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Abstract: News media always pursue informing the public at large. It is impossible to overestimate
the significance of understanding the semantics of news coverage. Traditionally, a news text is
assigned to a single category; however, a piece of news may contain information from more than
one domain. A multi-label text classification model for news is proposed in this paper. The pro-
posed model is an automated expert system designed to optimize CNN’s classification of multi-label
news items. The performance of a CNN is highly dependent on its hyperparameters, and manually
tweaking their values is a cumbersome and inefficient task. A high-level metaheuristic optimization
algorithm, spotted hyena optimizer (SHO), has higher advanced exploration and exploitation capa-
bilities. SHO generates a collection of solutions as a group of hyperparameters to be optimized, and
the process is repeated until the desired optimal solution is achieved. SHO is integrated to automate
the tuning of the hyperparameters of a CNN, including learning rate, momentum, number of epochs,
batch size, dropout, number of nodes, and activation function. Four publicly available news datasets
are used to evaluate the proposed model. The tuned hyperparameters and higher convergence rate
of the proposed model result in higher performance for multi-label news classification compared to a
baseline CNN and other optimizations of CNNs. The resulting accuracies are 93.6%, 90.8%, 68.7%,
and 95.4% for RCV1-v2, Reuters-21578, Slashdot, and NELA-GT-2019, respectively.

Keywords: data mining; deep learning (DL); multi-label text classification (MLTC); spotted hyena
optimizer (SHO); convolutional neural network (CNN); hyperparameter optimization

1. Introduction

News can be presented in the form of newspapers, periodicals, television, radio, blogs,
news articles, etc. News media have been essential, critical, and informative from the
beginning of time. News can be plain text and extremely complicated at the same time.
This research accentuates news articles and their classification. News classification poses
challenges, as news contains multiple semantics [1]. For instance, a single news story may
contain information from multiple categories, such as computers, exports, and the economy.
Legacy machine learning (ML) techniques classify news as a single-label classification task.
Text classification is a primary task in natural language processing (NLP) [2]. It is especially
useful for the classification of rich semantic text such as news articles. Multi-label text
classification (MLTC) is the process of associating a text with numerous classification labels.

Over the years, researchers utilizing deep learning (DL) techniques have demonstrated
its effectiveness in numerous domains [3–18]. Among various DL techniques, convolu-
tional neural networks (CNNs) do not use matrix multiplication, rather they use a special
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technique called ’convolution’. The combination of convolution and pooling layers is
used for the classification task [19,20]. Deep learning creates a learning model and forms
learning patterns from a learning dataset and then efficiently predicts labels based on
that learning [21]. CNNs have attained top performance in text categorization because
of their outstanding capability of capturing local relations of temporal or hierarchical
structures [22–24].

Kalchbrenner et al. [22] modeled words with stacking of numerous layers of convolu-
tion. Collobert et al. [23] and Yu et al. [24] both simulated text using a single convolutional
layer. According to Kim et al. [25], the use of many convolutional layers is beneficial in
the process of extracting high-level abstract characteristics. According to Yin et al. [26],
the network can better handle sentences of varying lengths due to the use of a pooling
operation. Furthermore, they investigated multichannel convolution architecture and vari-
ably sized feature detectors. Starting out, Conneau et al. [27] used a deep convolutional
architecture consisting of 29 convolutional layers. To achieve superior results in detecting
correlations among data, they increased the layer count to 49. However, in this context,
they were unable to reach state-of-the-art results.

In order to significantly outperform long short-term memory (LSTM)-based approaches,
Gu et al. [28] coupled a language CNN with recurrent highway networks. One study [29]
employed LSTM to manage the flow of data throughout the network. The input window
size in [28,29] was restricted due to the usage of a recurrent framework. There is also diffi-
culty in representing hierarchies and identifying long-term dependencies [30]. Unlike other
methods, CNN’s computational time scales linearly with the length of the sequences. CNNs
have an advantage over recurrent neural networks since they not only obtain long-range
information but also obtain a hierarchical representation of the input words [30].

The effectiveness of CNN is highly dependent on setting the external parameters,
which vary based on data type, size, and origin, and therefore must be manually adjusted
for each unique data set. These parameters are known as hyperparameters. The primary
objective of this study is to obtain the ideal set of hyperparameters in the shortest possi-
ble time without any manual intervention, hence producing a classification model with
improved performance and better time efficiency.

Recently, various metaheuristic algorithms have been proposed as effective methods
for optimization [31–34]. Meta-heuristic algorithms used in such techniques have proven to
be effective at reducing the search space needed to find an optimal solution. Unfortunately,
once these algorithms are applied to huge search areas, they tend to use up a lot of
time as well as computational resources and fall back on local optima. They also suffer
from premature convergence and do not provide a middle ground between local and
global searches. Thus, it is necessary to successfully fill the void left by metaheuristic
optimization techniques when working with a wide search space to implement task-specific
computational applications.

In order to get better outcomes, there is need for the development of more-comprehensive
multi-text classification methods. In the disciplines of engineering and research, the uti-
lization of the original heuristic algorithm is an extremely common practice [35]. Because
of its excellent search performance, the spotted hyena optimizer, also known as the SHO
algorithm, is utilized in the fields of engineering and science.

SHO is a metaheuristic optimization technique inspired by the principles of social and
hunting behavior of spotted hyenas [36–41]. During the training process of the proposed
model, SHO selects the optimal values of hyperparameters to tune the CNN. The best
value-selection procedure involves turning the hyperparameters into vectors and then
using advanced mathematical modeling to search for and assign values within the defined
parameter range [38,39]. As this algorithm is inspired by spotted hyenas, it imitates the
hunting behavior of hyenas, i.e., searching, surrounding, and attacking the target. The
exploration and exploitation processes of SHO are highly precise and effective. The ex-
ploration and exploitation tasks are group-based, so it never descends into local optima.
The fast convergence rate along with the robustness make SHO highly adaptable. These



Electronics 2023, 12, 113 3 of 24

characteristics of SHO make it highly suitable for exploring new domains [40,41]. SHO
has already achieved global success in optimization and is regarded as one of the top
exploration techniques [42–45]. Therefore, the purpose of this study is to utilize the highest
strengths of metaheuristic techniques to overcome CNN’s limitations in the field of news
MLTC for improved classification accuracy and efficiency.

