
Citation: Plauska, I.; Liutkevičius, A.;

Janavičiūtė, A. Performance

Evaluation of C/C++, MicroPython,

Rust and TinyGo Programming

Languages on ESP32 Microcontroller.

Electronics 2023, 12, 143. https://

doi.org/10.3390/electronics12010143

Academic Editors: Abdelhafid El

Ouardi, Sergio Rodriguez and

Bastien Vincke

Received: 25 November 2022

Revised: 16 December 2022

Accepted: 22 December 2022

Published: 28 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Performance Evaluation of C/C++, MicroPython, Rust and
TinyGo Programming Languages on ESP32 Microcontroller
Ignas Plauska, Agnius Liutkevičius * and Audronė Janavičiūtė

Department of Computer Sciences, Kaunas University of Technology, 44249 Kaunas, Lithuania
* Correspondence: agnius.liutkevicius@ktu.lt

Abstract: The rapid growth of the Internet of Things (IoT) and its applications requires high com-
putational efficiency, low-cost, and low-power solutions for various IoT devices. These include a
wide range of microcontrollers that are used to collect, process, and transmit IoT data. ESP32 is a
microcontroller with built-in wireless connectivity, suitable for various IoT applications. The ESP32
chip is gaining more popularity, both in academia and in the developer community, supported by a
number of software libraries and programming languages. While low- and middle-level languages,
such as C/C++ and Rust, are believed to be the most efficient, TinyGo and MicroPython are more
developer-friendly low-complexity languages, suitable for beginners and allowing more rapid coding.
This paper evaluates the efficiency of the available ESP32 programming languages, namely C/C++,
MicroPython, Rust, and TinyGo, by comparing their execution performance. Several popular data and
signal processing algorithms were implemented in these languages, and their execution times were
compared: Fast Fourier Transform (FFT), Cyclic Redundancy Check (CRC), Secure Hash Algorithm
(SHA), Infinite Impulse Response (IIR), and Finite Impulse Response (FIR) filters. The results show
that the C/C++ implementations were fastest in most cases, closely followed by TinyGo and Rust,
while MicroPython programs were many times slower than implementations in other programming
languages. Therefore, the C/C++, TinyGo, and Rust languages are more suitable when execution
and response time are the key factors, while Python can be used for less strict system requirements,
enabling a faster and less complicated development process.

Keywords: performance evaluation; microcontroller; ESP32; C/C++; MicroPython; TinyGo; Rust

1. Introduction

The increasingly widespread IoT applications related to the development of various
embedded systems and signal processing tasks require specialized hardware. This tech-
nical equipment must be characterized by small dimensions, low energy consumption,
efficient memory use, and sufficient performance for the implementation of different signal
processing functions. The main role in this case is played by various microcontrollers,
which usually collect data from sensors and end-user devices, process those data, and
forward results to higher-level systems. Currently, the market offers a whole range of
specialized signal processing microcontrollers specially adapted for IoT tasks. One of the
popular choices has become the ESP32 microcontroller, which is attractive to developers
due to its technical characteristics and good software support, as well as the ability to use
various programming languages. As concluded by [1], ESP32 is an excellent option for
IoT devices due to the price and performance achieved by a dual core structure and a
significant extension of operational features.

Recent scientific publications have proven that ESP32 chips are widely used in various
fields. Aghenta and Iqbal proposed several SCADA systems [2,3] that use the ESP32 micro-
controller for sensor data processing and brokering. Allafi and Iqbal [4] used ESP32 for the
implementation of a low-cost web server to monitor and collect real-time photovoltaic data.
Carducci et al. [5] utilized the ESP32 microcontroller for the implementation of a building

Electronics 2023, 12, 143. https://doi.org/10.3390/electronics12010143 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12010143
https://doi.org/10.3390/electronics12010143
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2767-346X
https://orcid.org/0000-0001-7286-5642
https://doi.org/10.3390/electronics12010143
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12010143?type=check_update&version=2


Electronics 2023, 12, 143 2 of 19

automation system. Sangeethalakshmi et al. [6] created an IoT patient health monitoring
system consisting of sensors, a data acquisition unit, and an ESP32 microcontroller. Taştan
and Gökozan [7] proposed a real-time indoor air quality monitoring system, where air
quality data is measured by the sensor array monitored via the 32-bit ESP32 Wi-Fi controller.
An ESP32-based solar irrigation pumping control system was proposed by Biswas and
Iqbal [8], while Hangan et al. [9] reviewed information and communication technology
systems for monitoring, control, and management of water resources, and concluded that
although the Raspberry Pi 4B shows the highest processing score and an average interfacing
score, the ESP32 is the most versatile for IoT applications, showing the highest overall
score.

Since ESP32 microcontrollers are quite popular among researchers and system devel-
opers, several programming languages are available for ESP32 programming. Although
C/C++ is the leading programming language for the development of IoT and embedded
systems, there is also the possibility to use Rust, TinyGo, MicroPython, CircuitPython,
and even JavaScript for ESP32-based systems as well. Few studies related to the eval-
uation of the performance of programs written in some of these languages have been
conducted on ESP32 and other IoT platforms. Usually, such studies use the C/C++ lan-
guage as the gold standard and compare its performance with other languages. Ionescu and
Enescu [10] investigated the performance of the MicroPython and C languages on ESP32
and STM32 microcontrollers, finding that the MicroPython performance level is lower,
but that it has better portability and is more suitable for inexperienced students. Dokic
et al. [11] compared MicroPython with Arduino C and concluded that Arduino IDE is a
faster platform than MicroPython for the development of neural networks on edge devices.
Grunert [12] discussed the advantages and disadvantages of using the JavaScript language
for microcontroller development and compared several JavaScript engines, suitable for
ESP32 development, but left the evaluation of the performance and memory aspects of the
interpreters for future work. To our knowledge, no one has so far conducted a performance
evaluation of the Rust and Golang (TinyGo) programming languages on ESP32 or similar
platforms. Therefore, this paper evaluates the efficiency of the C/C++, MicroPython, Rust,
and TinyGo programming languages by comparing their execution performance on the
ESP32 platform.

The previously cited performance evaluation study [10] used Secure Hash Algorithm
(SHA-256) and Cyclic Redundancy Check (CRC-32) algorithms, while the authors of [11]
implemented Machine Learning (ML) algorithms (neural networks) for comparison pur-
poses. Security-related algorithms are also evaluated in Suárez-Albela et al.’s study [13],
which compares Elliptic Curve Digital Signature Algorithm (ECDSA) and Rivest–Shamir–
Adleman (RSA), using a resource-constrained IoT node based on the ESP32 system-on-chip.
Further IoT and ESP32-related literature analysis shows that there are many applications
of digital signal processing (DSP) algorithms, mainly Fast Fourier Transform (FFT) and
various filtering algorithms as well. For example, Kodithuwakku et al. [14] used FFT for
patient monitoring utilizing the ESP32 development environment. Fabregat et al. [15] used
FFT to create a real-time sound-source localization system implemented on the ESP32 mi-
crocontroller. Shinde and Mundada [16] used ESP32-based FFT implementation to develop
a bike engine health monitoring system.

Since many IoT applications include signal processing and security-related algorithms
which are computationally demanding, the comparison of the programming languages in
this paper is based on several popular data and signal processing algorithms, including FFT,
CRC, SHA, Infinite Impulse Response (IIR), and Finite Impulse Response (FIR) filters. These
algorithms were implemented in C/C++, MicroPython, Rust, and TinyGo programming
languages, and their execution times were compared. The aim of this research is to find
out whether more user-friendly (higher-level, less error-prone, with simpler and less code-
demanding syntax) programming languages, including MicroPython, Rust, and TinyGo,
have similar execution performance compared to C/C++, which is officially supported by
ESP32.



