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Abstract: Deep learning has flourished in large-scale supervised tasks. However, in many practical
conditions, rich and available labeled data are a luxury. Thus, few-shot learning (FSL) has recently
received boosting interest and achieved significant progress, which can learn new classes from
several labeled samples. The advanced distribution calibration approach estimates the ground-truth
distribution of few-shot classes by reusing the statistics of auxiliary data. However, there is still
a significant discrepancy between the estimated distributions and ground-truth distributions, and
artificially set hyperparameters cannot be adapted to different application scenarios (i.e., datasets).
This paper proposes a prototype-based self-adaptive distribution calibration framework for estimating
ground-truth distribution accurately and self-adaptive hyperparameter optimization for different
application scenarios. Specifically, the proposed method is divided into two components. The
prototype-based representative mechanism is for obtaining and utilizing more global information
about few-shot classes and improving classification performance. The self-adaptive hyperparameter
optimization algorithm searches robust hyperparameters for the distribution calibration of different
application scenarios. The ablation studies verify the effectiveness of the various components of the
proposed framework. Enormous experiments are conducted on three standard benchmarks such as
minilmageNet, CUB-200-2011, and CIFAR-FS. The competitive results and compelling visualizations
indicate that the proposed framework achieves state-of-the-art performance.

Keywords: few-shot learning; image classification; prototype; simulated annealing; distribution
calibration; data augmentation; deep learning

1. Introduction

Humans have a remarkable ability to recognize novelty after only looking at a few
examples. However, the enormous development of deep learning is inseparable from large-
scale datasets and networks. As a bridge between human ability and artificial intelligence,
few-shot learning (FSL) has recently obtained considerable attention [1,2], particularly for
image classification [3]. Under the few-shot challenge, the image classification model learns
to classify images when only a few samples per class are provided to the model for training.

Most methods of few-shot image classification are proposed based on meta-learning [4,5]
and metric-learning [6,7], making the model adapt quickly to unseen tasks to improve
model generalization ability. Furthermore, some researchers try to avoid model overfitting
through data augmentation. Bendre et al. [8] utilize a multimodal method to reconstruct
features with semantic and image knowledge from the latent space. Li et al. [9] utilize a
conditional Wasserstein Generative Adversarial Network to synthesize various discrimina-
tive features to alleviate sample shortage. Current few-shot image classification methods
focus on deep neural network training strategies to directly describe the class-level sample
distributions. Unlike these methods, Yang et al. [10] recently estimated the ground-truth
distribution of the samples by distribution calibration (DC) in a simple and hand-crafted
manner but achieving very competitive performance. On the one hand, the classification ac-
curacies of the existing methods are still not satisfactory. On the other hand, the distribution
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calibration method involves several hyperparameters that need to be set by hand, which
limits the effectiveness and the range of applications in different scenarios. Therefore, we
proposed a Prototype-based Self-adaptive Distribution Calibration framework to estimate
a more accurate approximation of ground-truth distributions and self-adaptively optimize
hyperparameters for the distribution calibration of different application scenarios.

The distribution calibration [10] measures the similarity between base class centers
and few-shot class samples. Then, the base class statistics are transferred into the few-shot
classes. The similarities are calculated as the Euclidean distances between the few-shot class
sample to the base class centers. However, a single sample can not represent the few-shot
class completely in similarity comparison under the few-shot challenge because it only
contains local information about the few-shot class, resulting in the similarity comparison
with incomplete information. Similar circumstances happen in transferring base class
statistics, leading to the inaccurate estimation of the ground-truth distributions. Therefore,
it is necessary to utilize a representative including more global information of the few-shot
class to participate in the distribution calibration and preserve complete information. A
simple and efficient method is to utilize the mean values of samples from each few-shot
class to calibrate distribution, which contains more global information than an individual
sample. This is our proposed Prototype-based Representative Mechanism (PRM). We use
prototype-based representatives to calibrate the distributions of few-shot classes into a
more accurate estimation of ground-truth distributions.