This research focuses on the use of CNN along with SHO to provide an expert sys-
tem for automatically optimizing hyperparameters, including learning rate, momentum,
number of epochs, batch size, dropout, number of nodes in hidden layers, and activation
functions, to ensure the best possible accuracy and efficiency of an MLTC of news. Four
publicly accessible news datasets, namely RCV1-v2 [46], Reuters-21578 [47], Slashdot [48],
and NELA-GT-2019 [49], are used to evaluate and validate the proposed model. The results
are extremely encouraging and reflect the model’s high convergence rate, which result in
improved CNN performance in terms of accuracy and efficiency. The salient contributions
of this research are:

i. A metaheuristic-optimized SHO-CNN model for multi-label news text classification;
ii. Automation of hyperparameter optimization of a CNN using SHO;
iii. Evaluation and comparison of SHO-CNN with other metaheuristic optimization algo-

rithms

The contents of the paper are further arranged as follows: Section 2 represents related
multi-label text classification work along with hyperparameter optimization of a CNN and
related techniques are also reviewed. Section 3 illustrates the proposed methodology with
the help of an algorithm and related steps. Section 4 represents the evaluations, results, and
discussion. Finally, Section 5 concludes the research and provides recommendations for
related future work.

2. Related Work

The literature review includes information along with a background study of the
related models and techniques. The summary of the literature review and the limitations in
the field of MLTC are also discussed in this section.

2.1. Multi-Label Text Classification

MLTC is a technique used to allocate multiple labels to a singular document in the
field of NLP [50]. The primary objective of NLP is to utilize mathematical models and
algorithms to enable computers to better comprehend and rationalize associations inside
and amongst documents [51]. MLTC is primarily used for document classification in several
applications [52]. Additionally, MLTC is commonly utilized for the classification of web
content [53,54] and recommendation systems to better comprehend context [55,56]. MLTC
is able to assign various labels to a single object. For better understanding, assume the list
of labels as l = {L1, L2, L3, . . . Lz}, where l must assign n labels for L subsets to a related
instance x [57]. In contrast to conventional text classification methods, MLTC allows several
linked labels to be applied to each instance [58]. The primary goal of MLTC is to determine
the maximum number of labels for an instance.

A hierarchical structure of classes has been proposed, where classes are inherited
from other classes; if one object is assigned to a class, it may automatically relate to other
classes as well. This technique is known as Hierarchical Multi-Label Text Classification
(HMLTC) [59]. Another corresponding framework has been proposed, known as the Hi-
erarchical Cognitive Structural Learning Model (HCSM). Furthermore, the study [59] has
employed an Attentional Ordered Recurrent Neural Network (AORNN) for generating
vector-based calculations to gather knowledge from data, along with a Hierarchical Bidi-
rectional Capsule (HBiCaps) to utilize the said vectors in each iteration. One more related
model is the Hierarchical–Attentional Graph Convolutional Recurrent Neural Network
(H–AGCRNN), which modifies the vector formation algorithm for semantic extraction. A
hierarchy-based update for knowledge extraction has been performed for the Hierarchical
Attentional Graph Taxonomy Capsule–Graph Convolutional Network (HAGTP–GCN).
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Experiments were performed on four datasets (RCV1, EUR-Lex, WOS-46985, and Patent);
the results suggest that HCSM was more useful than H-AGCRNN and HAGTP-GCN.

Ibrahim et al. presented a Generic Hybridized Shallow Neural Network (GHS-NET)
to employ CNN along with Bidirectional LSTM (bi-LSTM) for gathering data-related infor-
mation [60]. The model was evaluated on three datasets related to the medical literature,
i.e., Chemical Exposure Analysis, Cancer Hallmarks, and Medical Information Mart for In-
tensive Care (MIMIC-III). The experimentation process contained a variety of environment
settings related to filter sizes, pooling, and activation functions.

Wang et al. proposed a model called Multi-Label Reasoner (ML-Reasoner) [50]; it
utilizes a binary classifier to generate classes along with an argumentation process for the
classification of data. The process consists of four steps; the first step is parsing all data
for text embeddings. Converted vectors are used for the CNN Encoder. The label encoder
assigns labels to documents. Later, a sigmoid function is used as an activation function to
normalize the output. The said model was evaluated on two datasets (AAPD, RCV1V2).
The outcomes demonstrated that the ML-Reasoner model outperformed CNN and LSTM.

Benites and Sapozhnikova modified a fuzzy Adaptive Resonance Associative Map
with a hierarchy model known as the Hierarchical ARAM neural network (HARAM) [61].
This approach was designed to enhance the classification effectiveness of large datasets
with intricate structures. Chen and Ren proposed Latent Wordwise Label information
(MLC-LWL) for multi-label text classification [62]. This model captures information for
each word to form a label and then classifies each label based on the matching structure
between them. The said model was evaluated and had higher accuracy compared to
primary machine learning techniques.

Wang, Tianshi, et al. merged a dynamic semantic representation model and a deep
neural network as DSRM-DNN [16]. It made use of a word embedding model along with a
clustering technique. DSRMDNN elements are measured and selected based on the word
score. Considering backpropagation properties, a deep belief neural network is integrated
for text classification. The classification process reconditions newly discovered words
along with minimally occurring words throughout the cycle. The model was evaluated
using three datasets, i.e., RCV1-v2, Reuters-21578, and EUR-Lex. The results suggest
that the performance of the model under consideration is better than that of MultiLabel
Decision Tree (ML-DT), Multi-Label k-Nearest Neighbor (ML-KNN), Binary Relevance (BR),
Classifier Chains (CC), Multi-Label Neural Networks (MLNN), HARAM, Convolutional
and Recurrent Neural Networks (CNNRNN), Hierarchical Label Set Expansion (HLSE),
and Supervised Representation Learning (SERL) models.