Electronics 2023, 12, 143 3 of 19

This study explores, for the first time, the execution performance of the quite popular
Rust and TinyGo languages and compares them with widely used C and Python (MicroPy-
thon). The present study is expected to contribute to our understanding of the suitability of
the programming languages available for the development of IoT systems using the ESP32
platform. The results of the study are important both for the developers of IoT systems
and academia, which use ESP32 microcontrollers extensively for research and teaching
purposes. They show that programs written in the C programming language are fastest
in most cases, but this advantage is not very great compared to TinyGo- and Rust-written
programs. Moreover, in some cases, C programs are outperformed by both C and Rust
implementations.

This article is organized as follows. Section 2 presents the performance evaluation
methodology and experimental setup. Section 3 shows the results of the execution com-
parison of digital signal processing algorithms implemented in selected programming
languages. Section 4 discusses the results and compares them with previous research.

2. Materials and Methods
2.1. Programming Language Features

The most important aspect when choosing a microcontroller programming language
is the support of its hardware and peripherals, such as GPIO pins and communication
modules like WiFi, Bluetooth, or SPI. Microcontroller vendors almost always offer hardware
abstraction libraries (HALs) to access specific registers and peripherals. Without such
libraries, even an otherwise very powerful language is not useful for development on a
chosen platform, in this case, ESP32.

Another aspect is the support for the language itself on a device. It is not uncommon
that more advanced features of a high-level programming language are limited or not
supported at all on certain platforms.

Memory management is also an important feature of any programming language,
as it is closely related to overall safety and performance of any project developed in that
language. The three most common memory management types are automatic, manual,
and garbage collector-based. In automatic management, the memory is allocated by the
compiler without an explicit instruction from the programmer, mainly occurring with stack
management. In contrast, manual memory management requires the programmer to do
all the hard work of allocating and deallocating memory. This is usually used for a heap.
Finally, with garbage collection, memory allocation can be manual, but deallocation is
performed automatically at certain intervals. While manual memory management can
introduce bugs and safety issues, garbage collection comes with a performance penalty
and unpredictability, since the runtime environment must stop the execution of the actual
code to search for memory that is not in use. This is especially important in real-time
applications, where execution times must be well known and controlled.

It is Important to consider what compiler and, by extension, toolchain will be used to
compile the code for ESP32. In embedded environments, the ability to optimize code size is
usually important. For example, GNU Compiler Collection (GCC) offers one optimization
level of size (-Os), while Low Level Virtual Machine (LLVM) compiling technology offers
two optimization levels (-Os and -Oz). The alternative is an interpreted language, which
allows one to immediately run the code on a platform with a suitable interpreter.

Finally, a programming language runtime system handles tasks that include setting
and managing stack and heap, handling garbage collection, threading, and other dynamic
features available in that language [17]. The features of runtime are provided by the
standard library of the language (or interpreter for an interpreted language) and, by
extension, an operating system (typically, a real-time operating system on embedded
hardware). The so called bare-metal runtime is also possible, where no OS, or even standard
library support, is available; however, it is usually limited in features.



Electronics 2023, 12, 143 4 of 19

2.2. Programming Languages Used for Evaluation

This paper evaluates four programming languages available for ESP32: C/C++, Rust,
TinyGo, and MicroPython. Each language represents a different set of important features
relevant to embedded and real-time programming, which are provided in Table 1.

Table 1. Overview of the programming languages compared on ESP32.

Language
ESP32

Peripherals
Support

Language
Features

Support on ESP32

Memory
Management

Compiler
for ESP32

Runtime
System on ESP32

C/C++ Full Full Manual/Automatic GCC
C/C++ standard

library on
FreeRTOS

Rust High High Fully automatic LLVM
Rust standard

library on
FreeRTOS

TinyGo Limited Limited Garbage
collection LLVM

Go standard
library

on bare-metal

MicroPython Medium Limited Garbage
collection Interpreted

MicroPython
interpreter

on FreeRTOS

The C language was developed in 1978 by Brian Kernighan and Dennis Ritchie [18].
Considered the standard language in low-level system programming, it is also usually the
default choice for embedded programming, since most microcontroller vendors provide
tools for their products primarily in C. It is no exception with ESP32, since its vendor Espres-
sif provides a development environment (ESP-IDF) and multiple libraries for interacting
with hardware in C. It offers full support for ESP32 by the vendor via hardware abstraction
libraries. It is also used in the popular Arduino framework extension for the ESP platform.
In the context of embedded programming, C++ can be considered an extension of C (some-
times called C with classes) and is generally supported by vendor-provided tools (i.e., it is
possible to use C++ on ESP32), but most available libraries and frameworks use only C.
Most of the low-level C functionality is provided by its standard library. The C language is
relatively low level, has manual memory management (for heap allocation), and is weakly
typed. On ESP32, the C runtime environment includes FreeRTOS [19], which is embedded
in ESP-IDF (and other development environments that use ESP-IDF, like Arduino [20]).
While in principle it is possible to fully disable the real-time operating system (RTOS), it is
not the standard use case (no support for this is offered by the vendor, or FreeRTOS itself),
and was not considered for this paper.

Rust was originally developed by Graydon Hoare and later overtaken by Mozilla
as a community-driven project [21]. Rust 1.0 was released in 2015 and since then has
grown in popularity as a multipurpose programming language. A quite unusual feature
of Rust is its fully automatic memory management without using garbage collection. All
memory allocations are managed during compilation time, making many programming
mistakes (which can easily be left in the C code) impossible [22]. Rust’s ecosystem Cargo
offers features such as building benchmarking and documentation generation [23]. Like
C, Rust provides a large part of its functionality via the standard library (called crate in
Rust). For ESP32 it is also possible to build Rust projects using the bare-metal environment,
which does not use the standard library. However, this restricts the languages features (e.g.,
heap allocation or stack overflow protection is not supported, external custom libraries are
needed) [24]. There is extensive Rust binding for ESP-IDF (esp-idf-sys crate) [25], which
provides a high support for ESP32 features. However, support for ESP32 in Rust is in
the so-called “Tier 3” [26], which does not guarantee that the project will build and work
correctly.



Electronics 2023, 12, 143 5 of 19

TinyGo [27] is a recent version of the Go programming language (created at Google
in 2007) that is oriented to embedded systems. Since Go uses an LLVM compiler like
Rust, its ecosystem is also quite similar. The language is designed to be easy to parse
and, by extension, easy to manipulate. Its garbage collector is predictable and easy to
see for a programmer [28]. The TinyGo community lists such advantages over Rust as
built-in support for concurrency without the need to rely on an RTOS-like framework,
and architecturally better support for bare-metal applications [29]. As indicated in [30],
TinyGo uses a cooperative scheduler and does not preempt tasks such as RTOS. Currently,
support for ESP32 is not complete, and interfaces such as WiFi, Bluetooth, and even ADC
are not available. Furthermore, not all standard library packages (Go library version) are
supported [31]. Access to available peripherals is provided through the machine package.

