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Abstract: At the edge of the network close to the source of the data, edge computing deploys
computing, storage and other capabilities to provide intelligent services in close proximity and
offers low bandwidth consumption, low latency and high security. It satisfies the requirements of
transmission bandwidth, real-time and security for Internet of Things (IoT) application scenarios.
Based on the IoT architecture, an IoT edge computing (EC-IoT) reference architecture is proposed,
which contained three layers: The end edge, the network edge and the cloud edge. Furthermore, the
key technologies of the application of artificial intelligence (AI) technology in the EC-IoT reference
architecture is analyzed. Platforms for different EC-IoT reference architecture edge locations are
classified by comparing IoT edge computing platforms. On the basis of EC-IoT reference architecture,
an industrial Internet of Things (IIoT) edge computing solution, an Internet of Vehicles (IoV) edge
computing architecture and a reference architecture of the IoT edge gateway-based smart home are
proposed. Finally, the trends and challenges of EC-IoT are examined, and the EC-IoT architecture
will have very promising applications.

Keywords: Internet of Things (IoT); industrial Internet of Things (IIoT); cloud computing; edge computing

1. Introduction

The development of IoT technology makes it possible for everything to be connected.
Cloud computing [1] simplifies the process of IoT data collection, processing and stor-
age through powerful data processing and storage capabilities. It provides elastic and
scalable infrastructure services such as computing, storage and networking for business
applications. This traditional cloud computing platform adopts a centralized architecture
for non-real-time, long-cycle data and business decision scenarios with high reliability and
on-demand distribution.

However, with the popularization and deployment of 5th-Generation (5G) mobile
technology, the volume of IoT edge devices and data have increased dramatically [2].
According to International Business Machines Corporation (IBM), the number of IoT edge
devices is expected to reach approximately 55 billion in 2022 and 150 billion by 2025, with
endpoint data volumes reaching 300 ZB. As shown in Table 1, cloud computing technologies
in traditional IoT architectures have emerged as limitations in terms of centralized data
processing models and technology development in meeting the new specific requirements
of a broader range of IoT scenarios in the 5G era. There is a significant emphasis on
image, video, data recognition and processing skills or highly demanding needs for low
latency and high network bandwidth, especially in emerging IoT application areas such
as autonomous driving [3], drones [4], smart homes [5] and smart cities [6]. Therefore,
extending capabilities such as computation, control, storage and services from the network
core to the network edge to optimize the IoT architecture is a robust research solution that

Electronics 2023, 12, 1. https://doi.org/10.3390/electronics12010001 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12010001
https://doi.org/10.3390/electronics12010001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7748-7548
https://orcid.org/0000-0002-6816-3709
https://doi.org/10.3390/electronics12010001
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12010001?type=check_update&version=2


Electronics 2023, 12, 1 2 of 22

promises to solve the above problems, called edge computing [7]. Edge computing bypasses
bandwidth and latency bottlenecks by evolving the centralized cloud computing model
in traditional IoT architectures into a center-region-edge distributed computing model,
resulting in an IoT edge computing (EC-IoT) architecture with collaborative computing
between edge and cloud computing. Compared to traditional IoT architectures, this
architecture will support faster and more comprehensive data analysis, gain deeper insights,
reduce response times and improve the customer experience.

Table 1. Cloud computing vs. edge computing in the IoT architecture.

Contents Cloud Computing Edge Computing

Computing model Centralized. Distributed.

Computing power

The linear growth of computing power in the
cloud cannot meet the increased demand for
massive multi-source data processing at the

network edge in IoT architectures.

Data processing power is enhanced by
performing computation close to the

endpoint of the IoT device [8].

Network performance [9,10]
With massive access to IoT devices and massive

amounts of data, network bandwidth and
transmission speeds have reached bottlenecks.

Workloads published for the edge can
reduce latency and bandwidth, network

performance is optimized.

Real-time Non-real-time, responsible for extensive data
analysis of long-period data.

Focuses on the analysis of real-time,
short-period data.

Availability
If the cloud center goes down, all IoT devices
that rely on the cloud data center will not be

available.

The edge requires that edge services can
continue to operate in a disconnected or

weak network state.

Privacy and Security
Data has a long path through the transport layer
to the cloud center, which can easily lead to the

loss or leakage of private user data.

Reducing transmission distances,
avoiding privacy breaches and edge-side

security need attention.

Energy consumption Energy consumption is high and data centers
consume tremendous energy [11].

The relatively low energy consumption
reduces costs.

After several years of technology reserve and development, edge computing has
obtained a lot of innovative achievements in related technologies and applications, etc.
Existing articles tend to focus more on the study of edge computing [12] and the chal-
lenges [13], network performance [9,10], security [14] and scenario applications [15] of
edge computing in the IoT domain. Currently, there is no unified academic standard for
exploring the architecture of EC-IoT and there needs to be more relevant technologies
and specific applications regarding EC-IoT solutions. As shown in Figure 1, from the
application of edge computing in the IoT field, the development of IoT edge computing is
comprehensively studied through the EC-IoT architecture. It is hoped to bring inspiration
to the researchers and enterprises engaged in the field of EC-IoT.

Figure 1. The Connection Between IoT, Edge Computing and Cloud Computing.

The specific contributions are as follows:

• Introducing edge computing into the IoT architecture. Based on the IoT architecture, a
three-tier EC-IoT architecture is proposed for the end edge, network edge and cloud
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edge. The advantages and shortcomings of the EC-IoT architecture are also studied
and analyzed.

• The impact of artificial intelligence on EC-IoT architectures is examined, with summaries
for task offloading, virtual machine (VM) migration and edge caching techniques.

• A comparative study and classification of five open-source platforms for edge comput-
ing, the NebulaStream management system and the VergeDB database is studied.

• Based on the EC-IoT reference architecture, the IIoT edge computing solution, the
Internet of Vehicles (IoV) edge computing reference architecture and the edge gate-
way smart home reference architecture are proposed. Some of the new challenges
encountered are also discussed.

• Finally, future research directions and some open challenges in IoT-Edge Computing
are summarized.

The remaining sections are organized. Section 2 introduces the definition of edge
computing, proposes the EC-IoT architecture and analyses the strengths and weaknesses of
the EC-IoT architecture. In Section 3, the impact of AI on the edge computing architecture
of the Internet of Things is deeply studied. In Section 4, the IoT edge computing platform
is discussed. In Section 5, the application and challenges of the EC-IoT architecture in IIoT,
Internet of vehicles and smart home are explored. In Section 6, future research directions
and some open challenges of IoT edge computing are summarized. Finally, Section 7
summarizes this article.

