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Abstract: Humans are born with the ability to learn quickly by discerning objects from a few samples,
to acquire new skills in a short period of time, and to make decisions based on limited prior experience
and knowledge. The existing deep learning models for medical image classification often rely on a
large number of labeled training samples, whereas the fast learning ability of deep neural networks
has failed to develop. In addition, it requires a large amount of time and computing resource to retrain
the model when the deep model encounters classes it has never seen before. However, for healthcare
applications, enabling a model to generalize new clinical scenarios is of great importance. The existing
image classification methods cannot explicitly use the location information of the pixel, making them
insensitive to cues related only to the location. Besides, they also rely on local convolution and cannot
properly utilize global information, which is essential for image classification. To alleviate these
problems, we propose a collateral location coding to help the network explicitly exploit the location
information of each pixel to make it easier for the network to recognize cues related to location only,
and a single-key global spatial attention is designed to make the pixels at each location perceive the
global spatial information in a low-cost way. Experimental results on three medical image benchmark
datasets demonstrate that our proposed algorithm outperforms the state-of-the-art approaches in
both effectiveness and generalization ability.

Keywords: few-shot learning; computational intelligence; medical image classification; spatial
attention

1. Introduction

Medicine was previously a purely artisan profession, which was highly dependent
on the skills and experience of the doctors, rather than seeking to establish a standardized
process for diagnosing and treating patients. On the one hand, manual analysis of large
medical image datasets is a very time-consuming task [1]. On the other hand, erroneous
interpretations may arise due to large smooth grayscale changes, which are imperceptible
to the human eyes. Details that may be missed due to the above factors can negatively
impact the treatment procedure. In recent years, the situation has begun to change because
technologies such as evidence-based medicine and precision medicine have tried to inject
more rigorous and data-driven methods into the this field [2].

With the increase of computing resources and data volumes, artificial intelligence has
been applied in various fields, such as remote sensing image analysis [3–5], automatic
driving [6–8], and privacy protection [9–11]. In the aspect of medical image analysis, deep
learning has been shown to be a powerful diagnostic tool that can provide healthcare work-
ers and patients with the exact information they need. This could give remote community
health workers access to purified world medical knowledge, and it could allow physicians
to greatly improve their efficiency and accuracy, while giving patients and families greater
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control and visibility of their healthcare. Medical image classification plays a vital role in
the diagnosis process by assigning appropriate labels to certain attributes in the image.
Medical image classifiers can distinguish different types of diseases in specific organs, such
as breast biopsies, liver lesions, brain tissue, the lungs, and rectal cancers.

Many excellent research works have greatly advanced the field of medical image clas-
sification. Semi-supervised support vector machine was used to solve the problem of brain
MRI image classification with mild cognitive impairment [12]. Peikari et al. [13] performed
cluster analysis on semi-supervised learning to improve the classification performance of
pathological images. In addition, several studies have explored the Generative-Adversarial-
Network (GAN)-based methods, which show strong applicability in the automatic detection
of retinal diseases [14], skin diseases [15], and cardiac diseases [16]. However, there are
still several serious problems in the research of medical image classification. The existing
deep models for medical image classification rely on a large number of labeled training
samples, and their generalization performance for unseen categories is either unsatisfactory
or otherwise depends on a time-consuming retraining process. Humans are very good at
recognizing a new object through a very small number of samples. For example, a child
only needs some pictures in a book to recognize what a “zebra” is and what a “rhinoceros”
is. Inspired by the rapid learning ability of human beings, researchers seek for deep learn-
ing models to learn a new category quickly with only a small number of samples after
learning a large amount of data in a certain category.

Overall, the existing deep models for medical image classification rely on a large
number of labeled training samples and have poor generalization performance for unseen
categories, requiring much time and computing resources to retrain. Moreover, the clas-
sification information of an image is not only related to the color of the pixel, but also to
the location of the pixel, for example the location of a lesion is related to whether it is a
malignant disease or not [17], while current image classification methods cannot explicitly
use the location information of the pixel, making them insensitive to cues related only to
the location. We propose a collateral location coding to help the network explicitly utilize
the location information of each pixel to make it easier for the network to recognize cues
related to location only. In addition, existing algorithms rely on local convolution and
cannot properly utilize global information, which is essential for image classification. To
solve this problem, we propose a single-key global spatial attention that allows each pixel
in the feature map to obtain information about all features and use it as a basis for feature
importance measurement.