MicroPython is an interpreter of Python 3 for microcontrollers and was developed by
Damien George in 2014. Python is an interpreted language with garbage collector and is
often perceived as a scripting language. It is widely used for application programming,
especially by inexperienced programmers, due to its relative ease of use. The interpreter
must be flashed into the supported microcontroller first. Some vendors now include the
MicroPython interpreter as a default development environment in their products [32] as an
easier alternative for beginners. MicroPython includes a subset of Python functions and
libraries that are optimized for limited embedded environments [33]. MicroPython aims to
be as compatible with normal Python as possible to allow an easy migration of desktop
code to a microcontroller or embedded system. On ESP32, many peripherals are supported,
including WiFi [34]. Since ESP32 does not usually contain a MicroPython interpreter, it
can be downloaded and flashed following the instructions on the creator’s website [35].
Python code can be uploaded and interpreted dynamically through a serial interface, or
stored on microcontroller flash memory and run at boot time.

2.3. Algorithms Used for Performance Comparison

The ideal choice for performance comparison and evaluation would be to use an
already existing comprehensive benchmark suite which includes a wide selection of dif-
ferent algorithms. However, few exist that are specifically targeted at embedded systems,
and none exist that would consider relatively new languages like Rust or TinyGo. Exist-
ing embedded-oriented benchmarks include Bristol Energy Efficiency Benchmark Suite
(BEEBS) benchmark, aimed at evaluating the energy consumption of embedded proces-
sors [36], MiBench [37], and EEMBC suite [38]. They all categorize used algorithms into
different application categories, such as security, automotive, network, telecommunication,
etc. These benchmarks test different types of embedded system applications in real-life
use. A subset of algorithms was chosen from the benchmark suites mentioned above while
considering these aspects:

• Presence in more than one embedded-oriented benchmark suite and more than two
test categories. Algorithms that were already used in several benchmarks and grouped
into different test categories were preferred, as they are known to be suitable for a
more comprehensive performance evaluation.

• Presence in related works. Algorithms that were already used in similar performance
comparisons on ESP32 were considered to be better tested and well suited for this work.
Currently, the authors of [10] compare CRC-32 and SHA-256 in C and MicroPython on
ESP32.

• Availability in vendor libraries. Algorithms that are implemented in Espressif (ESP32
vendor) officially provided libraries were assumed to be well tested and suited for
ESP32, as well as faster to implement and port to other languages, due to their com-
prehensive documentation and use examples.

• Ease of use and verification. Since each selected algorithm had to be implemented in
four different languages, it was crucial to be able to verify that each version outputs
the correct results. Algorithms that can take a simple stream of data (such as an array)



Electronics 2023, 12, 143 6 of 19

and similarly output another stream of data or a single value were preferred. Then the
input and expected output data could be easily generated and verified.

• Open source. The algorithm code should be available as an open source in any of the
compared languages.

Five algorithms were chosen for comparison: popular hash functions CRC-32 and
SHA-256, and three signal processing functions, FFT, IIR, and FIR. Many well-tested open
source implementations of these functions can easily be found. The reasons for the selection
of each algorithm are given in Table 2.

The CRC-32 or 32-bit Cyclic Redundancy Check is used in data integrity checks,
while the SHA-256 (256-bit Secure Hash Algorithm) is used in authentication, encryption
algorithms, and even cryptocurrencies. They take a byte stream for input. These functions
were chosen to test how relatively simple operations perform on ESP32 while compiled in
different languages, since their implementation involves simple bitwise shifting, logical,
and arithmetic operations. They are used in two embedded-oriented benchmarks, the
Bristol Energy Efficiency Benchmark Suite (BEEBS) and MiBench, and fit into the network,
telecommunication, and security categories.

Another set of functions for this test were signal processing functions: Fast Fourier
Transform (FFT), Infinite Impulse Response (IIR), and Finite Impulse Response (FIR) filters.
EPS32 is powerful enough to be used for various signal processing tasks onboard; its vendor
Espressif provides a comprehensive open source DSP library in Ansi C, and assembly
and benchmark results for this library [39]. This enabled an easy comparison of other
programming languages with vendor-provided code in C. To have more variety in data
types, FFT with integer data points as inputs was selected, while IIR and FIR take float32.
These algorithms are also used in the MiBench, BEEBS, and EEMBC benchmark suites and
fit into the telecommunication, consumer, and automotive test categories.

Three of the selected algorithms can be further parameterized: CRC-32 by its polyno-
mial, while FIR and IIR filters by their coefficients. For this work, no special considerations
were made to select these parameters. Their values and amount (for FIR and IIR) were used
as they appeared in the original source code or its usage examples. FIR was implemented as
a 255th-order bandpass filter, while IIR was biquadratic type with five coefficients from their
usage examples in the original source code. IEEE polynomial (0xEDB88320 in hexadecimal)
was used for CRC-32.

The source codes for the selected functions were taken from free open sources in
C (except for CRC-32, which was adapted from Go), then ported to other languages.
Some functions were slightly adapted to make them stand-alone: library-wide error code
definitions were removed from DSP functions; union type was removed from FFT code, as
it has no close alternatives in other languages. The general structure of the code was kept as
close as possible in all languages, while using some higher-level features of Rust, TinyGo,
and MicroPython (e.g., using array length properties, instead of passing an additional
length parameter like in C; using methods for structures). The details of each function are
summarized in Table 2.

MATLAB models for each function were also written. They were used to generate
output data, which were transferred to the source code for each language, and used as a
reference to verify the correct execution of the functions (more details in Section 2.3). The full
source code with compilation and uploading instructions is provided in GitHub repository:
https://github.com/ignasp/ProgLangComp_onESP32 (accessed on 16 December 2022).

https://github.com/ignasp/ProgLangComp_onESP32


Electronics 2023, 12, 143 7 of 19

Table 2. The details of the functions used for the performance evaluation in selected programming
languages.

Function Source Input Data Type
(Passed as Array) Comment Reasons for Selection Areas of Use

CRC32 [40] uint8 IEEE polynomial

Presence in more than one
benchmark (BEEBS,

MiBench)
Presence in related works

Ease of use and verification

Network
Telecommunication

Security

SHA256 [41] uint8 -

Presence in more than one
benchmark (BEEBS,

MiBench)
Presence in related works

Ease of use and verification

Network
Telecommunication

Security/Cryptography

FFT [42] int16 -

Presence in more than one
benchmark (MiBench,

EEMBC)
Availability in vendor

libraries
Ease of use and verification

Telecommunication
Consumer

Automotive

FIR [43] float32 256 coefficients

Presence in more than one
benchmark (EEMBC,

BEEBS)
Availability in vendor

libraries
Ease of use and verification

Telecommunication
Consumer

Automotive

IIR [44] float32 biquad type

Presence in more than one
benchmark (EEMBC,

BEEBS)
Availability in vendor

libraries
Ease of use and verification

Telecommunication
Consumer

Automotive

2.4. Performance Comparison Methodology

While there are many benchmarking libraries available for each language (Rust
toolchain even has a built-in benchmarking capability), they all greatly differ in implemen-
tation and use details. To provide a unified way to benchmark the selected functions, a
simple custom benchmark library was first implemented in C and then ported to Rust,
TinyGo, and Python.

To measure execution time, a timer structure (or object) and associated methods start
and stop were defined, as detailed in pseudocode below:

STRUCTURE Timer : a
tStart : Time value
tDuration : Time value

FUNCTION start(timer : TIMER) :
timer.tStart = current time

FUNCTION stop(timer : TIMER) :
timer.tDuration = calculated with timer.tStart as a
reference

In each language, functions were used that return a monotonically increasing clock.
They were provided by either the standard library of the language or by the vendor of the
ESP32 (Espressif) library. Table 3 lists the exact functions used for each language.