To approximate ground-truth distributions, the model built by DC [10] needs reliable
hyperparameters. However, it is challenging to search quickly for robust hyperparameters
due to the enormous task number. For hyperparameter optimization, commonly used
methods include random search [11], Bayesian Optimisation [12], and grid search [13].
Optimization based on random search is effortless to make the solution fall into the local
optimum. When the objective function is particularly complex, the evaluation of Bayesian
Optimization consumes considerable computational cost. Grid search must traverse all pa-
rameter combinations, which consumes much time. Therefore, we propose a Self-adaptive
Hyperparameter Optimization Algorithm (SHOA), which can self-adaptively perform
hyperparameter optimization for different application scenarios (i.e., datasets). SHOA
allows the value of the objective function to escape from the local optimum by accepting a
new solution that is worse than the current solution with a certain probability, and finally
reaches the global optimum.

Combining the above two proposed methods (PRM and SHOA), we build a Prototype-
based Self-adaptive Distribution Calibration (PSDC) framework, which can estimate a
more accurate approximation of ground-truth distributions and self-adaptively optimize
hyperparameters for the distribution calibration of different application scenarios. PSDC
can generate more robust features for training and achieve outperformance compared to
other state-of-the-art (SOTA) methods. The main contributions of the proposed framework
are as follows:

* A Prototype-based Representative Mechanism (PRM) is proposed to utilize the few-
shot class centers to participate in the distribution calibration, resulting in a more
accurate estimation of the ground-truth distributions;

¢ A Self-adaptive Hyperparameter Optimization Algorithm (SHOA) is proposed for
self-adaptive hyperparameter optimization for the distribution calibration of different
application scenarios;

*  We propose a Prototype-based Self-adaptive Distribution Calibration (PSDC) frame-
work to estimate the ground-truth distributions and improve the model performance
in the few-shot image classification task;

*  Comprehensive experiments are conducted to evaluate the effectiveness of the pro-
posed framework, including the comparison with SOTA methods, ablation studies,
and visualization verification.
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2. Related Work
2.1. Few-Shot Image Classification

Massive few-shot image classification methods have been proposed in the recent
decade. They follow the task mechanism to construct massive tasks from related datasets
to simulate the condition of a few samples. These typical few-shot learning methods
can be divided into four types: optimization-based, metric-based, fine-tuning-based, and
generation-based.

The optimization-based methods [4,5] use an alternate optimization strategy to learn
how to update model parameters more quickly. As a result, the networks have a good
initialization, updated direction, and learning rate to adapt quickly to tasks. The metric-
based methods classify samples by distinguishing different distances between the images
of the query set and the representatives of few-shot classes [6,14]. The fine-tuning-based
methods perform model pre-training on base class data, and a new classifier is fine-tuned
with little novel class data [15,16]. In particular, Mangla et al. [17] fine-tune the backbone
rather than the classifier using the Manifold Mixup technique.

The generation-based methods [8,9,18-21] build complex networks for generating
more additional samples or features. Bendre et al. [8] reconstruct features by employing a
multimodal strategy including semantic and image information. Li et al. [9] introduce a con-
ditional Wasserstein GAN (WGAN) to synthesize fake features. By contrast, Hong et al. [21]
combine the matching procedure with GANSs [22] to generate image samples instead of
features. Yang et al. [10] propose a novel generation-based method called distribution cali-
bration, which calibrates the biased feature distributions of few-shot classes to approximate
the corresponding ground-truth distributions. Sufficient labeled features can be generated
from the calibrated distribution for supervised training. Compared with this calibration
strategy, our method can more accurately estimate the ground truth distributions and adapt
to different application scenarios.

2.2. Simulated Annealing Algorithm

The simulated annealing [23] (SA) algorithm is one of the most favored metaheuristics.
The metal annealing process inspires the simulated annealing algorithm, built to simulate
the disordered metal atoms in a high temperature gradually reaching an equilibrium state
at a low temperature.

The SA algorithm is a stochastic optimization algorithm that searches the neighbor-
hood of the current solution and decides whether to accept the new solution with a certain
probability. The simulated annealing algorithm comprises an inner loop and an outer
loop. In the inner loop, a slight perturbation is applied to the current solution for a new
solution under the condition of the current temperature value. Then, the new solution is
accepted by a certain probability, and the current optimal solution is updated. In the outer
loop, the temperature is initially set at a high value and gradually decreases to a pre-set
stop temperature.