The contributions of this paper are summarized as follows:

(1) A complete classification framework is presented for few-shot learning of medical
images, which achieves excellent performance compared with the well-known few-
shot learning algorithms.

(2) A collateral location coding is proposed to help the network explicitly utilize the
location information.

(3) A single-key global spatial attention is designed to make the pixels at each location
perceive the global spatial information in a low-cost way.

(4) Experimental results on three medical image datasets demonstrate the compelling
performance of our algorithms in the few-shot task.

The remainder of this paper is structured as follows. Section 2 briefly reviews some
related work in medical image classification and few-shot learning. In Section 3, our method
is introduced in detail. Section 4 gives the experimental settings and the analysis of the
experimental results. Finally, the conclusions and future works are described in Section 5.

2. Related Work
2.1. Medical Image Classification

Computer-Aided Diagnosis (CAD) is an important research field, and excellent algo-
rithms can improve the efficiency of diagnosis and reduce the chance of misdiagnosis. For
example, tumors or lesions may be very small and easily missed by radiologists in the early
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stages, but the number of false negatives can be reduced by automatically highlighting by
medical image processing.

Recently, many research works have achieved promising results in medical image
classification as an important part of CAD. Annotating medical images in the real world
is often time-consuming, especially when consensus is required among multiple experts.
References [18,19] designed semi-supervised learning in medical image classification; the
pseudo-labels were created by training a model on labeled data and then using the trained
model to predict labels on unlabeled data. Furthermore, the label data and the newly
generated pseudo-label data were combined as new training data. In addition, the data
distribution of medical image datasets tends to be very skewed due to a large number
of negative disease cases versus a small number of positive disease cases. To alleviate
this problem, modified loss functions [20], cost-sensitive learning [21], oversampling or
undersampling methods [22], and decision threshold shifting [23] have been designed to
solve skewed class distributions.

For specific medical problems, Li et al. [24] proposed a semi-supervised graph-based al-
gorithm to address the tongue diagnosis problem, which leverages random graph sampling
techniques and label consistency modeling. De Herrera et al. [12] and Csurka et al. [25]
employed semi-supervised methods to expand the training set. They first employed sup-
port vector machine (SVM) or the K-nearest neighbor (KNN) classifier trained with other
multimodal (e.g., visual and textual) information to generate confidence scores for unla-
beled data and then expanded the training set by manual visual retrieval. In addition,
GANs were used in [16] to address the scarcity of labeled data and data domain differ-
ences in chest X-ray classification. To process high-resolution retinal fundus images for
diabetic retinopathy classification, Lecouat et al. [14] proposed a patch-based classification
framework and a semi-supervised GAN. Su et al. [26] proposed a local mean teacher-based
self-supervised learning method that solves the kernel classification problem by enforcing
local and global consistency.

2.2. Few-Shot Learning

The current mainstream few-shot learning algorithms can be divided into three cate-
gories based on the data augmentation, metric learning, and meta-learning methods.

The methods based on data augmentation focus on the problem of too few samples
in few-shot learning, and enhance the data themselves through a series of means, thereby
transforming few-shot learning into ordinary machine learning problems. This kind of
methods is mainly studied from two directions: original data enhancement and feature
enhancement. The generative adversarial network proposed by Goodfellow et al. [27]
employs the idea of game theory to map a certain noise distribution (generally, a Gaussian
distribution) to a true distribution close to the data and realizes data enhancement from
the perspective of data characteristics. On this basis, Antoniou et al. [28] proposed a
data augmentation generative adversarial network to improve the quality of the model
by generating data with an approximate sample distribution. Chen et al. [29] explored
semantic information to design a semantic auto-encoder for higher-level data enhancement
and used the image block combination method to fuse the original features of the image
and the transformed features, so as to achieve the purpose of data enhancement.

The methods based on metric learning map the original data into deep features through
a neural network, and the features can be used as a representation of a certain type of sample
after further processing. The classification can be completed by calculating the similarity
between a given sample and the representation. It usually consists of a feature embedding
module, a category representation module, and a similarity measurement module. The
matching network [30] employs the attention mechanism and storage memory to complete
the encoding of the support set and query set samples, measures the matching degree of
the two through the cosine distance, and finally, obtains the label of a given sample by the
weighted average method. Moreover, for the samples that do not appear in the training,
the original model does not need to be changed, and only a small amount of data can
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be used to complete the identification of the new category. Snell et al. [31] proposed the
prototype network, which can be regarded as a general framework for deep metric learning.
It represents the original data as a feature vector with feature embedding, takes the mean
value of the vector of the same category as the prototype of the category, and completes the
classification task by calculating the distance between the new sample and the prototype.
The covariance metric network [32] takes into account the second-order features of the data,
calculates the covariance to better represent the data, and achieves good performance on
benchmark datasets.