Electronics 2023, 12, 143 8 of 19

Table 3. Functions and code used to measure execution time in each language.

Language Function for tStart Function to Calculate Duration

C/C++ esp_timer_get_time() esp_timer_get_time()—tStart
Rust esp_idf_sys::esp_timer_get_time(); esp_idf_sys::esp_timer_get_time()—self.tStart

TinyGo time.Now() time.Since(tStart)
MicroPython utime.ticks_us() ticks_diff(ticks_us(), tStart)

Next, a test function type RunFp was defined:

TYPE RunFp : FUNCTION RezVerification(
data_len : Integer,
Timer : TimerObject/Struct)

Different versions were implemented for every function tested since they all differ in
the types and size of input and output data, the necessary initializations, and the cleanup.
The function takes two parameters—data length, to enable testing for different input length
sizes, and a timer object, to measure the execution time. It also compares the generated
output data with predefined expected values and returns a RezVerification enumeration
type, which indicates whether the output data match the reference result data. Figure 1
presents the RunFp function algorithm.

Figure 1. The algorithm of the execution time measurement function.



Electronics 2023, 12, 143 9 of 19

Finally, another structure and a bench_Run method/function were defined to automate
execution of the testing function for different number of iterations and input data lengths:

STRUCTURE Tester :
TestName : String
TestLengths : Integer array
Niterations : Unsigned integer array
Ptype : Test result printing type (Readable, CSV)
RunFn : RunFp (Test runner function)

FUNCTION bench_Run (test : Tester) :
INITIALIZE timer : Timer
FOR data length IN test.TestLengths :
FOR: iteration number IN test.Niterations :

test result : RezVerification = run test.RunFn(data
length, timer)

PRINT(
Language Name
test.test nameCPU frequency
Iteration number
timer.tDuration in microseconds
test result)

The structure stores the test name for readability, an array of tested input data lengths,
a number of iterations, a result printing type (which defines how the test results are printed
to a serial interface), and a reference to the testing function type RunFp. The bench_Run
method takes a Tester as a parameter and runs the referenced testing function for every
defined data length and number of iterations, while printing the results of each iteration to
the serial console, as detailed in Figure 2.

Figure 2. The general algorithm of the execution time measurements.



Electronics 2023, 12, 143 10 of 19

Two ways of results printing are available: readable for quick verification, and CSV.
Figure 3 shows an example of readable results in a seral terminal emulator.

Figure 3. Test results for 3 iterations of CRC-32 in C programming language with data length of 32,
displayed in a serial terminal.

The results printed in CSV format can be easily transferred to another program (such
as Microsoft Excel) for data consolidation and further analysis. In C programming language,
CPU cycles were also measured as a reference for DPS algorithms (FFT, IIR, and FIR), which
have their benchmark result in CPU cycles provided by the vendor Espressif.

The tester structure is defined in the main body of the program, and the bench_Run
method is called for every algorithm tested. For this study, all tests were run for 100
iterations, with input data lengths of 0, 16, 32, 64, 128, 256, 512, and 1024. Since the
code on ESP32 is executed on top of FreeRTOS (except for TinyGo), it is expected to see
some variation in execution times of different iterations due to its preemptive scheduling
(SysTick). No RTOS specific functions were used in the code.

It is also important to note that the tests were performed using a 160 MHz CPU
frequency. While the ESP32 can work with up to 240 MHz, the default value after boot is
160 MHz, and it currently not possible to set the custom frequency in all languages (as their
standard libraries do not have functions for that and 160 MHz is hardcoded), so the default
160 MHz was used, and verified by reading and printing the CPU frequency by available
functions (provided in all languages).

During development, it was discovered that TinyGo fails to link the full code, with
all functions and reference output data included. To solve this, each function was first
compiled and executed separately, with full reference output data included (the problem
was traced to the linker script, where it is indicated that constant global variables are loaded
in DRAM, and not flash memory, and this should be fixed eventually [45]). After being
convinced that all functions return the correct result, the final tests were executed with 32
reference output data points included in the code. Since the verification of the output data
is outside of any time measurements, it is not expected to affect the results in any way.

A similar problem arose with MicroPython (the interpreter failed to load the full code),
so the same solution was introduced.

Initially, different optimization levels were attempted for the compiled languages.
TinyGo, compiled with levels other than -Oz (highest optimization for size), produced
incorrect results (verification failed; it was asserted that this was due to functions producing
results different from reference data), or caused program panic. Since a full comparison for
other optimization levels could not be made, the tests were performed with -Os for C and
-Oz for Rust and TinyGo.

2.5. Hardware Setup

ESP32 is a family of powerful microcontrollers, based on the Xtensa 32 bit architecture
and manufactured by Espressif [46]. It has integrated WiFi Wi-Fi 802.11 b/g/n, dual-
mode Bluetooth version 4.2, and a variety of peripherals. ESP32 has a dual core processor
with a frequency of up to 240 MHz, 520 Kilobytes of SRAM, and 16 Megabytes of flash
program memory. ESP32 is supported by various popular integrated development environ-
ments (IDE), such as Arduino (for C/C++) and PlatformIO (for various languages through
extensions).

Due to its relatively low price, the ESP32 is used in numerous prototyping and devel-
opment boards [47], aimed both at professionals and enthusiasts. For this test, an M5 Stack
Basic development kit with ESP32-D0WDQ6-V3 (Figure 4) was used.



Electronics 2023, 12, 143 11 of 19

Figure 4. (a) M5 Stack Basic kit used for tests; (b) the kit opened, showing the ESP32.

No special preparation is needed to use the kit. It is simply connected to the computer
via USB and discovered as a serial device, on which programs can then be deployed by any
of the available IDEs, or simply by using a vendor-provided tool (which is also used by the
aforementioned IDEs) [48]. For this test, no internal or external peripherals were used.

2.6. Software Development Environments and Compilers

For code development, integrated development environments (IDE) were used. Visual
Studio Code (VS Code) [49] was used for C, Rust, and TinyGo, and Thonny [50] was used
for MicroPython.

Thonny is an open source Python IDE, which also allows using MicroPython via serial
port. It was used on a Windows 10 machine.

VS Code is an open source multiplatform IDE developed by Microsoft. Its features
can be highly customized by installing extensions, which are available for a wide variety of
languages and scripts, including C/C++, Rust, and TinyGo.

VS Code with the PlatformIO extension [51] was used on a Windows 10 machine for
the development of C/C++ code. PlatformIO allows development for various embedded
platforms, including ESP32. The C/C++ extension was automatically installed as a depen-
dency. A new project was created for the M5stack core, with the Arduino framework. All
other configurations were handled by the extension.

For Rust, VS Code with the rust-analyzer extension [52] was used on a Debian 11
machine. Debian was chosen over Windows as it appeared to be easier to install the
necessary toolchain on a Linux machine. The rust-analyzer extension only provides syntax
highlight and checking; the toolchain needed to compile Rust for ESP32 was installed
following instructions provided in [24]. With the development environment ready, a Rust
project was created using template [53].

Finally, for TinyGo, VS Code with the TinyGo extension [54] was used on the same
Debian 11 machine. The TinyGo extension automatically installs the Go extension as a
dependency. As with Rust, the actual toolchain was installed separately, following [55].

Table 4 lists the specific versions of the IDE, extension, and toolchain versions installed
for this study.



Electronics 2023, 12, 143 12 of 19

Table 4. Overview of the development environment used for each programming language.