Considerable researchers have recently used the simulated annealing algorithm in
many fields, such as software defect estimation [24], deep feature selection [25], and
deep neural networks [26-28]. Rere et al. [26] introduce the SA algorithm for updating
the deep convolutional neural network (DCNN). Ayumi et al. [27] improve the model
performance by optimizing the training process of DCNN with a variant of the SA al-
gorithm. Hu et al. [28] adopt the SA algorithm for the initial weights optimization of
the fully connected layer. Unlike these papers applying the simulated annealing algo-
rithm into weight optimization, we creatively introduce its idea into the hyperparameter
optimization process.

3. Method

In the following sections, we present the problem definition of the few-shot classifi-
cation setting in Section 3.1 and the Prototype-based Representative Mechanism (PRM)
in Section 3.2. Section 3.3 describes how to generate new robust samples and train the
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classifier. Algorithm 1 shows the detailed training process on the N-way-K-shot task, and
the pipeline of distribution calibration with PRM is presented in Figure 1. The details of the
Self-adaptive Hyperparameter Optimization Algorithm (SHOA) is clarified in Section 3.4.
Figure 2 shows the basic block diagram of SHOA, and Figure 3 presents the pipeline
of SHOA.

Algorithm 1 Training process on the N-way-K-shot task

Input: base class data Dy, and support set S = {(Xj, y;)

NxK
=1

Output: the optimal parameters of the classifier fy.

1: Compute the mean values {yi}l‘-il’fﬁe' of feature vectors from different base classes as
Equation (1).
2: Compute the covariance matrices {%; }l‘.i”f“‘ of feature vectors from different base classes
as Equation (2).
3: Extract the feature vectors {x; ]I\i “K of the images {Xj}jl\i K in the support set Sy as
Equation (3).
4: Update the support set ST = {(x;,y;) ]Zi K as Equation (4);
5: Transform {x;} ]I\i XlK to {%;} ]I\i le with Tukey’s Ladder of Power transformation as
Equation (6);
6: Calculate the prototype-based representative of the corresponding novel classes in
support set S as Equation (7);
7. Update the support set S7 = {(%;,y;) }].ixl(KH) as Equation (8);
8: for (%;,y;) in S do
9:  Build a set D containing L2 norm values of the difference between ¥; and {yi}l‘ibf“‘
as Equation (9);
10:  Build a set [ containing k closest base classes as Equation (10);
11:  Calculate the calibrated mean fI and covariance . as Equations (11) and (12);
12 Sample feature vectors for label y; from the calibrated distribution as Equation (14);
13: end for
14: Train a task-specific classifier fy with all sampled features and support set features as

Equation (15).
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Figure 1. The pipeline of distribution calibration with the Prototype-based Representative Mechanism.
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Figure 2. The basic block diagram of the Self-Adaptive Hyperparameter Optimization Algorithm,
which contains two loops. In the inner loop, a slight perturbation is applied to the current hyperpa-
rameters, which are accepted with a certain probability. In the outer loop, the temperature decreases
from a high value to a pre-set stop temperature.
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Figure 3. The flow diagram of the Self-Adaptive Hyperparameter Optimization Algorithm. As the
temperature decreases, the acceptance probability decreases, helping jump out of the local minimum.
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3.1. Problem Definition

Following the traditional few-shot classification setting, the whole dataset consists
of data-label pairs D = {(X;,y;)}, where X; € RE*W>3 is the ith image, y; € C is the
class label of X;, and C contains the labels of all classes. C can be divided into the label
set of base classes Cp,s, and the label set of novel classes C,,yye1, Where Cpuse U Croper = C
and Cppse N Crpgver = 9. The dataset D is accordingly divided into two subsets, namely,
the base class data Dy,s, and the novel class data D,,,,;. We adopt meta-learning with
episodic training [4,6,14] fashion for evaluating the rapid adaptation ability of the model.
Numerous tasks are sampled from novel class data D,y in the N-way-K-shot way. Only
K labeled samples are in each of the N classes, randomly chosen from novel classes. Each
task 7 is a tuple (S7,Q7), including support set ST = {(X;,y;) ]I\ixlk and query set

Qr = {(Xj,yj)}jlixNKjKﬁxlq, where X; € RH*W>3 g the jth image, Yj € Chover is the class

label of X;, and g samples of each class are used for testing. A task-specific classifier is
trained on the support set S7 and evaluated on the query set Q7.