2. Architecture of IoT Edge Computing

In this section, the definition of edge computing is introduced, the integration of edge
computing technologies with existing IoT architectures, the EC-IoT reference architecture
is proposed, the key technologies at different levels and layers of the EC-IoT reference
architecture are highlighted, and a comparative analysis of the EC-IoT strengths and
weaknesses is presented.

2.1. Definition of Edge Computing

The prototype of edge computing can be traced back to 1998 when Akamai launched
the Content Delivery Network (CDN) [16], which at that time was only responsible for
storage and data marginalization. After that, it experienced the birth and evolution of
cloudlet [17–19], mobile edge computing [20,21], fog computing [22–24] and cloud-sea
computing [25] and other related concepts until 2013, when the term edge computing
was first proposed [11]. International standards organizations [26,27], enterprises [28,29],
industry [30], academia [31–33], etc., also have defined edge computing. While there are
differences in the current definitions of edge computing, the consensus remains that cloud
computing capabilities are sunk to edge nodes with the help of edge networks. This paper
combines definitions from various parties: edge computing is a new distributed computing
model that integrates cloud, network, end and intelligence. Edge computing combines
the computing power, storage and application resources of edge nodes with distributed
cloud computing technology, thus shortening response time and reducing bandwidth
requirements. Edge computing provides efficient capability support for edge applications
such as Telematics, intelligent manufacturing and ultra-high-definition video broadcasting.

Edge computing mainly focuses on business scenarios such as real-time, short-period
data and local decision-making. It is more suitable for integration into IoT architectures to
provide efficient and secure services to many end users.

2.2. IoT Architecture for End-Net-Cloud Edge Computing

As shown in Figure 2, this architecture aims to introduce edge computing on any device
and network path between IoT devices, gateways and cloud infrastructure. By enriching
the end, network and cloud capabilities of IoT, three types of EC-IoT are formed: End edge,
Network edge and Cloud edge, which provide different levels of service capabilities close
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to data sources for various scenarios, thus improving the performance of IoT devices in
terms of data processing and real-time performance.

Figure 2. IoT Edge Computing Reference Architecture.

In the EC-IoT reference architecture, the central cloud services are gradually extended
along the network nodes to build multiple small and medium-sized edge cloud servers
that can provide the computing and resources required to host edge applications in the
end edge, network edge and cloud edge. Each edge cloud mainly includes three core
cloud center service models: Infrastructure as a Service (IaaS), Platform as a Service (PaaS)
and Software as a Service (SaaS). IaaS: Provides services such as hardware, data centers,
network components and storage. PaaS: Provides a platform that allows users to deploy
and run new applications. SaaS: Provides software or applications to do and store users’
work online [34].

End edge: The end edge consists of various sensors, controllers, gateways and other
IoT devices. IoT sensor devices and controllers collect data through sensors using wireless
networks and support the management and storage of computing resources. Based on
control commands from the end-edge cloud server, the controller receives, processes and
forwards data and can support initial analysis and filtering of edge data. The edge gateway
can collect data collected by sensor devices via wired networks (such as fieldbus, industrial
ethernet, industrial optical fiber, etc.) or wireless networks (such as Wi-Fi, Bluetooth,
RFID, NB-IoT, LoRa, 5G, etc.) and act as an edge cloud server to provide heterogeneous
computing [35]. Edge gateways can combine data from various devices to provide a broader
range of judgements than sensor devices and controllers. Edge gateways also have device
management capabilities. In addition, the edge gateway can transmit control streams from
the network edge or cloud center to the device controller at the end edge. The end edge
layer optimizes the network latency to around 5ms and uploads the filtered data to the
network edge.

Net edge: The entire network transmission path and edge node layer between the
end edge and the cloud edge, mainly comprising the edge network and the Multi-Access
Edge Computing (MEC) edge cloud platform. The edge network provides the connectivity
required for central cloud computing to sink to the edge, supporting proximity access and
edge shunting. The ETSI’s standard definition of MEC [27] is to provide an IT service
environment and cloud computing capabilities at the edge of the mobile network. The
MEC edge cloud platform manages large amounts of heterogeneous data generated at the
network’s edge from different types of IoT devices. It provides data processing, storage and
more accurate model training capabilities [36]. The IoT Cloud Service powered by MEC
integrates industry-oriented AI solutions and is a new programming model for large-scale
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IoT applications. The entire network edge architecture requires not only the operational
and virtualization management capabilities of an IoT edge computing platform, but also the
deployment and scheduling capabilities of edge-side business application management [35].
Such an architecture enables better resource allocation and production scheduling decisions
at the edge of the network, enabling optimal measures to be taken over a wider area and in
a shorter time frame. Such an architecture would allow for the computation of downstream
data on behalf of cloud services at the network’s edge and upstream data on behalf of IoT
devices [37].

Cloud edge: An extended extension of the central cloud computing service to the cloud
edge, primarily for enabling the mining of massive amounts of data. This layer extends the
centralized cloud capability to the regions, enabling full regional coverage. Its ability to
provide robust, more proximal data processing, system deployment, message distribution,
etc., at the cloud edge solves the time-consuming in the backbone network and optimizes
the network latency to about 30 ms, but is still logically a central cloud service. Thanks to its
proximity to the cloud center, the cloud edge enables optimal allocation of resources across
enterprises, regions and even the country [35]. In addition, the central cloud can perform
unified monitoring and management. The central cloud can issue all kinds of data and
instructions to the end, network and cloud edge side for execution, dynamically adjusting
the deployment policies and algorithms on the edge side according to the distribution of
network resources. The central cloud effectively improves the utilization of computing
resources while ensuring low service response latency.

The EC-IoT reference architecture proposed in this paper is essentially
“connectivity + proximity computing [38]” to achieve optimal overall benefits. However,
in practice, edge computing faces more complex scenarios, from the data source to the
cloud center, where edge cloud capabilities such as data, storage and computation can be
distributed throughout the edge node layer between the IoT device and the data center,
depending on demand. Therefore, the transmission path of the edge network between the
central cloud and the terminal is complex. The respective latency generated by different
edge locations varies, being via the access network (latency about 5~10 ms), aggregation
network, metro network (latency about 15~30 ms) to the backbone network (latency greater
than 30 ms) and finally to the data center.

