree of
computational efficiency.

4.4. Performance Analysis a of AOA-CS Algorithm wh in the Presence of Noise

When the signal-to-noise ratio (SNR) is high, the acquired signal contains more useful
information, while when the signal-to-noise ratio (SNR) is low, it contains less useful
information. Therefore, when there is noise, the SNR will have some influence on the
recovery performance of the signal. This experiment assumes that the noise is Gaussian
white noise, and sets the SNR to be 5 to 35 dB to verify the recovery performance of the
AOA-CS algorithm for mechanical vibration signals when noise exists. The experimental
results are shown in Figures 7 and 8.
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Figure 7 shows that when noise is present, the reconstruction mean square error of
different algorithms in both sets of experiments decreases as the SNR increases. Among
them, OMP algorithm has the largest reconstruction mean square error, BP algorithm has
the second largest mean square error, AOA-CS algorithm in this paper has the smallest
reconstruction mean square error, i.e., the most accurate recovery. And when RSN > 20 dB,
the reconstruction mean square error variation is no longer significant and almost reaches
the minimum value. As shown in Figure 7 is the mechanical vibration signal wave signal
diagram in the presence of noise.

As can be seen from Figure 8: With the increase of SNR, the waveform diagram of
mechanical vibration signal is gradually close to that of the original vibration signal. When
the signal-to-noise ratio is 5 dB, the difference between the waveform and the original
vibration signal waveform is the greatest, which is due to the fact that the signal contains less
useful information when the signal-to-noise ratio is low, when RSN = 10 dB and RSN = 15 dB,
the waveform gradually becomes similar to the original vibration signal waveform, when
RSN = 20 dB, the waveform is almost the same as the original vibration signal waveform.
When the signal-to-noise ratio is RSN = 25 dB, the original vibration signal is also almost
reproduced. This is due to the fact that the signal contains more useful information when
the signal-to-noise ratio is higher, i.e., it contains more information of the original signal,
which is more conducive to the reconstruction recovery of the signal containing noise at
this time, which is consistent with the results of the graph of the mechanical vibration
signal with noise shown in Figure 7.
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5. Conclusions

This paper proposes a sparse recovery algorithm based on arithmetic optimization
algorithm, combined with the idea of greedy tracking method. Through compressed
sensing model and formula derivation, this paper introduces arithmetic optimization
algorithm to solve the sparse coefficient of signal in its sparse domain, and designs the
initial position of the whole group in combination with the cutting technique of greedy
tracking method, which solves the problem that traditional reconstruction algorithms
cannot take into account the accuracy and efficiency of reconstruction. At the same time, it
improves the anti-interference of the whole reconstruction process to a certain extent. On
the one hand, the algorithm inherits the global search feature of arithmetic optimization
and has stronger recovery ability. On the other hand, the algorithm takes advantage of the
fast and effective greedy tracking method and can terminate quickly under the general
sparsity and observation conditions. The results of various numerical experiments show
that:

(1) As the number of measurements increases, i.e., the compression rate decreases, the
recovery reconstruction error of each algorithm becomes smaller and smaller, but the
proposed method in this paper always has optimal performance.

(2) The proposed method also has the minimum mean square error of reconstruction in
the presence of noise.

The algorithm proposed in this paper has some room for improvement in terms of
operator position updating. Further research will be conducted to achieve better results.
This work makes sense for the monitoring systems for mechanical equipment, since the
proposed scheme can provide more information for fault diagnosis.

If there is a need for the code can contact the author, our code of programs and example
is availiable upon request.
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