3.2. Distribution Calibration with a Prototype-Based Representative Mechanism

A pre-trained feature extractor [17] Fp«(-) with the parameters 6* is used to extract
the d-dimensional feature vectors for each image. It could provide an initial feature space
learned from base class data Dy, with sufficient samples. Yang et al. [10] assume that the
data of every feature dimension from the same class follows a Gaussian distribution. Thus,
the mean vector and the covariance matrix of feature vectors from the ith base class are
calculated as:

1 &
pi= - Y Fo- (X)), )
ij=1
1 G
%= ——— 3 (Fo (X)) — ) (Foe (X)) — i) T, )
i j=1

where 7; is the number of samples in the ith base class, and X; is the jth image in the ith
base class. The same pre-trained feature extractor Fy«(-) extracts the feature vectors of each
sample from novel classes:

xj = Fp+(X;), ®3)

where X; is the jth image in novel class data D,y After feature extraction, the support
and the query sets are updated as follows:

St ={(x,y) 15" )

Q7 = {(%,¥)} k- ©®)

where x; € R? is the jth feature vector, and yj is its the class label. The feature distributions
of samples in novel classes may be skewed due to their property. Therefore, Tukey’s Ladder
of Power transformation [29] is introduced to make them consistent with the Gaussian
distribution. The feature vectors of samples in novel classes are transformed as follows:

xj:{xf if B0

, , ©
logx; iff=0

where x; is the jth feature vector, and f is a hyperparameter to modify the distribution
skewness. The prototype-based representative in the support set can be calculated as:

K
Ri=—-) %, (7)
=1

R| =
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where ; is the jth feature vector of the ith novel class. The prototype-based representatives
containing more global information about the few-shot class are merged into the support

set as follows: Nk N
~ X )
St = {(xj/yi) j=1 U{(Rj/]/j)}j:1 ®)
= Nx(K+1
= {® v Ha" Y.

After expanding the support set with prototype-based representatives, the statistics
is transferred from the k closest base classes to the few-shot class. We use the Euclidean
distance between each feature in the support set and mean values of feature vectors from
different base classes to measure similarity as the foundation for the transfer. The k closest
base classes are selected as follows:

D={—|pm- jj 2] i € Cpase }s )

e = {7 | = Il i = %j [la€ Topk(D)}, (10)

where ¥; is jth the feature vector in the support set, [ contains the class labels of the k
most similar base classes, and Topk(-) is the operation to select the top k elements from the
distance set D. Then, the calibrated mean and covariance of the calibrated distribution are
given as follows:

1
p= (% + ) 1), 11
AP )
$- 1 (T4
TS R R (12)

iEHk

where « is the compensation for the within-class variation of few-shot classes. The above
distribution calibration procedure is performed on each feature vector in the support set
St for a more precise estimation of the ground-truth distribution.

3.3. Sample Generation and Classifier Training

After transferring the statistics from the k closest classes to a few-shot class, calibrated
distributions for label y; form a set as follows:

Cy, ={N(p, %) |ie(@,....K+1)}, (13)

where fi; represents the mean of the ith calibrated distribution, and ¥, represents the
covariance of the ith calibrated distribution. The set C, contains K + 1 calibrated distribu-
tions belonging to the same novel class. More diverse and robust features for label y; are
generated from these calibrated distributions, constructed into a set as follows:

Hy, = {(xi,vi) | xi ~ N (0, £0), YN (13, £) € Cy}. (14)

The total number of sampled feature vectors is a hyperparameter M, and | M/ (K +
1)] feature vectors are sampled from each calibrated distribution. For each few-shot
classification task, a task-specific classifier is trained on the original features in the support
set and the sampled features. The training loss is given by:

L =Eyesum, yeymLee(fo(x) y)l, (15)

where Y7 contains all labels in task 7, Lcg, is the cross-entropy loss, and the parameters of
the task-specific classifier are denoted by by 6.
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3.4. Self-Adaptive Hyperparameter Optimization Algorithm
3.4.1. Simulated Annealing Algorithm