2.3. Advantages of IoT Edge Computing Reference Architecture

Compared to the traditional IoT architecture, the EC-IoT reference architecture pro-
posed in this paper achieves all-around collaboration at the End edge, Network edge and
Cloud edge, realizing a unified regulatory model with one central cloud and multiple edge
clouds. The EC-IoT reference architecture will offer more significant advantages in the face
of the challenges of IoT architecture applications in the 5G era.

• Faster response times: When workloads are published at the edge and require local
data input, processing can be performed closer to the edge where the data is generated,
effectively reducing latency and increasing responsiveness for real-time or near-real-
time data analysis and processing.

• Reduced bandwidth consumption: Edge computing enables data to be stored and
processed at the edge, which can simultaneously avoid the impact of large-scale
traffic on the network substantially, with a significant reduction in data volume and
transmission distance, reducing the bandwidth consumption of the local network.

• Intelligent: Empowering the edge with innovative capabilities, thoughtful analysis
at the edge, extracting and aggregating the data needed through intelligent analy-
sis, eliminating useless data, driving applications towards intelligence and realizing
automatic feedback and smart decision-making.

• Security: Data is generated, processed and stored on the edge device, avoiding the
leakage of sensitive data due to data transfer between the device and the cloud. In
addition, keeping the data local to the device maintains the integrity of the data.
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• Cost-effective solutions: Network bandwidth, data storage and computing power
incurs certain upfront costs, and the transmission of large amounts of data over long
distances leads to high-cost consumption. In contrast, edge computing performs data
computing tasks locally, reducing the final cost of the IoT solution.

2.4. Advantages of IoT Edge Computing Reference Architecture

EC-IoT reference architecture has the characteristics of decentralized and diversified
application deployment for edge computing. In this regard, the practical application of the
EC-IoT reference architecture poses new problems compared to the IoT architecture.

• Successful deployment of EC-IoT reference architectures requires a robust infrastruc-
ture of edge resources, radios, base stations and terminals. The EC-IoT reference
architecture allows organizations to increase their computing power faster and at a
lower cost, with the attendant higher costs of infrastructure construction and opera-
tions and maintenance. At the same time, the cost of deploying applications across a
multi-cloud infrastructure will be compensated by the benefits it offers.

• The EC-IoT reference architecture uses a unified supervisory model with one central
cloud and multiple edge clouds. IoT edge computing nodes have limited resources
and need to distribute and schedule tasks according to the type and scale of the
actual tasks. The unified partitioning of complex tasks through cloud-network-edge
collaboration, while considering the heterogeneity of hardware and software and the
resource capacity of edge nodes, also leads to a more complex control logic for data
management and query execution in EC-IoT.

• In the EC-IoT reference architecture, numerous sensors and devices generate vast
amounts of data, with different third-party providers providing all the storage. The
outsourcing of user data to these storage providers, whose storage devices are de-
ployed at the edge of the network and located at many different physical addresses,
increases the risk of attack [35]. At the same time, due to the open nature of its com-
puting power, edge computing also poses security risk issues in terms of applications,
data, networks, infrastructure, physical environment, and management [39].

3. The Impact of Artificial Intelligence on IoT Edge Computing Architectures

With the rapid development of information technology, many emerging technologies,
including edge computing, have been created. The future development of the EC-IoT archi-
tecture is bound to be a convergence of developments with other emerging technologies,
such as Edge Intelligence (EI) [40–42]. AI works to simulate intelligent human behavior in
devices and machines by learning from data [43]. The convergence of AI and IoT has con-
tributed significantly to the rapid development of Artificial Intelligence IoT (AIoT) systems.
Driven by this trend, there is an urgent need to push the AI frontier to the network edge to
unlock the full potential of big data in the EC-IoT reference architecture, resulting in a new
research area—EI. EI is a new paradigm for EC-IoT and AI to empower each other, focusing
on enabling intelligent applications and protecting user privacy in edge environments with
the help of edge computing [44]. This section examines the application of EI to EC-IoT
architectures in three sections: Task offloading, VM migration and edge caching.

3.1. Task Offloading

The practical application of the EC-IoT architecture often generates a large amount of
AI computing power demand. When the computing power of the mobile terminal itself
cannot be satisfied, the computing tasks will be fully or partially offloaded to a nearby edge
cloud server with high computing and storage resources, and the results will be returned
to the terminal when the computing is completed. Zaman et al. [45] mentioned that AI and
machine learning, whether deep models or lightweight models, are designed to offload
decision optimization. Offloading computing tasks in EC-IoT architectures is a crucial
research question. That is, whether computational tasks should be executed locally or fully
or partially offloaded to edge cloud servers or the cloud, and how network, computational
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and storage resources should be allocated at the edge. Different task offloading schemes
significantly impact task completion latency and mobile device energy consumption [46].

Xiao et al. [47] proposed an innovative solution with Edge Intelligence for computa-
tional tasks offloading for dependent IoT applications (CODIA) with better robustness and
efficiency in terms of convergence, latency and energy consumption. Chen et al. [48] pro-
posed a game theoretic approach for the computation offloading decision making problem
among multiple mobile device users for mobile-edge cloud computing and also designed
a distributed computation offloading algorithm with excellent computation offloading
performance. Ali et al. [49] proposed a novel energy-efficient deep learning based offload-
ing scheme (EEDOS) to train a deep learning based smart decision-making algorithm on
achieving high accuracy for optimal decision making for the offloading problem in MEC.

Current MEC offload solutions mostly separate compute offload from user mobility.
In particular, in MEC, the unknown location, speed and direction of the user on the mobile
device will affect the EC-IoT architecture application system latency. Zaman et al. [50] pro-
posed a framework termed COME-UP Computation Offloading in mobile edge computing
with Long-Short Term Memory (LSTM) based user direction prediction. The framework
effectively reduces delays and energy consumption and improves resource efficiency.

3.2. Virtual Machine Migration

In EC-IoT architecture applications, where fixed or mobile devices have limited com-
puting power and energy, MEC pushes these services from local IoT devices to the network
edge by deploying cloud servers near user devices at the network edge. Mobile devices can
collaborate with the network edge to achieve a higher quality of service and low latency
through task offloading.