Language IDE Relevant Toolchain Versions

C/C++

VS Code with plugins:
PlatformIO v2.5.5 and Espressif 32 v5.2.0

C/C++ v1.12.4
Arduino framework

no additional version output available, toolchain is fully
managed by Espressif platform via

PlatformIO

Rust VS Code with plugins:
rust-analyzer v0.3.1285

Xtensa toolchain: esp-2021r2-patch5-8_4_0
cargo 1.65.0-nightly (4bc8f24d3 20 October 2022)

rustc 1.65.0-nightly (5b08d0476 4 November 2022)
esp-idf-sys 0.31.9

TinyGo
VS Code with plugins:

TinyGo v0.4.0
Go v0.36.0

Tinygo—version 0.25.0 linux/amd64 (using go version
go1.19.1 and LLVM version 14.0.0)

MicroPython Thonny v4.0.1 micropython 3.4.0; MicroPython v1.19.1 on 18 June 2022

3. Results

This section presents the results of the comparison of different data and signal pro-
cessing algorithms, including CRC-32, SHA-256, FFT, FIR, and IIR. The algorithms were
implemented using four programming languages, namely, C, Rust, TinyGo, and MicroPy-
thon. The results of this comparison are presented in the diagrams and table below. Each
algorithm has a corresponding graph that shows the average execution time for each pro-
gramming language using a logarithmic scale. In addition, Table 5 shows the execution
times together with the standard deviations. For this study, all tests were run for 100
iterations, with input data lengths of 0, 16, 32, 64, 128, 256, 512, and 1024 bytes. Therefore,
there are eight measurements in each figure.

Figure 5 presents a comparison of the average execution times of the CRC-32 algo-
rithms. Since MicroPython average execution times are several orders of magnitude higher
than times of the other programming languages, the results are presented using the loga-
rithmic scale. As we can see in Figure 5, in most cases, the TinyGo implementation was
the fastest, except for data sizes of 0, 16, and 32, where the C-based algorithm was slightly
faster or equal. In all cases, the Rust implementation showed the third result, while the
MicroPython program showed the worst execution times.

Figure 5. Average execution times of the CRC-32 algorithm (please note the logarithmic time scale).



Electronics 2023, 12, 143 13 of 19

Figure 6 presents a comparison of the average execution times of the SHA-256 algo-
rithms. As we can see in Figure 6, in all cases, the algorithm implemented in C language
was the fastest, followed by the TinyGo and Rust programs. The TinyGo algorithm showed
the second result in most cases, except for data lengths of 512 and 1024, where the Rust
implementation was slightly faster. The MicroPython program again showed the worst
execution times.

Figure 6. Average execution times of the SHA-256 algorithm (please note the logarithmic time scale).

Figure 7 presents a comparison of the average execution times of the FFT algorithms.
As we can see in Figure 7, in all cases, the algorithm implemented in the C language was
the fastest, followed by the TinyGo and Rust programs, except for the function calls with
zero data, which resulted in equal average times. The MicroPython program showed the
worst execution times, as expected.

Figure 7. Average execution times of the FFT algorithm (please note the logarithmic time scale).



Electronics 2023, 12, 143 14 of 19

Figure 8 presents a comparison of the average execution times of the FIR filter al-
gorithms. It is quite interesting that in this case, the algorithm implemented in the Rust
language was the fastest, followed by the TinyGo and C programs, except for the function
calls with zero data and data length of 16, where TinyGo showed a slightly better result.
No surprise, the MicroPython algorithm was slowest again.

Figure 8. Average execution times of the FIR filter algorithm (please note the logarithmic time scale).

Figure 9 presents a comparison of the average execution times of the IIR filter algo-
rithms. As we can see in Figure 9, in all cases, the algorithm implemented in the C language
was the fastest, followed by the TinyGo and Rust programs, except for the data length of 32
samples, where the TinyGo program was only 0.1 µs faster on average. The MicroPython
program showed the worst execution times again.

Figure 9. Average execution times of the IIR filter algorithm (please note the logarithmic time scale).



Electronics 2023, 12, 143 15 of 19

Table 5. Average execution times and standard deviations of the algorithms compared (Time AVG—
average execution time, SD—standard deviation).

Algorithm
Input Data

Length

C TinyGo Rust MicroPython

Time
AVG, µs

SD,
µs

Time
AVG, µs

SD,
µs

Time
AVG, µs

SD,
µs

Time
AVG, µs

SD,
µs

CRC-32

0 1.0 0.1 1.0 0.0 1.0 0.0 278.2 15.2
16 3.0 1.6 3.0 0.0 6.6 0.6 986.0 12.7
32 4.5 0.5 5.0 0.0 8.2 0.6 1553.6 10.9
64 8.1 0.3 8.0 0.0 11.7 0.6 2720.4 11.4
128 15.5 1.2 15.0 0.0 18.5 0.6 5039.3 12.4
256 30.4 2.7 28.0 0.0 32.1 0.5 9702.3 10.4
512 59.2 2.7 56.0 0.0 59.2 0.6 23,629.4 11.3

1024 117.6 3.8 110.0 0.0 113.8 0.9 47,035.1 12.7

SHA-256

0 39.6 2.7 53.0 0.0 60.8 2.2 67,003.9 42.1
16 40.6 2.8 56.0 0.0 70.2 2.4 67,290.5 6.8
32 41.3 2.0 59.0 0.0 71.8 2.7 67,519.3 6.7
64 80.6 3.0 115.0 0.0 124.0 2.8 133,655.6 28.1
128 122.1 3.8 177.0 0.0 183.2 2.7 201,142.5 40.0
256 204.6 4.5 300.0 0.0 305.9 2.9 342,252.9 87.6
512 370.4 5.6 546.0 0.0 531.0 2.9 645,754.7 363.3

1024 701.1 5.4 1039.0 0.0 997.3 4.5 1,332,950.6 990.8

FFT

0 1.0 0.2 1.0 0.0 1.0 0.1 218.1 11.0
16 14.2 0.4 25.0 0.0 49.5 2.5 5693.5 7.6
32 32.1 0.3 59.0 0.0 79.7 2.1 13,400.4 6.9
64 73.6 2.7 134.0 0.0 161.3 2.2 31,284.2 4.7
128 166.3 4.0 305.0 0.0 335.1 2.8 71,985.4 6.0
256 373.0 5.5 683.0 0.0 726.4 6.0 168,833.7 4.2
512 827.9 4.4 1515.0 0.0 1565.9 3.7 377,029.0 8.9

1024 1821.5 4.3 3331.0 0.0 3525.5 21.0 844,854.8 15.0

FIR filter

0 0.9 0.2 1.0 0.0 1.1 0.3 128.0 5.0
16 518.5 5.7 421.0 0.0 433.5 6.0 76,422.1 229.9
32 1029.8 0.4 848.0 0.0 821.3 5.5 158,668.8 151.3
64 2033.6 2.6 1720.0 0.0 1591.9 6.1 324,258.9 15.7
128 3962.1 1.1 3541.0 0.0 3114.0 6.3 658,492.5 2062.2
256 7514.6 5.5 7485.0 0.0 6083.1 6.4 1,366,597.5 33.1
512 15,028.0 1.6 14,968.0 0.0 12,124.0 7.8 2,989,716.9 152.7