The simulated annealing algorithm [23] is a probabilistic-based optimization strategy,
usually utilized to search the global optimum of an objective function that may have
multiple local optima. In the simulated annealing algorithm, the optimization problem is
to find a collection of variables X = {X7, X3, ..., X, }, which maximizes or minimizes the
value of the objective function f(X). The hyperparameters of distribution calibration with
prototype-based representative mechanism include the power of Tukey’s transformation j,
the number of selected similar classes k, the compensation for the within-class variation «,
and the number of generated features M. The objective is to seek optimal hyperparameters
that lead to the smallest values of mean error rate on 10,000 few-shot classification tasks.
The objective function can be given by:

J(X)=1— Acc(X), (16)

where Acc(-) is the operator to calculate mean accuracy on 10,000 classification tasks.
The simulated annealing algorithm is a process that simulates a solid being heated and
then slowly cooled. In the natural sciences, the temperature has physical significance.
However, for the optimization problem, the temperature is only a control parameter. The
initial temperature and the stop temperature control the iteration number of the algorithm,
represented by Ttz and Tgpop. The cooling schedule is given by:

Tt+1 = * Tt, (17)

where 7 is a constant less than one as the cooling coefficient, T; is the current temperature
in the outer loop, and T is the next temperature in the outer loop.

3.4.2. Metropolis Algorithm

The simulated annealing process aims to find parameters that maximize or minimize
the objective function. The hyperparameters change into the neighborhood of the current
position with some tiny random perturbation. Correspondingly, the difference in the objec-
tive function value caused by this perturbation is denoted as AJ = Jy,+1 — Ju, where J,, 11
is the new objective function value resulting from new hyperparameters after perturbation,
and J, is the current value resulting from current hyperparameters before perturbation.
When the objective function value decreases (AJ < 0), new hyperparameters are accepted
as the starting point for the next perturbation. When the objective function value increases
(AJ > 0), new hyperparameters may still be accepted with a certain probability, helping
escape from the local optimum. The Metropolis algorithm [30] was introduced to generate
the probability that determines whether to accept the new parameters. The acceptance
probability is given by:

P = e—AJ/Tf, (18)

where AJ is the difference in the objective function value, and T; is the current temperature
in the outer loop. They control the acceptance probability together. When A7 is the
same, the probability is larger at higher temperatures and smaller at lower temperatures.
This probabilistic acceptance can be achieved by comparing P with a random number %
sampled from a continuous uniform distribution U (0,1). When 1 < P, the new parameters
are accepted.

4. Experiments
4.1. Datasets

The experiments are conducted on three few-shot learning benchmarks, including
minilmageNet [6], CUB-200-2011 [31], and CIFAR-FS [32]. minilmageNet is a mini-version
of the ImageNet dataset [33], which contains 100 classes with 600 images per class, and the
image size is 84 x 84 x 3. minilmageNet is divided into 64 base classes, 16 validation classes,
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and 20 novel classes in all experiments. CUB-200-2011 is a fine-grained classification dataset
that includes bird images of size 84 x 84 x 3, split into 100 base, 50 validation, and 50 novel
classes. CIFAR-FS is created by randomly splitting 100 classes of CIFAR-100 [34] into 64
base classes, 16 validation classes, and 20 novel classes. The images are of size 32 x 32 x 3.

4.2. Evaluation Criteria

Experiments are performed on 10,000 tasks randomly sampled from novel classes,
following 5-way-1-shot and 5-way-5-shot settings. The task-specific classifiers are evaluated
on 15 query images per class in each task. The evaluation metric is the average top-1
accuracy on 10,000 tasks.

4.3. Implementation Details

Following the previous work [17], a WideResNet model is trained on base classes as
the feature extractor for each dataset. As the task-specific classifier, we use the logistic
regression classifier with L2 regularization. After classifier training, we use it for testing
novel classes. The configuration used for all experiments consists of an Nvidia Quadro
RTX 5000 (16 GB), 64 GB of RAM, Ubuntu 20.04, and torch 1.7.1.