Many applications and services running on mobile devices, given the mobility of users
and the limited edge resources available to serve them, may require users to communicate
with cloud servers over multiple hops, which can severely impact communication latency
and quality of service (QoS) between users [51]. To reduce the negative impact of this QoS
degradation, user mobility becomes an essential driver for the real-time migration of VMs
for EC-IoT application scenarios. When a user moves out of the coverage area of the current
edge cloud data center, the VM is migrated to the edge cloud data center where the user
currently is [52]. The location, speed and direction of the user, the compute migration area
and the location where compute migration can be performed will all affect the VM migration
policy [53]. Therefore, there are challenges in designing the right migration solution.

Shahryari et al. [51] proposed a novel Cost-aware VM placement and migration
(CoPaM) framework for mobile services in a network of cloudlets. Osanaiye [54] proposes
a conceptual smart pre-copy live migration approach, which is presented for VM migration
that will minimize both the downtime and the migration time to guarantee resources.
Mangalampalli et al. [55] proposed a novel deep learning network WBATimeNet, which
uses Multivariate Time Series data of Memory, CPU and Disk to predict which VM should
be live migrated.

3.3. Edge Caching

Edge caching is a crucial technology needed to enable cloud-side intelligence col-
laboration at the edge of the network in the EC-IoT architecture. In EC-IoT network
architectures, the same content in the network is often requested multiple times by smart
end devices in the same area. Leveraging edge caching can reduce heavy traffic loads and
end-to-end latency in radio access networks (RANs) and reduce duplicate transmissions of
the same content to support many critical IoT services and applications [56]. Caching in
the MEC increases network capacity by making content available locally, saving network
bandwidth [57].

Yasir et al. [57] proposed a user preference-aware content caching (CoPUP) scheme
for the MEC environment that can cache the most popular content, reduce response time
and enhance the cache hit ratio. Gupta et al. [58] proposed an enhanced ICN-IoT content
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caching strategy by enabling AI-based collaborative filtering within the edge cloud to
support heterogeneous IoT architecture. Zhang et al. [59] proposed a deep reinforcement
learning based cooperative caching approach for IoT edge caching. The approach allows
the distributed edge servers to learn to cooperate with each other.

EI supports the EC-IoT reference architecture for complex and dynamic industrial
tasks in wireless environments. Liu et al. [60] used multi-intelligent Deep Reinforcement
Learning (DRL) to achieve collaborative resource allocation at the end edge. Compared
to traditional DRL, the proposed approach can better adapt to the edge’s computational
power, the data’s size, the required computational resources and the number of industrial
devices. Foukalas et al. [61] proposed a federated active migration learning (FATL) model
based on EI, which can address challenges in industrial IoT responsiveness and security
through training and testing. Hayyolalam et al. [62] proposed a novel model of intelligent
healthcare to improve the utilization of EI technology in intelligent healthcare systems.

In addition, developing the EC-IoT architecture is equally relevant to developing tech-
nologies such as cloud computing [63], big data [64,65], 5G [66,67], arithmetic networks [68],
cloud-native [69] and blockchain [70,71]. The convergence of EC-IoT architecture with
technologies such as AI provides technologies and methods for EC-IoT, in addition to the
advantages of edge computing, such as low latency and reduced bandwidth, where data
generated at the edge of the network can be unlocked to its full potential and scalability. At
the same time, EC-IoT also provides scenarios and platforms for technologies such as AI,
extending the range of applications. The introduction of technologies such as AI into EC-IoT
architectures is set to generate a wealth of innovative research findings that will provide
practical solutions to the complex challenges faced by enterprises in EC-IoT architectures.

4. IoT Edge Computing Platforms

As the EC-IoT architecture grows in application size, complexity and overall demand,
the functional requirements for the EC-IoT system architecture vary significantly from
application scenario to application scenario. Therefore, there is an urgent need to form a
standard EC-IoT platform with unified operation and maintenance, unified control and
unified delivery to provide secure and reliable computing and management services for
the collaboration of the end edge, network edge and cloud edge in the EC-IoT architecture.

4.1. Open Source Platform for Edge Computing

The Edge Computing platform is now one of the main focuses of researchers as
an integrated solution that can simultaneously address the issues of data heterogeneity,
manageability of computing resources and application complexity. Table 2 compares five
open-source edge computing platforms: EdgeX Foundry [72], EdgeGallery [73], Akraino
Edge Stack [74], KubeEdge [75] and OpenYurtp [76].

In line with the service objectives, EdgeX Foundry focuses on the end-edge of the
EC-IoT architecture. It works to solve problems in the development and deployment of IoT
applications. EdgeGallery and Akraino Edge Stack are focused on providing MEC edge
cloud or edge cloud services to optimize or rebuild the infrastructure at the network’s edge
to provide cloud-like services at the edge of the network [77]. The cloud-edge collaborative
edge computing platforms, represented by KubeEdge and OpenYurt, are designed to
migrate cloud solutions to IoT devices with the concept of “cloud-edge convergence”.

In addition, other related companies and organizations have launched a range of edge
computing platforms. These include the Open Networking Foundation’s (ONF) CORD
platform, the OpenStack Foundation’s StrlingX, Amazon’s AWS IoT Greengrass, Microsoft’s
Azure IoT Edge, IBM’s Apache Edgent, donated to the Apache Software Foundation, the
University of Wisconsin-Madison WiNGS Lab developed ParaDrop [78,79], AliCloud’s
Link IoT Edge, Baidu Cloud’s Baetyl, Tencent’s SuperEdge, EMQ’s EMQ X Kuiper, etc. As
shown in Table 3, based on the EC-IoT architecture design goals and requirements, the more
active, innovative and popular open-source platforms for edge computing in EC-IoT can be
divided into three categories: IoT user side, edge service side and cloud-side collaboration.
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Table 2. Comparative study of edge computing platforms.

Projects EdgeX Foundry EdgeGallery Akraino Edge
Stack KubeEdge OpenYurt

Vendors Linux Foundation Huawei and others Linux Foundation Huawei Alibaba Cloud
Open source or not Yes Yes Yes Yes Yes

CNCF Project No No No Yes Yes
LF Edge Project Yes Yes Yes No No

Cloud Edge
Collaboration No Support Support Support Support

Cloud Native K8s
Eco-Compatible No No No Partially

compatible Full compatibility

Edge Autonomy
Stable operation
with intermittent

connections
Support NO Support Support

Deployment
Complexity Complex Simple Complex Simple Simple

Containerized
Orchestration NO NO NO Support Support

Service Objectives IoT End Edge 5G MEC Edge
Cloud Edge Cloud Cloud Edge

All-in-One
Cloud Edge
All-in-One

Application
Scenarios

Provides end-edge
solutions. Mainly
in industrial IoT

scenarios.