2.2. Hyperparameter Optimization of CNN

Conventional AI-based neural networks use matrix multiplication, but CNN uses the
convolution method for mathematical calculations and computing of the classification pro-
cess [63–65]. There are also variable parameters that affect the performance of CNNs; they
are known as hyperparameters. These parameters are external to the CNN and can highly
influence the classification output. The determination of highly optimal hyperparameters
guarantees a high outcome in terms of accuracy and efficiency, but it is a time-exhausting
manual process, even for an expert with plenty of experience in the domain. In a complex
CNN configuration, there are numerous hyperparameters along with distinct ranges. It is
tedious to manually choose, evaluate, and tune each parameter and their combinations.
This necessitates the development of an automated procedure to determine the appropriate
hyperparameter values.

In order to tune hyperparameters of a simple CNN, Random Search (RS) and Grid
Search (GS) models are widely used [66–68]. These methods are non-adaptive in nature
since they rely on readily available results. GS is feasible for a CNN with a small number
of hyperparameters, as it evaluates all the combinations of hyperparameters. Therefore,
increasing the number of hyperparameters exponentially increases the number of possible
combinations, resulting in poor performance and resource utilization [67]. In comparison
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to the tuning of hyperparameters by using GS [68], Bergstra and Bengio have used RS for
similar experiments [66]. Their results demonstrated that RS is time-efficient and generates
more-precise models. The prevailing performance of nonadaptive techniques can be further
improved by manually modifying the hyperparameter space.

Adaptive methods such as Bayesian optimization and metaheuristics-based models
employ knowledge from data in the early phases [69–71]. Bayesian optimization mod-
els are considered to be more straightforward to implement than metaheuristics models.
Metaheuristics-based models are best suited for progressive techniques, as they provide
efficient handling for a solution space. Neuroevolution is an application of evolutionary
computation related to neural networks. The prominent research for this domain includes
EPNet [72] and NEAT [73]. Over the years, the evolution of high-speed memory manage-
ment, especially Graphics Processing Units (GPUs), has enabled highly complex networks
to perform efficiently.

In another work, Sun, Xue, Zhang, and Yen proposed an evolutionary CNN known as
EvoCNN [74]. It automatically generates a CNN architecture along with initial weights. Ma
et al. also proposed models based on evolutionary algorithms [75]. Both proposed models
were evaluated on complex networks and resulted in high efficiency. Lecun et al. incorpo-
rated Genetic Algorithms (GA) along with grammatical evolution for automatic generation
and tuning of hyperparameters for CNNs [64].

The effectiveness of metaheuristics-based algorithms for optimizing CNN hyperparam-
eters has been demonstrated over the years. One such method is known as Particle Swarm
Optimization (PSO). PSO-based models have been evaluated using publicly available
standard datasets. The results show that PSO-based models have decreased classification
error [76,77].

Due to the success of metaheuristic algorithms, several other metaheuristics-based
approaches have been proposed, including Differential Evolution (DE) [78], Harmonic
Search (HS) [79], and Reinforcement Learning (RL) [80,81]. The proposed models aim
to tune hyperparameters and search for the optimal CNN architecture [82,83]. Hakim
et al. [36] used the imperialist competitive algorithm (ICA) and Greywolf optimizer (GWO)
to enhance CNN performance. The results demonstrated that the CNN optimized with
metaheuristic algorithms outperformed the original CNN.

Dhiman and Kumar proposed SHO [38], which is an adaptation of metaheuristic
algorithms. The authors evaluated the model on complex networks and standard datasets.
Due to its advanced search ability, the results indicated a rapid convergence rate.The SHO
algorithm was applied to image matching in the study [42], which resulted in improved
accuracy. The modified SHO was utilized for PID parameter optimization in VAR in [44]
and contributed to an increase in the diversity of search options.

Kadry et al. [37] have used SHO for CNN-based model optimization. The authors
optimized the deep and handcrafted features using SHO and later concatenated them
to create a feature vector with rich representation. In other research, Luo, Li, and Zhou
employed SHO in the field of image processing [42]. Panda and Majhi [43] used SHO
for the prediction of gene selection features using improved multi-objective SHO. Table 1
presents a summary of metaheuristic techniques and their limitations.
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Table 1. Summary of metaheuristic optimization techniques in the literature.

Name Contributions Limitations

Random Search (RS) [66]

It is a direct search technique that does
not maximize the problem’s gradient.
The program uses a random number
generator to determine the values of

the hyperparameters.

Methods such as this are not adaptive
since they use predetermined outcomes.
They are an inefficient means of going
down, which only lowers the overall

performance.

Grid Search (GS) [67,68]
A grid of values is formed by picking two
or more parameter values and evaluating
all possible permutations of those values.

Larger combinations tend to have a
negative impact on efficiency

and productivity.

Harmonic Search (HS) [79]

This method was developed specifically
for the purpose of resolving difficulties

involving optimization with a
single target.

After increasing the parameters, the
performance starts to suffer, which leads

to less accurate results.

Particle Swarm Optimization
(PSO) [76,77].

It optimizes a problem by repeatedly
searching for better solutions until one is
found that meets certain specified criteria.

Given the fixed length of the encoding
string, it is required to manually adjust

the dense layer parameters and their
positions within the encoded text.

Imperialist Competitive Algorithm
(ICA) [36]

It can distinguish between distinct
sources from a mixed signal.

It does not adjust itself to the changing
characteristics of a dynamic system.

Grey Wolf Optimizer (GWO) [36]

The algorithm models the social structure
and hunting strategy of grey wolves in
the wild. Since there are fewer control

settings, it is simple to implement.

Its low accuracy is a result of its slow
convergence rate.