4.4. Comparison to State-of-the-Art

We compared the proposed framework with other state-of-the-art methods, including
optimization-based, metric-based, fine-tuning-based, and generation-based. Tables 1 and 2
present the classification results of our framework for 5-way-1-shot and 5-way-5-shot on
minilmageNet and CUB-200-2011, respectively. Table 3 displays the results on CIFAR-FS.
All tables show that our framework achieves the best performance for 1-shot and 5-shot
compared with the other state-of-the-art on minilmageNet, CUB-200-2011, and CIFAR-FS.

Table 1. 5-way-1-shot and 5-way-5-shot classification accuracy (%) on minilmageNet with 95%
confidence intervals.

minilmageNet
Method
5-way-1-shot  5-way-5-shot
ICML17’ MAML [4] 48.70 £ 1.75 63.11 +0.92
Meta-SGD [35] 50.47 +1.87 64.03 +0.94
Optimization-based ICML18" adaResNet [36] 56.88 + 0.62 7194+ 0.57
ICLR19’ LEO [37] 61.76 +0.08 77.59 +£0.12
ECCV20’ E3BM [38] 63.8+04 80.29 +0.25
CVPR19” Meta Transfer Learning [39] 643+ 17 809+ 0.8
NIPS16” MatchingNet [6] 4344 +0.77 55.31 +0.73
NIPS17’ ProtoNet [14] 49.42 +0.78 68.20 &+ 0.66
Metric-based CVPR18’ RelationNet [40] 50.44 +0.82 65.32 +0.70
NIPS19" CAN [41] 63.85 1+ 0.48 79.44 1+ 0.34
AAAI22" AAP2S [42] 64.82 +0.12 81.31+0.22
ICLR19’ Baseline++ [15] 53.97 +0.79 75.90 + 0.61
Fine-tuning-based ECCV20’ RFS-simple [16] 62.02 + 0.63 79.64 + 0.44
WACV20’ S2M2y [17] 64.93 +0.18 83.18 +0.11
ECCV20’" Negative-Cosine [43] 62.33 +0.82 80.94 +0.59
TPAMI21’ DC [10] 68.15 4+ 0.20 83.52+0.14
NIPS18” MetaGAN [18] 52.71 £ 0.64 68.63 + 0.67
Generation-based NIPS18’ Delta-Encoder [19] 59.9 69.7
TIP19’ TriNet [44] 58.12+1.37 76.92 + 0.69
ICML20" Meta Variance Transfer [45] - 67.67 £0.70

Ours PSDC 68.31 1+ 0.20 83.75 + 0.13
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Table 2. 5-way-1-shot and 5-way-5-shot classification accuracy (%) on CUB-200-2011 with 95%
confidence intervals.

CUB-200-2011

Method

5-way-1-shot  5-way-5-shot

Optimization-based ICML17’ MAML [4] 50.45 4+ 0.97 59.60 4+ 0.84
P Meta-SGD [35] 53.34 +0.97 67.59 £ 0.82
NIPS16” MatchingNet [6] 73.49 £+ 0.89 84.45 + 0.58

Metric-based NIPS17’ ProtoNet [14] 72.99 £+ 0.88 86.64 + 0.51
CVPR18’ RelationNet [40] 68.65 + 0.91 81.12 +0.63

AAAI22" AAP2S [42] 77.64 +0.19 90.43 +0.18

Fine-tunine-based ICLR19’ Baseline++ [15] 69.55 + 0.89 85.17 +0.50
& ECCV20’ Negative-Cosine [43] 72.66 + 0.85 89.40 +0.43
TPAMI21’ DC [10] 80.29 +£0.20 90.80 +0.11

Generation-based NIPS18’ Delta-Encoder [19] 69.8 82.6

TIP19" TriNet [44] 69.61 +0.46 84.10 £0.35
ICML20" Meta Variance Transfer [45] - 80.33 £ 0.6

Ours PSDC 80.43 £ 0.20 91.16 £ 0.10

Table 3. 5-way-1-shot and5-way-5-shot classification accuracy (%) on CIFAR-FS with 95%
confidence intervals.