5G MEC edge
cloud solutions.

Smart
manufacturing and
other application

scenarios.

Total solutions for
edge infrastructure.

Application
scenarios such as

smart cities.

Side-end cloud
collaboration

solutions. Smart
factories and other

industries.

Cloud edge
collaboration

solutions. Smart
logistics and other

industries.

Table 3. Edge computing platform classification table.

Classification Enterprise Institutions Open Source Platform for Edge Computing

IoT user-side edge computing
open-source platform

Linux Foundation EdgeX Foundry
Apache Software Foundation Apache Edgent

WINGS Lab, University of
Wisconsin-Madison ParaDrop

EMQ EMQ X Kuiper

Open-source platform for edge
computing on the edge service side

Open Network Foundation ONF CORD
Linux Foundation Akraino Edge Stack

OpenStack Foundation Hosting StrlingX
Huawei/CAICT EdgeGallery

Cloud Edge Collaborative Edge
Computing Open Source Platform

Microsoft Azure IoT edge
Huawei KubeEdge

Alibaba Cloud OpenYurt, Link IoT Edge
Tencent SuperEdge
Baidu Baetyl

Amazon AWS IoT Greengrass

By deploying on the edge side of the EC-IoT architecture, the edge computing platform
is well-positioned to solve the problems of massive data processing and massive device
terminal connectivity. In addition, the edge computing platform enables end-net-cloud
edge coordination, while providing hardware and software support for applications based
on the EC-IoT architecture. However, with the rapid development of edge computing
platforms, there are still many problems with their application in the EC-IoT architecture.

• The selection and construction of scenarios for deploying edge computing platforms
in EC-IoT architectures must be based on actual business needs, the type of solutions
generated, the skills required to organize the solutions generated and the long-term
maintenance of these solutions [80].
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• As EC-IoT architecture application scenarios continue to grow, applications such
as smart homes, intelligent transportation and smart city are also receiving more
and more attention. Edge computing platforms will face fundamental challenges
in systematically supporting the functional requirements of IoT edge application
scenarios, achieving more simplified deployment and rapid scaling of edge cloud
services, and improving the reliability of standard operating systems.

• The Cloud Native Computing Foundation (CNCF) defines cloud native as enabling
organizations to build and run elastic and scalable applications in new dynamic envi-
ronments such as public, private and hybrid clouds [81]. Cloud-native technologies
and concepts, including Kubernetes (K8s), containers and microservices, emphasize
loosely coupled architectures and the ability to scale quickly and conveniently, aiming
to achieve a consistent cloud computing experience across different infrastructures
through uniform standards. For EC-IoT application scenarios, cloud-native technology
can provide integrated application distribution and collaborative management for
the cloud-side end, solving the problems of edge-side large-scale application delivery,
operation and maintenance, and control. As a result, some vendors have launched a
series of edge computing platforms based on K8s, such as Huawei’s KubeEdge and
Alibaba Cloud’s OpenYurt. With the increasing demand for cloud-native development
for applications related to EC-IoT architecture, the need to accelerate the construction
of cloud-native infrastructure platforms has become more and more urgent.

• Due to the complexity of heterogeneous resource support, diverse communication
methods and scattered distribution locations of edge-end devices, edge computing
platforms managing EC-IoT architecture edge devices often need to address addi-
tional issues, such as data storage complexity. In response, several examples of edge
computing platform collaboration have been proposed. In 2021, Alibaba Cloud and
VMware proposed an integrated cloud-edge-end platform based on OpenYurt and
EdgeX Foundry, which further realizes the collaboration of "cloud, edge and end" and
creates an integrated and collaborative IT architecture of cloud-edge-end. This paper
argues that: The collaborative development of multiple edge platforms will not only
help migrate cloud solutions to IoT devices but also further drive the implementation
of cloud-native projects in the EC-IoT space while guiding more enterprises and devel-
opers on experiences they can learn from. In this regard, it will also be a significant
challenge to collaborate among edge computing platforms in the EC-IoT architecture
in the future to improve efficiency and maximize resource utilization.

4.2. IoT-Related Platforms

In addition to the Appeal Edge Computing platform, we have recently discovered
several exciting and new IoT-related platforms.

• NebulaStream

NebulaStream [82,83] is a general purpose, end-to-end data management system for
the IoT. It provides an out-of-the box experience with rich data processing functionalities
and a high ease-of-use. NebulaStream aims to provide unique aggregation capabilities,
innovates and integrates various technologies, including cloud, fog and sensor networks, to
create a unified sensor-fog-cloud environment and facilitate the development of foreseeable
IoT applications. Furthermore, the system follows the design principle of maximized
sharing [84]. NebulaStream addresses the challenges of heterogeneity, unreliability and
scalability of EC-IoT by unifying the end, network and cloud edge infrastructure to enable
real-time processing of data and efficient utilization of underlying heterogeneous and
geo-distributed resources.

• VergeDB

VergeDB [85] is a database for adaptive and task-aware compression of IoT data that
supports complex analytical tasks and machine learning as first-class operations. VergeDB
serves as either a lightweight storage engine that compresses the data based on downstream
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tasks or as an edge-based database that manages both compression and in-situ analytics on
raw and compressed data. In EC-IoT architectures, an edge-based database with adaptive
compression and support for complex analytics is required to minimize the amount of data
transferred to the cloud while supporting in-situ operations. In this regard, VergeDB can be
the first step in realizing this vision.

5. Applications and Challenges of IoT Edge Computing Architectures

Market research firms and markets forecast the global edge computing market to reach
US $87.3 billion by 2026, from US $36.5 billion in 2021, at a CAGR of 19.0% during the
forecast period [86]. This covers the entire EC-IoT industry, including hardware, software,
services, edge platforms and vertical markets. According to International Data Corporation
(IDC), the total global IoT data will be 16ZB in 2020, of which 45% of IoT-generated data
will be processed at the network edge. The Gartner study also predicts that the proportion
of enterprise-generated data processed outside of centralized data centers will jump from
10 percent in 2018 to 75 percent by 2025 [87].