Genetic Algorithm (GA) [64]

This technique, which is based on natural
selection, is capable of solving both

limited and unconstrained
optimization problems.

Over time, it may settle on a solution that
is less than ideal.

Differential Evolution (DE) [78]
In order to generate a new vector, this

technique uses the dissimilarity between
two or more existing vectors.

Finding the best way to start a population
and set control settings can be difficult.
Although the population may not have
attained a local optimum, convergence

can still take place.

The current literature review confirms the necessity for MLTC of news. A primary CNN
is inefficient for MLTC tasks [52]. The performance of a CNN is extremely dependent on the
tuning of its hyperparameters, and automation of hyperparameters is crucial work in the
field of CNN optimization. The performance of the model can suffer from an increase in
complexity at times [67]. Metaheuristic-based optimizations are effective for automating CNN
hyperparameter tuning [69,70,75]. Metaheuristic-based optimizations are effective for au-
tomating CNN hyperparameter tuning [36,64,76,78,79], but there is no single best-performing
solution for all optimization problems [70]. Furthermore, increasing the dimensions greatly
diminishes the effectiveness of approaches such as PSO, DE, and GA [84].

The proposed model employs SHO [38] because it holds superior exploration capa-
bilities, rapid convergence rate, and extremely valuable qualities to prevent falling for
local optima. In addition, it has been evaluated on complicated networks [42,44]. The opti-
mization of CNN hyperparameters, particularly for an MLTC model, reflects an ongoing
challenge. Considering the criticality, importance, and effectiveness of news media, this
challenge poses a superior, purposeful, and significant research problem.

3. Methodology

The proposed model employs a CNN for the task of MLTC. The characteristics of
CNN for the task of text classification are exceptional. The performance of CNN depends
heavily on its hyperparameters. These hyperparameters are responsible for the learning



Electronics 2023, 12, 113 7 of 24

process and output of a model. The hyperparameters are always specified and updated
manually to tune the model. To overcome this time-consuming and manual task of tuning
a CNN, the proposed model employs SHO for the automated tuning of the CNN. SHO is
based on a metaheuristic search algorithm; it fetches the set of hyperparameters and their
values to establish the optimal values for each hyperparameter. In this research, the CNN
is highly analyzed to optimize related hyperparameters, including batch size, learning
rate, momentum, dropout, the number of epochs, the number of nodes, and the activation
function. The proposed model for MLTC of news is shown in Figure 1.

Figure 1. Architecture of the proposed SHO-CNN for MLTC of news.

The operations of the proposed model can be divided into phases, beginning with
preprocessing for cleaning datasets, word embeddings for vector representations, hyperpa-
rameter tuning by SHO, and classification output by CNN.

3.1. Preprocessing

Preprocessing is generally an initial step for every machine learning model. It involves
cleaning and organizing raw data to make it suitable to develop and train a machine learn-
ing model. The data cleaning standard may vary as required by the model. Preprocessing
text for the proposed model includes the following essential steps:

• Converst numbers to descriptive words;
• Remove all special characters;
• Remove spaces;
• Expand all abbreviations;
• Remove ineffective words;
• Detect and replace synonyms for words.

3.2. Word Embeddings

The function of word embedding is to convert textual words into their corresponding
numerical vectors; this allows machine learning models to identify and learn hidden
patterns among textual data for NLP. In the proposed model, the skip-gram model is used
to generate vectors [85]. It involves semantics to create a vector for every vocabulary
word, as represented in Figure 2. The related context properties are retrieved from vector
documentation. Context properties are compared on the basis of similarity to the input.
Input words are referred to as target words, and the output with expected context attributes
is known as labels.
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Figure 2. Skip-gram model.

The target vector and context labels are encoded using one of the primary methods,
called ’one-hot encoding’, which is also known as “1’-of-N” encoding. One-hot encoding
stores a vector in the form of 0s and 1s. It is most appropriate for determining the size and
orientation of words [86].

3.3. SHO-CNN

Considering the social and hunting behavior of a metaheuristic SHO algorithm, SHO
is integrated with CNN to optimize the hyperparameters. The course of the current study
includes implementation of domain standards and publicly available datasets. Secondly,
we build and train the proposed model. Afterward, we evaluate the performance of the
proposed model. Finally, we compare the performance of the proposed model with other
baseline models using advanced performance measures, including accuracy, precision,
recall, and F-measure.

Input and output parameters can be set during the development of machine learning
models; however, the ideal values for hyperparameters cannot be determined. No expert
is definite regarding the nature and relationship between training datasets and data pro-
cessing. To circumvent this difficulty, specialists manually supply an extensive range of
values for each hyperparameter, which is a time- and resource-intensive process. Ideally, a
model ought to be capable of automatically searching for and obtaining the optimal values
for each hyperparameter. In general, these hyperparameters differ between models and
datasets and cannot be learned directly from data. For the tuning and optimization of
hyperparameter values, external optimization techniques are applied.

Dataset DS used in this research is divided into training DSTr and testing DSTe subsets
(DSTe, DSTr ∈ DS). For every DS, there are various classification models C for a CNN.
These models take hyperparameters HP for the CNN into consideration, including the
learning rate, momentum, number of epochs, batch size, number of nodes, activation
function, and dropout. Let us consider a classification model with optimized hyperpa-
rameters as CoHP, where oHP is the desired optimized configuration of hyperparameters
(oHP ∈ HP). The optimized solution is calculated using SHO. The optimized solution
minimizes the loss function at a rate of L. The hyperparameters of CoHP can be validated
via Equations (1) and (2).

oHP(DSTr) = args min
CoHP∈C

L(CoHP, DSTr) + ρ(CoHP) (1)
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oHP = args min
oHP∈HP

L
(CoHP, DSTr), DSTe

C̄(oHP)
(2)

The population of spotted hyenas is initialized to begin the processing of the proposed
model. Each hyena is defined as the combination of hyperparameters of CNN to be tuned.
The fitness value of each hyena is calculated from the initialized population. The hyenas
search for the best solution until the max number of iterations. The fitness of each hyena is
checked after every iteration. The best value for a hyena is updated in the search space. A
group of best solutions is maintained in the solution space. The procedure is terminated
when the required condition is met or when the maximum number of repetitions has been
reached. The algorithm for the proposed model is presented in Algorithm 1.