1024 30,054.7 2.5 29,934.0 0.0 24,219.2 12.8 9,066,768.4 4479.6

IIR filter

0 0.9 0.2 1.0 0.0 1.1 0.2 157.4 5.6
16 4.2 0.4 5.0 0.0 8.5 0.6 1032.1 4.7
32 8.1 2.5 8.0 0.0 12.0 0.4 1858.2 5.9
64 14.1 0.3 15.0 0.0 18.9 0.4 3513.9 7.2
128 27.3 0.5 29.0 0.0 33.0 0.4 6802.7 6.1
256 54.4 2.8 57.0 0.0 61.0 0.9 13,420.2 7.8
512 108.0 3.9 113.0 0.0 120.9 1.1 33,257.1 15.6

1024 214.3 4.4 225.0 0.0 248.9 4.3 90,163.6 28.7

Table 5 shows the average execution times for different algorithm implementations, as
well as the standard deviations for each selected data length. Note that TinyGo deviations
are equal to zero in all cases, which can be explained by the fact that TinyGo programs do
not use the operating system and are deployed directly on the hardware. Therefore, TinyGo-
written programs always have the same execution time on the ESP32 platform, which is
a very valuable feature from the point of view of the real-time systems developer. The
MicroPython-based algorithms showed the worst execution performance, which is logical,
since this language is not compiled, but interpreted, resulting in very high computational
overhead. On the other hand, MicroPython (like any Python version) is a higher-level
language than the other evaluated languages. Therefore, theoretically, it allows faster and



Electronics 2023, 12, 143 16 of 19

easier code development, resulting in only a few lines of code. This is true for high-level
system development, but it is not always the case in embedded programming, where a
code developer usually needs to create an algorithm himself according to some formula,
like in our study.

4. Discussion

The data presented in the Results section strongly correlate with some previous
work [10,11], showing that MicroPython-based programs currently have much worse
performance on the ESP32 platform, compared to programs written in the C programming
language. On the other hand, this study allowed us, for the first time, to evaluate execution
performance of two additional languages, namely, Rust and TinyGo. Both are quite popular
among system developers and were created as an alternative to the C programming
language, which until now has been considered a gold standard for embedded and IoT
system development. Therefore, it was interesting for us to find out how good these
alternatives are.

The results show that, surprisingly, the C-based algorithms, although fastest in most
cases, in some cases were not the best. The C-based programs were outperformed by
TinyGo in several cases:

• CRC-32 implementations with data sizes of 64, 128, 256, 512, 1024;
• FIR filter implementations with all data sizes, except 0 (just a function/method call

with zero data);
• IIR filter implementations with data size 32.

The C-based FIR algorithm was outperformed by Rust-based FIR implementation as
well, with all data sizes except 0. In this case, the Rust-based FIR algorithm was the fastest,
followed by TinyGo, C, and finally, MicroPython with all data lengths except 16, where
TinyGo was slightly superior. In other cases, the Rust programs took the third place, except
for SHA-256 with data sizes of 512 and 1024, outperforming the TinyGo algorithm by a few
microseconds on average.

Summarizing the results, it can be concluded that in most cases C algorithms had the
best execution times, followed by TinyGo, Rust, and MicroPython. The clear outsider in
this case was MicroPython, whose execution times were thousands of times worse than
implementations in other languages.

However, the difference between C and TinyGo programs in many cases was only a
few microseconds, which is not a very big difference for most embedded applications and
IoT systems development. In addition, TinyGo-based algorithms have a very important
advantage over C and other programming languages, since they always have the same
execution time, i.e., their standard deviation of all execution times is zero. This is explained
by the fact that TinyGo programs are deployed directly to the hardware without any
operating system; therefore, nothing interferes with the execution process. This means that
currently TinyGo technology is the best choice for the implementation of hard real-time
systems on the ESP32 platform, where time jitter is a problem. However, it is unclear
whether this feature will not be lost in the future, since Go (on which TinyGo is based) now
uses asynchronously preemptible routines (as of version 1.14) [56]. These routines would
eliminate the jitter-free execution advantage if they were introduced in the ESP32 TinyGo
implementation as well. Besides, TinyGo is still in early stages of development [57], while
Rust now fully supports its standard library on ESP32 and is more mature.

Finally, the MicroPython language, which is gaining more popularity, is not the
best choice for low-level high-performance programming, since its execution times are
incomparably longer than C, TinyGo, or even Rust. Therefore, the MicroPython language
can be recommended for general-purpose high-level system programming, especially for
teaching purposes and student projects, because it allows for faster and easier system
development.



Electronics 2023, 12, 143 17 of 19

4.1. Limitations

The main limitation of this performance evaluation is that it does not include any
ESP32 hardware-specific tests (such as using any peripherals). A comprehensive benchmark
for a specific embedded system would be expected to evaluate the performance of accessing
and using hardware peripherals as well. Nevertheless, we believe that this work provides
a fair comparison of the current versions of the languages and produces results that will
be relevant for a longer time. MicroPython, TinyGo, and Rust are still relatively new and
developing languages, suitable for the ESP32 platform. While the general non-platform
specific features are not expected to significantly change in the future, the same cannot be
said about the hardware libraries.

4.2. Threats to Validity

The main threat to the validity of this work is within the selection of the algorithms
to test. As discussed in Section 2.2, compiling a comprehensive benchmark suite for any
platform is a non-trivial task, more so for four different programming languages. Personal
bias and insufficient analysis cannot be excluded. However, we are confident that the
selected algorithms provide a sufficiently comprehensive (as detailed in Table 2 “Areas
of use” column), and most importantly, novel insight into performance of the compared
languages on ESP32.

5. Conclusions

In this paper, we have presented the evaluation of the execution performance of the
C/C++, MicroPython, Rust, and TinyGo programming languages on the ESP32 microcon-
troller. For this purpose, five widely used embedded processing algorithms were utilized:
FFT, CRC-32, SHA-256, IIR filter, and FIR filter. This study is the first attempt to evaluate
the execution performance of the newly emerging Rust and TinyGo programming lan-
guages. The aim of this evaluation is to find out how good these user-friendly languages
are compared to the C/C++ language, which is a gold standard for embedded applications.

The results of this study reveal that, though the C/C++ programming language is
widely believed to be the most efficient for embedded programming, that is not always
the case. Our experiments showed that in a few cases the C/C++ algorithms were out-
performed by algorithms implemented in TinyGo and Rust. Even in those cases where
C/C++ implementations were faster, the difference between its execution times and that of
other languages was not very significant. Moreover, the TinyGo algorithms demonstrated
jitter-free execution, making this language more preferable for hard real-time applications.
Therefore, TinyGo and Rust can be recommended as efficient higher-level ESP32 program-
ming languages, which are characterized by faster and simpler programming compared to
the C/C++ language.

This work may be helpful for embedded software developers, researchers, and stu-
dents who use the ESP32 platform for various application development and study processes
and need to select the most suitable programming language which is currently available on
this platform.

Author Contributions: Conceptualization, I.P., A.L. and A.J.; Formal analysis, A.J.; Funding acquisi-
tion, A.L. and A.J.; Investigation, I.P.; Methodology, A.L. and A.J.; Software, I.P.; Supervision, A.L.;
Validation, I.P. and A.L.; Visualization, A.J.; Writing—original draft, A.L. and A.J.; Writing—review
and editing, I.P., A.L. and A.J. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2023, 12, 143 18 of 19

References
1. Maier, A.; Sharp, A.; Vagapov, Y. Comparative Analysis and Practical Implementation of the ESP32 Microcontroller Module for

the Internet of Things. In Proceedings of the 2017 Internet Technologies and Applications (ITA), Wrexham, UK, 12–15 September
2017; IEEE: Piscataway, NJ, USA, 2017; pp. 143–148.