IoT supports many vital applications, including intelligent traffic management, safety-
aware autonomous driving, electricity savings using smart grids, innovative industri-
alization and intelligent home solution [88] For latency-sensitive IoT applications, long
processing times are intolerable [89]. Using EC-IoT architecture has led to significant
performance improvements in real-time, bandwidth consumption, cost and privacy and
security of related applications. However, due to the heterogeneity, complexity, timeliness
and relevance of the IoT domain, there are still many technical areas for improvement in
developing edge computing in IoT application scenarios. shown in Figure 3, this section
will look at the EC-IoT reference architecture and discuss the solutions and challenges of the
architecture in the IIoT domain in the Telematics and Smart Home application scenarios.

Figure 3. Application scenarios for the EC-IoT reference architecture.

5.1. Applications and Challenges of IoT Edge Computing in Industrial IoT

IIoT is the application of IoT in the industrial sector, deep integration of IoT and
traditional industries. In recent years, IIoT has entered a new phase, benefiting from
the addition of 5G, edge computing and AI technologies. The combination and collision
of mechanistic and data models have provided powerful data support and new engine
power for resolving uncertainty in complex systems and business decisions. With the full
development of IIoT, EC-IoT racking is already a critical step in building IIoT systems.
The deployment of edge computing will drastically reduce the cost of IIoT production
brought about by the network, cloud data center computing and storage, further driving
the realization of intelligent manufacturing and bringing enormous opportunities for IIoT
development. In response, as shown in Figure 4, this paper proposes an industrial EC-IoT
solution based on the EC-IoT reference architecture.

In industrial EC-IoT solutions, edge nodes assume edge arithmetic power for AI
inference and enable edge-side data uploading to edge cloud platforms through cloud-side
collaboration capabilities. The edge cloud platform can support various device access
through multiple protocols downwards, accept centralized management of edge nodes
from the central cloud upwards, and perform real-time edge data processing, intelligent
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computing and decision-making on business data according to the model parameters issued
by the central cloud. At the same time, the edge cloud platform can still work typically when
communication with the central cloud is interrupted, achieving edge autonomy. Industrial
EC-IoT solutions enable systems to monitor, collect, exchange and analyze data and deliver
high-value decisions unprecedentedly, meeting the industry’s critical needs for real-time
business, data optimization, application intelligence, security and privacy protection.

Figure 4. Diagram of an industrial EC-IoT solution.

Gartner states that 30% of industrial control systems are expected to have analytics
and AI edge reasoning capabilities by 2025, compared to less than 5% in 2021 [90]. In
response, the IIoT scenario EC-IoT will see rapid growth. Chen et al. [91] proposed an
edge-computing architecture for IoT-based manufacturing based on the advantages of
real-time processing and the autonomy of edge computing. The architecture has signif-
icant advantages in terms of service agility and bandwidth optimization, which help to
improve the quality of service in industrial manufacturing. Qin et al. [92] investigated
the integration mechanism and application methods of the core technologies of industrial
robots and the critical technologies of edge computing using case studies and comparison
methods. Xu et al. [93] addressed the problem that edge nodes are usually light in weight
and usually low in computational power by proposing the use of hybrid cloud edge com-
puting or multi-tier edge computing hierarchies to improve the stability and latency of
computing platforms.

The optimal allocation and management of resources in a complex IIoT network
environment will be a significant challenge for IIoT development. The edge layer will
become increasingly blurred, and edge devices will become increasingly intelligent and
diverse. However, while the intelligence and blurring of the industrial edge layer bring
excellent efficiency gains, it also poses significant security challenges.

• In the IIoT space, the security quality of edge devices from various manufacturers will
be difficult to guarantee as there is still a need for accepted standard specifications for
edge computing.

• Edge devices need to be exposed to the internet to interface with cloud platforms and
are bound to encounter various security issues when dealing with data from various
industrial protocols.

• The addition of edge computing capabilities to some industrial devices or terminals
will break the constraints of the original centralized security management. There are
bound to be security loopholes in smart devices in this model. if these loopholes are
exploited, they may cause serious production accidents.

• The rapid growth of edge devices is accompanied by increasing energy consumption,
resulting in an increasingly challenging energy situation for IIoT systems. For example,
the cost of downtime due to faults and unpredictable power disturbances is expensive
in the case of smart grids. The main problem with smart grids is the need to collect
large amounts of data from IoT devices, and processing the data is a challenge. EC-IoT
makes it possible to analyze data in real time and to keep edge services running even
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in the event of a disconnection brought on by a fault, so that problems can be avoided
in advance or the cause of the problem can be determined more quickly. All this with
a high degree of security. A key challenge for EC-IoT systems is to reduce costs while
still fulfilling the task of offloading. Albataineh et al. [94] proposed a hybrid solution
by using the Cloud and Edge Computing to process the data. Aiming at the problem
of service offload scheduling in edge computing. Xing et al. [95] proposed a delay
optimized task offload algorithm based on task priority classification. This algorithm
can effectively improve the overall system revenue and reduce user task delay.

With the rapid development of IoT edge devices, this paper calls on the relevant
authorities in each country to join major edge device manufacturers and security vendors
together as soon as possible to initiate the development of relevant security standards
and specifications to ensure that business needs are met while constraining security and
interconnection to promote the rapid and secure development of IIoT.

5.2. Application and Challenges of IoT Edge Computing in Internet of Vehicles

The Internet of Vehicles (IoV) is an important research area in IoT smart mobility,
which is based on sharing information in the form of Vehicle to Infrastructure (V2I), Vehicle
to Vehicle (V2V), Vehicle to Pedestrian (V2P), Vehicle to Self (V2S) and Vehicle to Roadside
Unit (V2R) [96]. IoV requires dynamic data generated with a latency of 10ms or less to
be processed in real-time. However, network communication can become unstable when
the vehicle moves, resulting in high latency in data upload. From a business perspective,
the massive data transmission and storage cost is also a big issue facing IoV [97]. In this
regard, it is shown in Figure 5. This paper proposes the IoV edge computing architec-
ture based on the EC-IoT reference architecture. The architecture includes three layers:
Vehicle/person/road edge side, network edge and cloud center.

Figure 5. Internet of Vehicles Edge Computing Architecture.