Algorithm 1 SHO-CNN

Require: Size of population of Hyenas (H), H(i = 1, 2, 3, . . . , n)
Ensure: Fittest Hi, Every member in set H is a combination of hyperparameters ~hp for the

CNN, including learning rate, momentum, number of epochs, batch size, number of
nodes, activation function, and dropout.

1: Initialize random H population of size n
2: Determine the fitness value of each search agent
3: While (epoch < max number of iterations)
4: For each H
5: Update the location of each search agent
6: End for
7: Update the control parameters ~X, ~Y, ~Distancehp, and ~hp
8: Compute the fitness value of each H in a group
9: If current solution~Lhp is better than the previous solution, update~Lhp

10: Update the group ~Chp with updated~Lhp
11: Epoch = Epoch + 1
12: End while

3.4. Tuning Hyperparameters

MLTC for news includes the classification of text data; therefore a one-dimensional
CNN is utilized for experiments. The primary structure of the CNN is followed in the
experiments, which contains convolutional layers at the start along with pooling layers,
activation layers, and a fully connected layer at the end. A stack of five convolution
layers is used in the experiments. A Rectified Linear Unit (ReLU) is the prevalent choice
for the activation function in the case of multi-label text classification problems. The
proposed model also utilizes the ReLU activation function. Max-pooling is applied as
a pooling function in pooling layers. Adam is used as an optimizer. CNN has several
hyperparameters that can be tuned to optimize the classification output. Before initiating
the training process, the upper and lower limit value ranges of the parameters are assigned.
The hyperparameters of the CNN and the parameter of SHO along with the selected range
of values are represented in Table 2 and Table 3, respectively.

Table 2. Hyperparameters of CNN.

Hyperparameter Value

Learning rate (LR) Min. value 0.001, Max. value 0.1
Momentum (MOM) [0.9 to 0.99]

Dropout [0.1 to 0.9]
Epochs [30,60,120,150,200,300]

Batch size (BS) [8,16,32,64]
Number of nodes (1,256)

Activation function (ReLU, Sigmoid)
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Table 3. Parameters of SHO.

Hyperparameter Value

Size of population 30
Control parameter (~hp ) (5,0)

Random vector ~M (0.5,1)
Number of iterations 200

4. Evaluation and Results

This section describes the datasets, baseline models, and evaluation matrices used
in the evaluation process along with a comparison of the results. The best values of the
optimized hyperparameters for the CNN by the proposed model are also described in the
section below.

4.1. Experimental Setup

The development environment is based on Windows 10; system specifications are
Intel(R) Core (TM) i5-1005G1 CPU @ 1.20 GHz–1.19 GHz with 16gb ram. A jupyter
(https://jupyter.org/, accessed on 8 September 2022) notebook in VScode (https://code.
visualstudio.com/, accessed on 8 September 2022) with Python (https://www.python.org/,
accessed on 8 September 2022) programming is used to develop the proposed model.
A Python package known as natural language toolkit NLTK (https://www.nltk.org/,
accessed on 15 September 2022) is used for preprocessing data. The text is vectorized using
the Keras (https://keras.io/, accessed on 15 September 2022) Pandas (https://pandas.
pydata.org/, accessed on 15 September 2022)and NumPy (https://numpy.org/, accessed
on 15 September 2022) are used for data manipulation and analysis.

A multi-label text classification model can be evaluated using a group of evaluation
matrices to capture various related aspects. Accuracy, Precision, Recall, F-measure, MicroF1,
and MacroF1 are used to evaluate and compare the proposed model [87].

4.2. Datasets

Four standard publicly available datasets for the text-based news domain are used in
this research. These datasets are a benchmark and have been used to evaluate several state-
of-the-art machine learning models. Further details of each dataset are described below.

4.2.1. RCV1-v2

RCV1-v2 is an updated version of Reuters corpus volume1. It has a collection of
newswire articles produced by Reuters from 1996 to 1997. It contains 804,414 manually
labeled news documents [46]. The news documents are categorized based on industries,
topics, and regions.

4.2.2. Reuters-21578

Reuters-21578 is the collection of news from one of the globally reputed news agencies,
“Reuters”. The collection of news is from the Reuters newswire spanning 1987 [47]. We
separate the dataset into 10,789 usable text articles and further divide it into a subset of
8631 data points for training and 2158 for testing.

4.2.3. Slashdot

Slashdot is a dataset obtained from the Slashdot website, a technology-related news-
sharing community platform [48]. The dataset contains a total of 291 label classes and
19,258 multi-labeled news articles for training and 4814 news articles for testing.

https://jupyter.org/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.python.org/
https://www.nltk.org/
https://keras.io/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://numpy.org/
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4.2.4. NELA-GT-2019

NELA-GT-2019 is one of the latest datasets from the Harvard Dataverse. It is a large,
multi-labeled news collection of around 1.12 million news articles [49]. It was obtained
from 260 mainstream and alternative news sources from January 2019 to December 2019.

4.3. Baseline Models

The following baseline models are used for comparison with the proposed model.

4.3.1. CNN

The results of the proposed model are compared with a CNN; experiments include
a CNN network with five convolutional layers along with max pooling for the pooling
layer functions.

4.3.2. GA-CNN

The proposed model is also compared with a Genetic-Algorithm-optimized CNN
(GA-CNN) [88]. GA is inspired by the theory of evolution and uses nature operations such
as mutation, crossover, and selection. It determines and selects the fittest individual for the
propagation of the search.

4.3.3. PSO-CNN

PSO-CNN is a Particle swarm optimized CNN. PSO is a stochastic optimization
technique; it employs the concept of social interaction to solve search problems. It iteratively
uses several items to achieve the optimization goal [89].