2. Aghenta, L.O.; Tariq Iqbal, M. Design and Implementation of a Low-Cost, Open Source IoT-Based SCADA System Using ESP32
with OLED, ThingsBoard and MQTT Protocol. AIMS Electron. Electr. Eng. 2020, 4, 57–86. [CrossRef]

3. Aghenta, L.O.; Iqbal, M.T. Low-Cost, Open Source IoT-Based SCADA System Design Using Thinger.IO and ESP32 Thing.
Electronics 2019, 8, 822. [CrossRef]

4. Allafi, I.; Iqbal, T. Design and Implementation of a Low Cost Web Server Using ESP32 for Real-Time Photovoltaic System
Monitoring. In Proceedings of the 2017 IEEE Electrical Power and Energy Conference (EPEC), Saskatoon, SK, Canada, 22–25
October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5.

5. Carducci, C.G.C.; Monti, A.; Schraven, M.H.; Schumacher, M.; Mueller, D. Enabling ESP32-Based IoT Applications in Building
Automation Systems. In Proceedings of the 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT), Naples,
Italy, 4–6 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 306–311.

6. Sangeethalakshmi, K.; Preethi Angel, S.; Preethi, U.; Pavithra, S.; Shanmuga Priya, V. Patient Health Monitoring System Using
IoT. Mater. Today Proc. 2021. [CrossRef]

7. Taştan, M.; Gökozan, H. Real-Time Monitoring of Indoor Air Quality with Internet of Things-Based E-Nose. Appl. Sci. 2019, 9,
3435. [CrossRef]

8. Bipasha Biswas, S.; Tariq Iqbal, M. Solar Water Pumping System Control Using a Low Cost ESP32 Microcontroller. In Proceedings
of the 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), Quebec, QC, Canada, 13–16 May 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 1–5.

9. Hangan, A.; Chiru, C.-G.; Arsene, D.; Czako, Z.; Lisman, D.F.; Mocanu, M.; Pahontu, B.; Predescu, A.; Sebestyen, G. Advanced
Techniques for Monitoring and Management of Urban Water Infrastructures—An Overview. Water 2022, 14, 2174. [CrossRef]

10. Ionescu, V.M.; Enescu, F.M. Investigating the Performance of MicroPython and C on ESP32 and STM32 Microcontrollers. In
Proceedings of the 26th International Symposium for Design and Technology in Electronic Packaging (SIITME), Pitesti, Romania,
21 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 234–237.

11. Dokic, K.; Radisic, B.; Cobovic, M. MicroPython or Arduino C for ESP32-Efficiency for Neural Network Edge Devices. In
Intelligent Computing Systems; Brito-Loeza, C., Espinosa-Romero, A., Martin-Gonzalez, A., Safi, A., Eds.; Communications in
Computer and Information Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 1187, pp. 33–43. ISBN
978-3-030-43363-5.

12. Grunert, K. Overview of JavaScript Engines for Resource-Constrained Microcontrollers. In Proceedings of the 5th International
Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 23 September 2020; IEEE: Piscataway, NJ, USA, 2020;
pp. 1–7.

13. Suarez-Albela, M.; Fernandez-Carames, T.M.; Fraga-Lamas, P.; Castedo, L. A Practical Performance Comparison of ECC and RSA
for Resource-Constrained IoT Devices. In Proceedings of the Global Internet of Things Summit (GIoTS), Bilbao, Spain, 4–7 June
2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6.

14. Kodithuwakku, J.; Arachchi, D.D.; Thiha, S.; Rajasekera, J. Two Optimized IoT Device Architectures Based on Fast Fourier
Transform to Monitor Patient’s Photoplethysmography and Body Temperature. Comput. Sci. Math. Forum 2022, 2, 7.

15. Fabregat, G.; Belloch, J.A.; Badia, J.M.; Cobos, M. Design and Implementation of Acoustic Source Localization on a Low-Cost IoT
Edge Platform. IEEE Trans. Circuits Syst. II 2020, 67, 3547–3551. [CrossRef]

16. Shinde, A.R.; Mundada, K. Bike Engine Health Monitoring Using Vibration. In Proceedings of the 2020 IEEE Pune Section
International Conference (PuneCon), Pune, India, 16 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 99–102.

17. Aho, A.V.; Aho, A.V. (Eds.) Compilers: Principles, Techniques, and Tools, 2nd ed.; Pearson/Addison Wesley: Boston, MA, USA, 2007;
ISBN 978-0-321-48681-3.

18. Kernighan, B.W.; Ritchie, D.M. The C Programming Language, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1988; ISBN
978-0-13-308621-8.

19. FreeRTOS. Available online: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/freertos.html
(accessed on 15 November 2022).

20. Arduino Core for the ESP32, ESP32-S2, ESP32-S3 and ESP32-C3. Available online: https://github.com/espressif/arduino-esp32
(accessed on 15 November 2022).

21. Klabnik, S.; Nichols, C. The Rust Programming Language; No Starch Press: San Francisco, CA, USA, 2018; ISBN 978-1-59327-828-1.
22. Bugden, W.; Alahmar, A. Rust: The Programming Language for Safety and Performance. arXiv 2022, arXiv:2206.05503. [CrossRef]
23. The Cargo Book. Available online: https://doc.rust-lang.org/cargo/index.html (accessed on 15 November 2022).
24. The Rust on ESP Book. Available online: https://esp-rs.github.io/book/introduction.html (accessed on 15 November 2022).
25. Rust Bindings for ESP-IDF. Available online: https://github.com/esp-rs/esp-idf-sys (accessed on 15 November 2022).
26. Platform Support. Rustc. Available online: https://www.rust-lang.org/ (accessed on 15 November 2022).
27. TinyGo. Available online: https://tinygo.org/ (accessed on 15 November 2022).
28. Meyerson, J. The Go Programming Language. IEEE Softw. 2014, 31, 104. [CrossRef]

http://doi.org/10.3934/ElectrEng.2020.1.57
http://doi.org/10.3390/electronics8080822
http://doi.org/10.1016/j.matpr.2021.06.188
http://doi.org/10.3390/app9163435
http://doi.org/10.3390/w14142174
http://doi.org/10.1109/TCSII.2020.2986296
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/freertos.html
https://github.com/espressif/arduino-esp32
http://doi.org/10.48550/ARXIV.2206.05503
https://doc.rust-lang.org/cargo/index.html
https://esp-rs.github.io/book/introduction.html
https://github.com/esp-rs/esp-idf-sys
https://www.rust-lang.org/
https://tinygo.org/
http://doi.org/10.1109/MS.2014.127


Electronics 2023, 12, 143 19 of 19

29. Why Go Instead of Rust? Available online: https://tinygo.org/docs/concepts/faq/why-go-instead-of-rust/ (accessed on 15
November 2022).

30. TinyGo Runtime Scheduler.Go. Available online: https://github.com/tinygo-org/tinygo/blob/release/src/runtime/scheduler.
go (accessed on 15 November 2022).

31. Packages Supported by TinyGo. Available online: https://tinygo.org/docs/reference/lang-support/stdlib/ (accessed on 15
November 2022).

32. Adi, P.D.P.; Kitagawa, A. A Review of the Blockly Programming on M5Stack Board and MQTT Based for Programming Education.
In Proceedings of the IEEE 11th International Conference on Engineering Education (ICEED), Kanazawa, Japan, 6–7 November
2019; pp. 102–107.