Vehicle/people/road edge side: While the vehicle is in motion, the roadside unit will
acquire roadside personnel, vehicles, temperature and humidity and other road condition
data through sensing devices such as cameras, street light controllers, weather sensors and
radar. The vehicle will aggregate the data from the vehicle itself and the roadside unit and
process it in real-time at the vehicle’s edge node while transmitting it to the edge cloud for
remote real-time processing, analysis and decision-making through a 5G base station.

Net edge: The net edge mainly provides access and management capabilities for
vehicle-side devices, remote real-time processing, analysis and decision-making. Vehi-
cle and roadside unit side computing tasks can be offloaded to the nearby edge cloud
server to perform AI real-time analysis of data from vehicles and provide application
services. It mainly includes services such as dynamic speed limit warning, congestion
analysis, dangerous driving alert, violation detection, vehicle convergence warning and
pedestrian detection.

Cloud Center: To meet the operational needs of global traffic information among
vehicles, road measurement units and application platforms, the vehicle-road collaboration
architecture hands over complex data processing, analysis and control strategies to the
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central cloud through cloud-edge collaboration. The vehicle-road collaboration architecture
realizes the management, analysis and decision-making functions of multiple edge clouds,
edge nodes and vehicles in non-real-time classes. Cloud-edge collaboration provides
dynamic real-time information interaction of vehicle–vehicle, vehicle–road and human–
vehicle from multiple aspects for vehicle safety control and collaborative road management.

For IoV applications with high mobility of user devices, the location, speed and di-
rection of the user’s vehicle also have a great impact on the latency of the IoV system.
Hoang et al. [98] proposed an analytical model to calculate the offloading decision con-
sidering the random movement of vehicles and the possible handover problem in the
offloading process. In order to cope with the dynamic changes of the offloading environ-
ment for computing resource-intensive and separable tasks in IoV, Cao et al. [99] proposed a
distributed offloading strategy that multiple collaborative nodes had serial offloading mode
and parallel computing mode in the vehicle to everything (V2X) scenario was proposed.
This strategy can effectively reduce the system delay of computing tasks.

A new report from Research And Markets [100] shows that edge computing infras-
tructure and services to support self-driving cars are expected to reach $42.8 billion by 2027.
In August 2017, Ericsson, Toyota and others formed the Automotive Edge Computing Con-
sortium (AECC) to drive the development of smart cars. Academically, Zhang et al. [101]
built an open vehicle data analysis platform OpenVDAP based on edge computing, which
provides a full wharf of vehicle data computing services such as a vehicle computing plat-
form, operating system and function library. Tang et al. [102] developed LoPECS, the first
complete edge computing system for producing self-driving cars, which leverages the run-
time layer of heterogeneous computing resources of low-power edge computing systems
to meet the real-time requirements of self-driving applications. Ibn-Khedher et al. [103]
proposed an end-to-end architecture for edge-assisted autonomous driving that allows the
rationing of computationally intensive autonomous driving services to shared resources on
edge servers, improving the performance level of autonomous vehicles.

The challenges of EC-IoT architecture in IoV applications are as follows:

• EC-IoT applications in IoV involve rich scenarios such as machine vision, big data
processing, acoustic detection, vehicle tracking, etc., which require different computing,
storage and network resources to provide support. The massive fragmented EC-IoT
device environment will significantly limit the implementation of IoV application.

• Since edge computing systems in IoV are mobile, they have stringent energy consump-
tion constraints [104]. Providing sufficient computing power, redundancy and security
with reasonable energy consumption to ensure the safety of self-driving vehicles is
one of the challenges in designing IoV edge computing systems.

• Limited by the computational capacity of edge nodes and the importance of edge node
latency on data processing speed, edge node computational resource scheduling and
selection are also issues to be considered.

This paper argues for more excellent investment in research into optimal edge node
selection schemes and multi-node distributed collaborative computing methods in trans-
portation systems. According to the real-time requirements of applications, the optimal
deployment of resources should be combined with computing resources, network delay,
bandwidth and energy consumption. At the same time, intelligent transportation and
autonomous driving development should be promoted by the interactive fusion of in-
formation, collaborative decision-making and control among various traffic participants.
However, as there are currently no fully functional self-driving vehicles, further require-
ments and applications in this area will undoubtedly emerge in the next decade [105].
Exploring solutions to these challenges will be essential to making the EC-IoT architecture
available to serve the more extensive future transportation system.

5.3. Applications and Challenges of IoT Edge Computing in Smart Home

The smart home is a crucial application scenario of the IoT architecture. Additionally,
with the emergence of the EI concept, coupled with the improvement of chip performance,
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edge computing has become more and more powerful while also beginning to carry more
business logic. In response, more intelligent devices have emerged in the innovative home
environment, extending the cloud computing capability from the intelligent home. For
example, suppose an edge gateway is introduced in a smart home, on the one hand. In that
case, it can realize the control of smart home devices through edge computing. The edge
gateway can make decisions faster based on the received information and control home
devices to execute corresponding actions. On the other hand, in the interaction scenario of
different products in smart homes, edge computing will act as a central control system to
realize the interconnection and scene control between devices and other needs through the
collaboration of cloud computing and edge computing. As shown in Figure 6, this paper
proposes an edge gateway smart home reference architecture for the end edge of EC-IoT
architecture. The architecture consists of three layers: Sensing, edge gateway and platform.

Figure 6. IoT Edge Gateway Smart Home Reference Architecture.

Perception layer: It mainly realizes the functions of collecting sensor data of home
environment parameters and controlling smart home devices. It is the interface for nodes
to access the gateway and is compatible with various communication protocols, such as
MQTT, to realize the interaction of different IoT devices.

Edge gateway layer: Through the built-in edge computing plug-in to achieve cloud-
edge-end collaboration, the main functions are divided into device connection, device and
data management and application services. The devices are connected through the edge
gateway for smart home devices in the device layer. The edge computing services within
the gateway can directly process the state information of IoT home devices and collected
environmental data, store the information locally and manage the real-time data. At the
same time, based on the operation status of the devices, the data is used to analyze the user
needs and provide suitable decision solutions.

Platform layer: It mainly collaborates with application services for data and enables
human interaction with the smart home system. Users can also manage devices and
monitor the gateway’s status in real time through the platform layer. In addition, users can
access and control smart home products remotely through the mobile phone terminal APP.