4.3.4. DE-CNN

DE-CNN is a CNN optimized by DE. DE is a population-based metaheuristics algo-
rithm; it uses a large population of search agents to interact with each other and predict the
best search in the solution space [90].

4.4. Results

In this paper, the SHO-CNN model for MLTC of news is proposed. SHO is utilized
to optimize the CNN’s hyperparameters. It is concluded that no single hyperparameter
is responsible for CNN’s optimization. A change in the value of one hyperparameter
can have an effect on the values of other hyperparameters. Moreover, these optimal
values are consistently dependent on the optimized values of other hyperparameters.
SHO-CNN is evaluated using four benchmark datasets in the domain of MLTC of news:
RCV1-v2, Reuters21578, Slashdot, and NELA-GT-2019. As this research aims to expand
CNN’s capabilities through the metaheuristic optimization of hyperparameters, the CNN is
optimized using a variety of metaheuristic techniques to determine the optimal algorithm
for optimization. The resultant best values for the hyperparameters of SHO-CNN are
represented in Table 4.

Table 4. Best values of hyperparameters of SHO-CNN.

Dataset Learning Rate Momentum Dropout Epoch Batch Size Nodes Activation Function

RCV1-v2 0.001 0.95 0.4 300 64 256 ReLU
Reuters21578 0.001 0.94 0.5 300 64 256 ReLU

Slashdot 0.001 0.95 0.4 300 128 256 ReLU
NELA-GT-2019 0.001 0.96 0.3 150 32 256 ReLU

The performance of the suggested SHO-CNN model is greater than that of the baseline
approaches. It achieves accuracies of 93.65% and 90.81% for the RCV1-v2 and Reuters21578
datasets, respectively. The baseline model CNN achieves accuracies of 91.12%, 87.86%,
68.73%, and 95.45% for the RCV1-v2, Reuters21578, Slashdot, and NELA-GT-2019 datasets,
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respectively. MLTC of news using the GA-CNN achieved accuracies of 92.32% and 88.34%
for the RCV1-v2 and Reuters21578 datasets, respectively. The experiments with the PSO-
CNN resulted in accuracies of 64.37% and 94.92% for the Slashdot and NELA-GT-2019
datasets, respectively. These results also confirm the study [79], which states that SHO
optimization is more accurate than a basic CNN-, PSO-, or GA-optimized CNN. The results,
along with models and evaluation matrices, are presented in Table 5.

Table 5. Multi-label text news dataset specifications.

Dataset Model Accuracy Precision Recall f-Measure

RCV1-v2 CNN 0.911 0.902 0.799 0.851
GA-CNN 0.923 0.921 0.905 0.918
DE-CNN 0.925 0.92 0.921 0.928

PSO-CNN 0.928 0.921 0.923 0.918
SHO-CNN 0.936 0.930 0.935 0.931

Reuters-21578 CNN 0.878 0.875 0.866 0.871
GA-CNN 0.883 0.881 0.885 0.888
DE-CNN 0.889 0.888 0.884 0.886

PSO-CNN 0.896 0.895 0.889 0.888
SHO-CNN 0.908 0.902 0.909 0.901

Slashdot CNN 0.571 0.501 0.564 0.530
GA-CNN 0.592 0.591 0.590 0.590
DE-CNN 0.627 0.620 0.615 0.617

PSO-CNN 0.643 0.643 0.645 0.644
SHO-CNN 0.687 0.683 0.682 0.682

NELA-GT-2019 CNN 0.917 0.914 0.903 0.908
GA-CNN 0.923 0.922 0.914 0.918
DE-CNN 0.939 0.931 0.939 0.935

PSO-CNN 0.949 0.940 0.928 0.934
SHO-CNN 0.954 0.950 0.951 0.951

A primary CNN is assessed together with an improved GA-CNN with a uniform
mutation probability of 0.01, a crossover probability of 1, and a scaling factor of 0.5. PSO-
CNN is also used in the evaluation process, with social, cognitive, and inertia constants of
1, 1, and 0.3, respectively. In addition, SHO-CNN with a control value of 1 and a random
vector of 0.5 is also deployed. All optimization techniques use a population size of 30 with
a maximum iteration count of 200.

As seen in Table 5, it is evident that SHO-CNN outperforms the other metaheuristic
optimizations of CNNs for MLTC. Furthermore, SHO-CNN also achieves higher perfor-
mance when compared to the baseline and other state-of-the-art approaches. LSTM, an
upgraded version of CNN, is optimized using SHO [45], resulting in a higher hamming
loss than SHO-CNN but superior micro-f1 and macro-f1 performance. Table 6 shows a
comparison of the proposed SHO-CNN model with various state-of-the-art approaches on
the RCV1-v2, Reuters21578, Slashdot, and NELA-GT-2019 datasets.
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Table 6. Comparison between proposed model and similar research.

Dataset Model Hamming Loss Micro-f1 Macro-f1

RCV1-v2 BR [91] 0.864 0.852 0.662
CC [92] 0.872 0.855 0.682
LP [93] 0.874 0.858 0.691

CNN [25] 0.891 0.849 0.727
BERT [94] 0.733 0.877 0.667

CNN–RNN [95] 0.872 0.849 0.752
SGM [96] 0.814 0.869 0.712

SGM-GE [97] 0.753 0.878 0.762
Seq2Set [98] 0.736 0.879 0.751
ML-R [50] 0.793 0.898 0.695

Seq2Tree [99] 0.732 0.868 0.700
TextRCNN [100] 0.765 0.815 0.592

HiAGM [100] 0.768 0.839 0.633
HTCInfoMax [101] 0.748 0.835 0.627

HiMatch [102] 0.754 0.847 0.641
SHO-LSTM [45] 0.737 0.913 0.781

SHO-CNN (Proposed) 0.722 0.906 0.776

Reuters21578 BR [91] 0.434 0.835 0.402
PCC [103] 0.442 0.834 0.398

seq2seq-RNN [104] 0.384 0.858 0.437
BERT [94] 0.261 0.905 0.640
LBA [105] 0.254 0.908 0.675