33. George, D.P.; Sokolovsky, P. MicroPython Documentation. Release 1.10. Available online: https://docs.micropython.org/en/v1.1
0/micropython-docs.pdf (accessed on 15 November 2022).

34. Quick Reference for the ESP32. Available online: https://docs.micropython.org/en/latest/esp32/quickref.html (accessed on 15
November 2022).

35. MicroPython-Python for Microcontrollers ESP32. Available online: http://www.micropython.org/download/esp32/ (accessed
on 15 November 2022).

36. Pallister, J.; Hollis, S.; Bennett, J. BEEBS: Open Benchmarks for Energy Measurements on Embedded Platforms. arXiv 2013,
arXiv:1308.5174.

37. Guthaus, M.R.; Ringenberg, J.S.; Ernst, D.; Austin, T.M.; Mudge, T.; Brown, R.B. MiBench: A Free, Commercially Representative
Embedded Benchmark Suite. In Proceedings of the 4th Annual IEEE International Workshop on Workload Characterization,
WWC-4 (Cat. No.01EX538), Austin, TX, USA, 2 December 2001; pp. 3–14.

38. Poovey, J.A.; Conte, T.M.; Levy, M.; Gal-On, S. A Benchmark Characterization of the EEMBC Benchmark Suite. IEEE Micro 2009,
29, 18–29. [CrossRef]

39. Espressif DSP Library. Available online: https://docs.espressif.com/projects/esp-dsp/en/latest/esp-dsp-library.html (accessed
on 15 November 2022).

40. The Go Authors. CRC32 Algorithm Implementation. Crc32_generic.Go. Available online: https://cs.opensource.google/go/go/
+/refs/tags/go1.19.3:src/hash/crc32/crc32_generic.go (accessed on 15 November 2022).

41. Conte, B. Sha256.c. Available online: https://github.com/B-Con/crypto-algorithms/blob/master/sha256_test.c (accessed on 15
November 2022).

42. Espressif Systems. FFT Algorithm Implementation. Dsps_fft2r_sc16_ansi.c. Available online: https://github.com/espressif/esp-
dsp/blob/master/modules/fft/fixed/dsps_fft2r_sc16_ansi.c (accessed on 15 November 2022).

43. Espressif Systems. FIR Algorithm Implementation. dsps_fir_f32_ansi.c. Available online: https://github.com/espressif/esp-
dsp/blob/master/modules/fir/float/dsps_fir_f32_ansi.c (accessed on 15 November 2022).

44. Espressif Systems. IIR Algorithm Implementation. Dsps_biquad_f32_ansi.c. Available online: https://github.com/espressif/esp-
dsp/blob/master/modules/iir/biquad/dsps_biquad_f32_ansi.c (accessed on 15 November 2022).

45. Linker Script for the ESP32. Available online: https://github.com/tinygo-org/tinygo/blob/release/targets/esp32.ld (accessed
on 15 November 2022).

46. ESP32 Product Page. Available online: https://www.espressif.com/en/products/socs/esp32 (accessed on 15 November 2022).
47. The Internet of Things with ESP32. Available online: http://esp32.net/ (accessed on 15 November 2022).
48. Flashing Firmware. Available online: https://docs.espressif.com/projects/esptool/en/latest/esp32s3/esptool/flashing-

firmware.html (accessed on 15 November 2022).
49. Visual Studio Code. Version 1.73. Available online: https://code.visualstudio.com/ (accessed on 15 November 2022).
50. Annamaa, A. Thonny: A Python IDE for Learning Programming. In Proceedings of the 2015 ACM Conference on Innovation and

Technology in Computer Science Education, Vilnius, Lithuania, 22 June 2015; ACM: New York, NY, USA, 2015; p. 343.
51. Professional Collaborative Platform for Embedded Development. Available online: https://platformio.org/ (accessed on 15

November 2022).
52. Rust.Analyzer. Available online: https://rust-analyzer.github.io/ (accessed on 15 November 2022).
53. Rust on ESP-IDF “Hello, World” Template. Available online: https://github.com/esp-rs/esp-idf-template (accessed on 15

November 2022).
54. Visual Studio Code Support for TinyGo. Available online: https://marketplace.visualstudio.com/items?itemName=tinygo.

vscode-tinygo (accessed on 15 November 2022).
55. TinyGo Install Guide on Linux. Available online: https://tinygo.org/getting-started/install/linux/ (accessed on 15 November

2022).
56. Go 1.14 Release Notes. Available online: https://go.dev/doc/go1.14 (accessed on 15 November 2022).
57. Go Language Features. Available online: https://tinygo.org/docs/reference/lang-support/ (accessed on 15 November 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://tinygo.org/docs/concepts/faq/why-go-instead-of-rust/
https://github.com/tinygo-org/tinygo/blob/release/src/runtime/scheduler.go
https://github.com/tinygo-org/tinygo/blob/release/src/runtime/scheduler.go
https://tinygo.org/docs/reference/lang-support/stdlib/
https://docs.micropython.org/en/v1.10/micropython-docs.pdf
https://docs.micropython.org/en/v1.10/micropython-docs.pdf
https://docs.micropython.org/en/latest/esp32/quickref.html
http://www.micropython.org/download/esp32/
http://doi.org/10.1109/MM.2009.74
https://docs.espressif.com/projects/esp-dsp/en/latest/esp-dsp-library.html
https://cs.opensource.google/go/go/+/refs/tags/go1.19.3:src/hash/crc32/crc32_generic.go
https://cs.opensource.google/go/go/+/refs/tags/go1.19.3:src/hash/crc32/crc32_generic.go
https://github.com/B-Con/crypto-algorithms/blob/master/sha256_test.c
https://github.com/espressif/esp-dsp/blob/master/modules/fft/fixed/dsps_fft2r_sc16_ansi.c
https://github.com/espressif/esp-dsp/blob/master/modules/fft/fixed/dsps_fft2r_sc16_ansi.c
https://github.com/espressif/esp-dsp/blob/master/modules/fir/float/dsps_fir_f32_ansi.c
https://github.com/espressif/esp-dsp/blob/master/modules/fir/float/dsps_fir_f32_ansi.c
https://github.com/espressif/esp-dsp/blob/master/modules/iir/biquad/dsps_biquad_f32_ansi.c
https://github.com/espressif/esp-dsp/blob/master/modules/iir/biquad/dsps_biquad_f32_ansi.c
https://github.com/tinygo-org/tinygo/blob/release/targets/esp32.ld
https://www.espressif.com/en/products/socs/esp32
http://esp32.net/
https://docs.espressif.com/projects/esptool/en/latest/esp32s3/esptool/flashing-firmware.html
https://docs.espressif.com/projects/esptool/en/latest/esp32s3/esptool/flashing-firmware.html
https://code.visualstudio.com/
https://platformio.org/
https://rust-analyzer.github.io/
https://github.com/esp-rs/esp-idf-template
https://marketplace.visualstudio.com/items?itemName=tinygo.vscode-tinygo
https://marketplace.visualstudio.com/items?itemName=tinygo.vscode-tinygo
https://tinygo.org/getting-started/install/linux/
https://go.dev/doc/go1.14
https://tinygo.org/docs/reference/lang-support/

	Introduction 
	Materials and Methods 
	Programming Language Features 
	Programming Languages Used for Evaluation 
	Algorithms Used for Performance Comparison 
	Performance Comparison Methodology 
	Hardware Setup 
	Software Development Environments and Compilers 

	Results 
	Discussion 
	Limitations 
	Threats to Validity 

	Conclusions 
	References