Accessing smart device status and collected environmental data based on edge gate-
ways and the like while processing and analyzing it locally will help meet users’ needs for
a more comfortable, safe and convenient home living experience. According to iiMedia
Research [106], the global home furnishing market will be $496.5 billion in 2021, with a
year-over-year growth rate of 9.7%. Growth is expected to remain at around 3% over the
next four years. There is a growing trend to adopt edge computing to help smart homes
improve the comfort of residents’ lives [5]. Zhou et al. [107] proposed an intelligent home
electricity demand forecasting system based on EC-IoT technology, which uses a smart
home gateway to store heterogeneous data in a central repository for processing and analy-
sis, which can provide a better quality of service and scalability with limited computing
resources. Li et al. [108] constructed a corresponding device management mechanism based
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on a gateway near the device side as an edge server to provide an effective solution to
brilliant home device diversity, heterogeneity and efficiency problems.

Many challenges remain for the adoption of EC-IoT smart homes:

• Compared with the traditional cloud center, the EC-IoT scenario lacks effective en-
cryption or desensitization measures. Once it is hacked, its stored information of
household personnel and personal privacy information will be leaked. Meanwhile,
numerous insecure communication protocols (e.g., ZigBee, Bluetooth, etc.) between
sensors and edge nodes lack encryption and authentication measures and are easy to
be eavesdropped on and tampered with.

• The deep combination of EC-IoT and artificial intelligence, that is, the realization
of intelligent home edge intelligence, from comprehensive voice control to spaced
physical control and visual control, to the final realization of continuous optimization
of intelligent models, active learning of the user’s habits for automatic adjustment, to
better provide intelligent services to users.

• In smart home systems, the rising energy costs of smart appliances such as electricity
and natural gas have become a key challenge. In this regard, EC-IoT can contribute to
improving the energy management efficiency of smart homes by combining it with
energy management strategies. For example, Xia [109] proposed an edge-based energy
management framework in the smart home scenario. At the same time, an optimal
scheduling strategy is proposed to schedule the operation time of each appliance for
achieving minimum electricity cost.

At present, the intelligent home systems of major innovative home manufacturers
also have specific edge computing capabilities. However, overall, there is still a strong
dependence on innovative home systems on cloud computing. The key people in this
article’s subject group will continue to explore the potential of EC-IoT in the smart home.
Smart home companies fumbling around in the EC-IoT space still have a long way to
go. Relevant enterprises and academics also need to actively layout to accelerate the
implementation of EC-IoT in smart home scenarios.

6. Open Issues and Future Directions

As discussed in this paper, bringing edge computing into the IoT architecture brings
many benefits. This section will discuss the main challenges of EC-IoT and the future trends.

The growing IoT market, including IIoT, Smart Grid, Smart City, Telematics, Smart
Home Appliance and Smartphones, will increase the global EC-IoT market. Edge comput-
ing technologies will also dominate more in the IoT space in the future.

From the perspective of the challenges faced:

• Edge hardware: Considering the distributed deployment nature of edge computing,
edge nodes may be located in various complex environmental locations. Due to
the differences in deployment environments and task requirements, the hardware
equipment of edge computing nodes must be comprehensively considered in the
development of integration, energy consumption, hardware acceleration, robustness,
security and protocol specification.

• Edge intelligence: While there have been some academic results on EI research, it
is difficult to quickly complete a large number of computations on edge devices
due to the weak computing power of edge devices. Moreover, the model of EI is
usually complex and requires more computing resources to complete the training and
inference of the model.

• Mobility issues: User mobility may lead to reduced quality of service or service
disruption, especially for applications with high mobility. Further research is needed
to more effectively trade off network latency against optimizing offloading decisions
or migration costs to improve the quality of service.

• Edge and 5G: As 5G technology advances, the data at IoT terminals will increase.
IoT edge computing will face more new application scenarios and communication
demands. The EC-IoT architecture will require additional computing and forwarding
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capabilities at the lower network nodes and improved management capabilities at
the edge nodes of cloud services. These new demands will inevitably lead to changes
in network architectures, the need for continuous improvement in edge computing
capabilities and the inevitable further development of IoT edge computing.

From the future trend:

• Along with the synergistic development of edge computing and IoT, data processing
power will accelerate the proliferation from the cloud to the edge, network and end
edge. At the same time, computing power at the edge, network and end will continue
to grow. For EC-IoT architecture, computing resources will be ubiquitous in the future.

• In IoT development, edge computing, cloud computing and hardware devices must
collaborate, with cloud computing taking care of global tasks such as task scheduling
and edge computing focusing on aspects such as field, real-time and security. EC-IoT
architecture realizes all-round collaboration at the end edge, network edge and cloud
edge. The EC-IoT architecture with unified supervision and standards for building one
central and multiple edge clouds will become one of the leading development trends.

With the advent of the Internet of Everything, EC-IoT will deepen the integration and
development with other emerging technologies, such as artificial intelligence and give
full play to their respective advantages. It will optimise the allocation of resources from
3 aspects: end-net-cloud, to achieve improvements in system performance, user experience
and cost.

In the future, the subject matter people in this paper will continue to explore the critical
technologies of the EC-IoT architecture cloud, network and end edge and try to find some
of the latest ideas in MEC task offloading and edge caching. The subject matter team of
this paper will also try to mine the relevance of EC-IoT architecture with technologies such
as 5G, blockchain and cloud-native. In addition, the solutions of EC-IoT architecture for
different intelligent application scenarios will be actively explored to enrich the EC-IoT
reference architecture system further.

7. Conclusions

An EC-IoT reference architecture was proposed based on the IoT architecture and
edge computing technology. It performed a comprehensive study on EC-IoT reference
architecture regarding integration with AI, edge computing platforms and application
scenarios and challenges. Constructing a multi-tier EC-IoT architecture with one central
cloud and multiple edge clouds with unified regulation and standards will have a very
promising application, which is concluded in this paper. It is hoped to encourage academics
to discuss and study EC-IoT applications and promote the community’s attention and
investment in EC-IoT architecture. The smart grid, smart manufacturing, smart medical,
smart transportation, smart home and other industries have all demonstrated significant
promise for EC-IoT. As the technology matures and new applications emerge, EC-IoT
will face an increasingly large market and edge computing will become an immediate
need. IoT-related companies should continue to see the new impact and more significant
development of edge computing and actively construct the EC-IoT technology architecture
industrial ecology.
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