Meta-learning can independently choose certain strategies to complete the learning of
different tasks and study how to use previous experience to guide the existing learning,
also known as “learning how to learn”. Finn et al. [33] proposed a Model-Agnostic Meta-
Learning (MAML) for the fast adaptation of deep networks. MAML empowers the model to
independently determine the initialization of parameters with the selection of the network
architecture and the optimization strategy. It obtains a global optimal value by training
on the auxiliary set, which is used as the initialization value of the model on different
tasks, and only needs a small number of iterations to converge on a small amount of data
in a given support set. In addition, Ravi et al. [34] employed Long Short-Term Memory
(LSTM) as a meta-learner to learn by taking the gradient information and the learning rate
of the model as the state of the LSTM. Cheng et al. [35] proposed a meta-metric learner to
integrate the matching network and LSTM.

Overall, the research on few-shot learning is still in its infancy. The breakthrough of
existing algorithms in model accuracy is very dependent on deeper networks, and more
emphasis is placed on experiments, which is still very much lacking in theoretical research
and practical application.

3. Method
3.1. Overview

The whole dataset was divided into a training set, a validation set, and a test set, where
the training set was used to train the image classifier, while the test set was further divided
into support sets and query sets, where the support sets contain the few-shot labels and
the query sets do not contain labels. During training, the images are first processed by the
proposed collateral location coding and then fed to the feature extractor, which contains the
proposed single-key global spatial attention. In the testing phase, we fixed the parameters
of the feature extractor and used it to extract the image features of the support set and the
query set, and finally, we used the nearest class mean for classification. The training and
testing processes of our method are shown in Figures 1 and 2, respectively

Feature extractor Fully connected layer

Training
Class

Figure 1. Training stage of our method. Our method follows the classical routine of training a
classifier during training.
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Support Set

Query Set

Nearest Class 
Mean

Feature extractor

Testing
Class

Figure 2. Testing stage of our method. We fix the feature extractor and use the nearest class mean
method to classify the image during testing.

3.2. Collateral Location Coding

When determining what kind of disease a medical image contains, the location of the
lesion often has a strong correlation with the type of disease, for example the location of
a lung nodule correlates with its possible development into cancer [17]. Most malignant
nodules are located in the upper lobe of the lung, more commonly in the upper lobe of the
right lung. Approximately two-thirds of metastases are located in the lower lobe of the
lung, and approximately 60% of isolated pulmonary nodules are located in the peripheral
regions of the lung. Non-calcified pulmonary nodules near the lung fissures have a lower
probability of malignancy. Subpleural nodules, especially those located in the middle or
lower lobe of the lung, are likely to be intrapulmonary lymph nodes. Technically, different
medical images may have similarly shaped anomalies in them, but the locations of these
anomalies greatly affect the classes of these medical images, so ignoring the location of the
abnormalities based only on their appearance is not conducive to accurate classification.
Reference [36] found that neural networks implicitly learn coarse positional information by
means of padding, but existing image classification algorithms usually feed only a single
RGB image into a deep neural network, which means that this process does not explicitly
make use of the exact positional information of each pixel, especially considering that most
classification networks end up using global pooling to eliminate spatial information, in
which the average pooling will produce the same result regardless of where the key features
are located.

Existing work [37] has attempted to stitch the coordinate information of the image
together with the RGB image; however, the location information may be corrupted in
the process due to some downsampling by the network during the convolution process;
in addition, directly stitching the original coordinates is not necessarily the most helpful
way for the neural network to utilize the location information, because the original coordi-
nate information has too much difference from the color information distribution of the
RGB image.

Inspired by recent advances in depth estimation [38], we propose a collateral location
coding to allow the model to perceive the coordinate information of each pixel, while
ensuring that the downsampling process does not corrupt the position information and
allowing to reduce the difference between the position information and the distribution of
RGB color information.