ML-KNN [106] 0.376 0.732 0.253
ML-ARAM [61] 0.363 0.626 0.163
ML-RNN [104] 0.332 0.858 0.457

LaMP [107] 0.291 0.889 0.560
MPVAE [108] 0.267 0.887 0.542
MrMP [109] 0.254 0.893 0.591

Class-wise cluster + FS [110] - 0.800 0.725
CB-NTR [111] 0.247 0.907 0.633

SHO-LSTM [45] 0.240 0.910 0.690
SHO-CNN (Proposed) 0.237 0.908 0.665

Slashdot BR [91] 0.052 0.486 0.362
BR-Support [112] 0.055 0.516 0.357

PCC [103] 0.056 0.480 0.279
seq2seq-RNN [104] 0.058 0.528 0.270

set-RNN [112] 0.053 0.538 0.310
BERT [94] 0.037 0.583 0.380
LBA [105] 0.038 0.582 0.410

CC [92] 0.057 0.480 0.373
CNN [25] 0.049 0.512 0.412

CNN-RNN [95] 0.046 0.530 0.469
MAGNET [112] 0.039 0.568 0.475
SHO-LSTM [45] 0.038 0.650 0.492

SHO-CNN (Proposed) 0.037 0.632 0.453

NELA-GT-2019 BR [91] 0.033 0.870 0.792
BR-Support [112] 0.040 0.846 0.783

PCC [103] 0.009 0.922 0.913
LBA [105] 0.008 0.953 0.9420
CNN [25] 0.008 0.934 0.926

CNN-RNN [95] 0.008 0.935 0.944
SHO-LSTM [45] 0.007 0.972 0.970

SHO-CNN (Proposed) 0.006 0.963 0.956

According to the mathematical model of the SHO algorithm, to find a suitable prey~Lp,
the factor | Y |> 1 facilitates the spotted hyenas to move away from the prey. This promotes
exploration of the search space, which leads to finding diverse CNN structures during
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optimization. The vector M provides random values for exploration; this mechanism is
very beneficial for avoiding local optima problems even when the SHO algorithm is in the
exploitation phase [88].

The results show that the proposed SHO-CNN model can perform better in real-time
applications. The distinguishing factor in the proposed work is the introduction of SHO in
a CNN model. As per our knowledge, this is the first case where an SHO-optimized CNN
architecture is implemented for multi-label news classification. Furthermore, SHO-CNN
achieves the best classification accuracies among all the baseline and modern techniques
under consideration. The result of the proposed model demonstrates the significance of
CNN in the domain of MLTC. This proposed algorithm has a very fast convergence rate
and can successfully reduce the problem of being trapped in local minima while training
the CNN. It also illustrates the capabilities of SHO for optimizing the hyperparameters
of CNN.

Transformer encoders are best if computation is not a concern. When classes are fairly
distributed, a CNN is a successful model due to its diligent performance and assessment
efficiency. A CNN can perform better even without pre-trained word embeddings. The
CNN model performed faster; on average, the CNN was 17.6% quicker than RNN, 91.3%
faster than the Transformer encoder, and 94.7% faster than BERT-Base. BERT-Base is the
slowest model due to the huge number of top-layer parameters [113].

More recently, CNNs have garnered attention for NLP tasks due to their higher
performance, particularly on lengthier texts [114–117]. This is mostly due to the fact that
CNNs are easier to train than other NLP methods. In NLP applications, CNNs use a
convolutional layer with only one-dimension, which collects information from neighboring
words. The number of filters in a one-dimensional convolutional layer considers n number
of words next to one other as one (n-gram) [118–120]. Furthermore, adding a higher n-gram
method to CNN algorithms does not significantly increase the computing cost [113].

4.5. Ablation Study

We further classified CNN hyperparameters into two groups: group A includes critical
hyperparameters such as LR, mom, number of nodes, and activation function. Group B
comprises advanced hyperparameters such as dropout, epoch number, and batch size,
which are thought to have a significant impact on performance. Initially, we evaluated
the suggested SHO-CNN model with only Group-A hyperparameters, which resulted in a
significant performance improvement compared to CNN’s baseline performance. Secondly,
we analyzed SHO-CNN with Group-B hyperparameters; the results show that optimizing
only the advanced hyperparameters is insufficient for achieving high-performance results.
The comparisons of hyperparameters from groups A and B are shown in Figure 3. Accord-
ing to the ablation study, the vital or advanced hyperparameters alone are not adequate
for achieving high performance; rather, a mix of these hyperparameters is the optimum
approach for improved performance.

4.6. Discussion

The suggested SHO-CNN model outperforms the baseline and state-of-the-art ap-
proaches, as determined by experimentation. The selection of hyperparameter values plays
an important part in the performance of the deep learning model. Selecting hyperparame-
ters using a thorough hyperparameter search is computationally infeasible. Furthermore,
selecting a random initialization for hyperparameters could result in subpar performance.
Moreover, the choice of hyperparameter values is dependent on the dataset. This section
compares SHO-CNN to the current state-of-the-art in terms of convergence rate, epoch,
batch size, and learning rate.
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Figure 3. Comparisons based on ablation study.

4.6.1. Convergence Rate

The convergence rate for the proposed model is compared with the other state-of-the-
art optimization techniques using RCV1-v2, Reuters-21578, Slashdot, and NELA-GT-2019
datasets. In Figure 4, the x-axis represents the number of iterations, and the y-axis represents
a measure of fitness. The proposed model appears highly convergent and outperforms
other techniques in vogue. The results also indicate that DE has a higher convergence rate
when compared to GA and PSO for both datasets. The performance of DE and PSO are
relatively similar, and they both performed better than GA and a simple CNN.

Figure 4. Evaluations based on convergence rate.