Method CIFAR-FS
5-way-1-shot 5-way-5-shot
ICML17” MAML [4] 589+1.9 71.5+1.0
Optimization-based ICLR19’ R2D2 [32] 65.4+0.2 794+0.2
CVPR19” MetaOptNet [46] 728+ 0.7 85.0+0.5
NIPS17” ProtoNet [14] 55.5+0.7 720+ 0.6
Metric-based CVPR18’ RelationNet [40] 55.0+ 1.0 69.3+0.8
AAAI22" AAP2S [42] 73.124+0.22 85.69 +0.16
CVPR19’ Shot-Free [47] 69.15 84.70
Fine-tuning-based ICLR19’ Baseline++ [15] 67.50 + 0.64 80.08 £ 0.32
Ours PSDC 74.66 1+ 0.21 86.37 £ 0.15

4.5. Visualization of Generated Samples

A task for 5-way-1-shot is randomly sampled from novel classes of minilmageNet.
Figure 4 shows the t-SNE [48] visualization of the ground-truth distributions and the
generated features on the task. Figure 4a presents the support set in the task, which
includes five samples. We show the features generated by PSDC in Figure 4b, the features
generated by DC [10] in Figure 4c, and the ground-truth feature distributions in Figure 4d.
From Figure 4, we can observe that the feature distributions generated by PSDC are more
aggregated and consistent with the corresponding ground-truth distributions than those
generated by DC. The visualization illustrates the inherent plausibility of our method in
the accuracy improvement of the few-shot classification task.
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Support Set

Generated features by ours Generated features by DC Ground-truth distribution
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Figure 4. The t-SNE visualization of generated features and ground-truth distributions on a random
5-way-1-shot task sampled from minilmageNet. % in (a—d) represents support set features, A in (b,c)
represents the generated features, x in figure (d) represents features of ground-truth distributions.

4.6. Ablation Study

The results of the ablation study are reported in Table 4 to show the different effects of
multiple ingredients in the proposed framework, including the effects of Prototype-based
Representative Mechanism (PRM) and the Self-adaptive Hyperparameter Optimization
Algorithm (SHOA). Experiments of the ablation study are conducted on 10,000 tasks, and
the reported results are the average classification accuracy with a 95% confidence interval.
The baseline is the classification performance of the model when no components of the
Prototype-based Adaptive Distribution Calibration (PSDC) framework are used.

Table 4. Ablation study on minilmageNet and CUB-200-2011 for 5-way-1-shot and 5-way-5-shot
settings, the experiment.

minilmageNet CUB-200-2011
PRM SHOA
5-way-1-shot 5-way-5-shot 5-way-1-shot 5-way-5-shot
x x 68.15+0.20 83.52+0.14 80.29 +0.20 90.80 +0.11
v X - 83.65£0.14 - 90.88 +0.11
x v 68.31+0.20 83.65 £0.14 80.43 - 0.20 91.09 £0.10
v v - 83.75 + 0.13 - 91.16 & 0.10

4.6.1. Ablation Study on the Prototype-Based Representative Mechanism

In the case of the 5-way-1-shot, there are five classes in the support set, and each class
has a single sample that is the prototype-based representative. Therefore, the Prototype-
based Representative Mechanism is applied for 5-shot, and we use “-” to replace the same
result in Table 4. In the case of the 5-way-5-shot, when the model is trained without SHOA,
PRM can improve the performance by 0.13% on minilmageNet, and the performance gain
is 0.08% on CUB-200-2011. When the model is trained with SHOA, PRM can improve the
performance by 0.1% and 0.07% on the minilmageNet and CUB-200-2011, respectively.

4.6.2. Ablation Study on the Self-Adaptive Hyperparameter Optimization Algorithm

Table 4 shows that, when the model is trained without PRM, SHOA can improve
the performance by 0.16% and 0.13% on minilmageNet for 1-shot and 5-shot, respectively.
Moreover, the model performance has been improved by 0.14% and 0.29% on the CUB-
200-2011 for 1-shot and 5-shot, respectively. When the model is trained with PRM, SHOA
can improve the performance by 0.1% and 0.28% for 5-shot on minilmageNet and CUB-
200-2011, respectively. The results of ablation experiments illustrate that SHOA can not
only self-adaptively optimize hyperparameters for the distribution calibration of different
application scenarios (i.e., datasets) but also build a robust distribution calibration model
for few-shot image classification.
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4.6.3. Ablation Study on PRM and SHOA

Table 4 shows that, when the model is trained with PRM and SHOA, model per-
formance compared with baseline can be improved by 0.23% and 0.36% for 5-shot on
minilmageNet and CUB-200-2011, respectively. The results of the ablation experiment
illustrate that the classification performance of models can be improved by using both PRM
and SHOA in the few-shot image classification task.