4.6.2. Execution Time

Using the RCV1-v2, Reuters-21578, Slashdot, and NELA-GT-2019 datasets, the execu-
tion time of the proposed model is compared to that of existing cutting-edge optimization
strategies. The x-axis of Figure 5 reflects the optimization strategies used to optimize CNN
alongside a primary CNN, while the y-axis represents the percentage of time. The findings
reveal that the proposed model’s efficiency is fairly similar to that of a standard CNN, but
the proposed model has faster convergence and better performance than a standard CNN.
The results also reveal that PSO is superior to GA and DE in terms of performance.
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Figure 5. Evaluations based on execution time.

4.6.3. Epoch

The evaluation of the proposed SHO-CNN model based on epoch is represented
in Figure 6. The results reveal that SHO-CNN initiated at an accuracy of 87.5% and
acquired a higher accuracy of 93.65% after 300 epochs for RCV1-v2. This optimal number
of epochs provided by SHO resulted in encountering the underfitting problem of CNNs.
It is evident from the results that SHO-CNN achieved the highest accuracy. A plain
CNN, without any optimization, begins at 84.9% and 82.4% accuracy for RCV1-v2 and
Reuters-21578, respectively, which is the lowest amongst the group. In the case of Reuters-
21578, the proposed model also surpassed all the other mentioned optimization techniques.
The proposed SHO-CNN model initiated at 86.5% and achieved 90.81% accuracy with
300 epochs for Reuters-21578. It also achieved an accuracy of 95.45% with 150 epochs for
the NELA-GT-2019 dataset.

4.6.4. Batch Size

Evaluation of the proposed SHO-CNN model based on the selection of batch size
is represented in Figure 7. Optimal batch size decreases noise in the gradients, hence
enhancing the classification accuracy. The evaluation process included batch sizes of 8, 16,
32, 64, and 128. The accuracies of the proposed model are 87.5%, 90.9%, 92.3%, and 93.65%
for RCV1-v2 at batch sizes of 8, 16, 32, and 64, respectively. The proposed SHO-CNN model
yields maximum accuracies for the RCV1-V2, Reuters-21578, Slashdot, and NELA-GT-2019
datasets at batch sizes of 64, 64, 128, and 32, respectively.
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Figure 6. Evaluations based on epochs.

Figure 7. Evaluations based on batch size.
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4.6.5. Learning Rate

The proposed SHO-CNN model, along with CNN, GA-CNN, DE-CNN, and PSO-
CNN are also evaluated based on varying learning rates (Figure 8). Exploring the optimal
learning rate is the critical factor for a model’s best performance. The learning rate is
correlated with other hyperparameters of a CNN, including momentum and batch size.
The evaluation range for the learning rate is set to 0.001, 0.01, 0.05, and 0.1. The accuracies
of the proposed model were 93.65%, 92.3%, 90.9%, and 87.5% accuracy for RCV1-v2 at
learning rates of 0.001, 0.01, 0.05, and 0.1, respectively. SHO-CNN achieved the highest
accuracies for the RCV1-V2, Reuters-21578, Slashdot, and NELA-GT-2019 datasets at a
learning rate of 0.001.

Figure 8. Evaluations based on learning rate.

In this research, a basic CNN is used in the proposed model to capture spatial cor-
relations and hierarchical structures of text with exceptional accuracy without increasing
the model’s complexity [114,115,120]. The classification of text employs a one-dimensional
CNN, resulting in the fastest execution and testing times [113,116,117]. Adding more filters
does not significantly extend the execution time [27,119,120]. Five convolutional layers are
utilized by SHO-CNN to extract high-level abstract properties [22]. Furthermore, the CNN
is optimized through numerous optimization strategies; the inclusion of SHO enhances the
variety of search solutions for optimizing hyperparameters while preventing the occurrence
of local minima [44,45].

Although the SHO-optimized CNN performed well for the task of multi-label news
text classification, there are some limitations of this research that need to be considered.
Firstly, this study was conducted solely using the RCV1-V2, Reuters21578, Slashdot, and
NELA-GT-2019 datasets, so it may not be generalized for other text classification tasks.
Secondly, it is observed that SHO is occasionally susceptible to local optima when using
a lesser number of repetitions. More recently proposed optimization algorithms (such as
Political Optimizer [121], Heap-based Optimizer [122], Harris Hawks Optimizer [84]) can
be tried for the optimization of CNNs. The classification of SHO-CNN is solely based on
news text; combining text and images can generate good results.
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5. Conclusions and Future Research

This research proposes an expert automated method based on SHO of CNNs for the
purpose of MLTC of news. SHO is a metaheuristic-based approach that provides higher
exploration of the solution space while avoiding the problem of becoming trapped in
local optima. SHO is used in the proposed model to tune the CNN hyperparameters for
improved classification performance. Furthermore, the CNN algorithm helps to improve
the performance by spontaneously extracting the discriminant features from the text. As a
result, the proposed model, SHO-CNN, is highly convergent and best-suited for multi-label
classification. The proposed model is evaluated and appraised on four standard benchmark
news datasets. SHO-CNN addresses the complexity of deep learning models by utilizing
a primary CNN to achieve optimal performance compared to various baseline models,
state-of-the-art models, and other optimization techniques for CNN. The results indicate
that the proposed model has accuracies of 93.65%, 90.81%, 68.73%, and 95.45% for the
RCV1-V2, Reuters-21578, Slashdot, and NELA-GT-2019 datasets, respectively. The results
also reveal that SHO-CNN enhances a basic CNN’s accuracies on the RCV1-V2, Reuters-
21578, Slashdot, and NELAGT-2019 datasets by 2.5%, 2.95%, 11.6%, and 3.7%, respectively.
Future studies should investigate optimization approaches for different DL models. A
multimodal approach to the classification of news is also a viable future strategy, given
the majority of news is now disseminated via the internet, particularly social media. In
addition, a future study will incorporate a model with the capacity to classify multilingual
news articles.
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