4.7. Hyperparameter Searching

The hyperparameters are searched on the validation set. The optimal hyperparameters
achieve the lowest error rate, i.e., the highest accuracy. Before hyperparameter searching,
some parameters need to be initialized, including the current and optimal hyperparameters
of distribution calibration, the temperature for controlling acceptance probability, and the
current and optimal values of the objective function (i.e., accuracy or error rate).

In the inner loop, a slight perturbation is added to a random hyperparameter, resulting
in a new error rate. We compare the new error rate with the current error rate. In the first
case, the new hyperparameters are accepted if the new error rate is less than the current
error rate. In the other case, if the new error rate is greater than or equal to the current
error rate, the acceptance probability is determined by the current temperature and the
difference between the new error rate and the current error rate as Equation (18), which
helps jump out of the local minimum. Suppose new hyperparameters are accepted, and the
new error rate is lower than the optimal error rate. In that case, the optimal error rate and
the optimal hyperparameters are updated by the new error rate and new hyperparameter.

As the number of outer loops increases, the temperature decay is performed according
to Equation (17). The acceptance probability decreases considerably to almost zero as the
temperature decays. The whole hyperparameter optimization is repeated continuously by
a certain number of iterations, and robust hyperparameters can be found that are approxi-
mately the global optimum. Our method can make the objective function converge to the
globally optimal value by jumping out of the locally optimal value with a certain probability.
Furthermore, it can automatically search for the appropriate values of the hyperparame-
ters rather than manually setting them, implementing the self-adaptive hyperparameter
optimization for different application scenarios (i.e., datasets).

We present the process of hyperparameter optimization in Figure 5. Figure 5a—c show
the variation of the model error rate on three different validation sets as the temperature
iterations increase. The red line displays the evolution of the best model performance.
The blue line represents the model performance at the last iteration of the inner loop. In
addition, we show the variable acceptance probability at the last iteration of the inner loop
as the number of temperature iterations increases in Figure 5d. Figure 5 shows that, as the
number of temperature iterations increases, the model classification performance gradually
coincides with the optimal classification performance, and the acceptance probability
gradually decreases.
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(a) minilmageNet (validation set) (b) CUB (validation set)
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Figure 5. Visualization of the error rate and acceptance probability on validation sets of minilmageNet,
CUB-200-2011, and CIFAR-FS. (a) The variation of the model error rate on the validation set of
minilmageNet as the temperature iterations increase. (b) The variation of the model error rate on the
validation set of CUB-200-2011 as the temperature iterations increase. (c) The variation of the model
error rate on the validation set of CIFAR-FS as the temperature iterations increase. (d) The variation
of acceptance probability on three datasets as the number of temperature iterations increases.

5. Conclusions

This paper proposes a novel few-shot image classification framework—Prototype-
based Self-adaptive Distribution Calibration (PSDC), which includes a prototype-based
representative mechanism and a self-adaptive hyperparameter optimization algorithm.
To the best of our knowledge, PSDC is the first attempt to utilize a self-adaptive strategy
in the hyperparameter optimization of distribution calibration. Extensive experiments
are conducted on the minilmageNet, CUB-200-2011, and CIFAR-FS. Experimental results
indicate that PSDC surpasses other few-shot learning methods on three benchmarks. Fur-
thermore, the visualization of the generated features verifies that PSDC can better estimate
the ground-truth distribution. All results verify the effectiveness of the proposed frame-
work and demonstrate that PSDC achieves state-of-the-art. However, since the current
algorithm for estimating the ground-truth distribution is still hand-crafted, future work
will focus on learning distribution by deep neural networks to estimate the ground-truth
distributions accurately.
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