From any input image, we first obtain a coordinate map p = (x, y) to record the
position of each pixel, which is a two-channel map, recording the x-axis coordinate and the
y-axis coordinate, respectively.

This coordinate map p will then be coded as:

Fclc(p) = a2 · GELU(a1 · p + b1) + b2 (1)

where a1, b1, a2, and b2 are linear transformation coefficients, GELU is the Gaussian error linear
units [39], and the linear operation of a · p + b can be implemented by a 1× 1 convolution.
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The input image will be spliced with the location feature Fclc and then fed into the
network. When the features advancing in the network encounter downsampling (e.g.,
pooling layer), the above process will be repeated, i.e., the features will be spliced with a
location feature matching their own resolution and then sent to the next layer for processing.

3.3. Single-Key Global Spatial Attention

One of the drawbacks of convolutional networks is that they can only fuse local
information and each pixel can only perceive its neighbors in local spatial locations, while
it is more difficult to capture remote dependencies. Self-attention is a widely adopted
approach for establishing non-local connections in deep learning; yet, its huge amount
of operations is still a computational burden. Inspired by recent detached attention [40],
we propose a lightweight single-key global spatial attention. The process of this part is
shown in Figure 3. As shown in the bottom path in the figure, the input x firstly passes
through a 1× 1 convolutional layer, which does not change the number of channels, then
the global pooling downsizes the spatial dimension, after another 1× 1 convolutional layer,
which does not change the number of channels, and the key of the input feature is finally
obtained, i.e.,

K = Conv(2)K (AvgPool(Conv(1)K (x))) (2)

The middle path in Figure 3 means that passing x through a 1× 1 convolutional layer
that allows inter-channel information exchange provides the query of the input features, i.e.,

Q = ConvQ(x) (3)

Input feature Q

& AvgPool

K

×

W

·

Output feature

Figure 3. Single-key global spatial attention. We utilize a similar idea to self-attention, but the
difference is that the spatial dimension of the key collapses in our approach, and each spatially
located feature has to interact with only one feature instead of interacting with all features as in
self-attention. We use the idea of weighting similar to SE attention [41] to weight the important
features, instead of the feature generation method in self-attention.

We multiply Q and K and feed the result into the Sigmoid layer to obtain the weight
W for each spatial location, i.e.,

W = Q× KT (4)

where T denotes the matrix transpose.
The final weighting for x is accomplished by multiplying the weight matrix W with

the input features x, i.e.,
Out = W · x (5)

In the above process, we utilized a similar idea to self-attention, but the difference is
that the spatial dimension of the key collapses in our approach, and our approach does
not consume huge computational resources as self-attention does, because each spatially
located feature has to interact with only one feature instead of interacting with all features
as in self-attention.

In addition, we used the input features themselves as the value matrix, similar to
that in self-attention; however, we did not introduce the convolution for the value, which
further reduces the computational effort, and we used the idea of weighting similar to SE



Electronics 2022, 11, 1510 7 of 13

attention [41] to weight the important features, instead of the feature generation method in
self-attention.

3.4. Classification
3.4.1. Training

For training, we used cross-entropy as the loss function, i.e.,

L(ζi, ζ̂i) = −
N

∑
i=1

(ζi log ζ̂i) (6)

where N is the number of categories, ζi is the ground truth distribution of the i-th category,
and ζ̂i is the predicted distribution of the i-th category.

3.4.2. Testing

We denote the feature extractor as φ, the feature of an input image I as FI = φ(I), and
δi as the set of the features of the i-th category in the support set. We used the nearest class
mean to obtain a center for each category, i.e.,

εj =
1
|δi| ∑

FI∈δi

FI (7)

The predicted category of each sample in the query set can be obtained as:

Category(FI) = arg min
i
||FI − εi||2 (8)

4. Experimental Results and Analysis
4.1. Dataset Description

The datasets employed in this paper are all from MedMNIST [42,43], which is available
at https://medmnist.com/ (accessed on 31 December 2021). As a large-scale lightweight
benchmark dataset for two-dimensional and three-dimensional biomedical image classi-
fication, MedMNIST has been widely used in research on medical image classification.
Specifically, three datasets in MedMNIST were employed in the experiments of this paper,
where the details of these datasets are presented in Figure 4 and Table 1.

(a) (b) (c)

Figure 4. Medical image classification datasets. (a) DermaMNIST. (b) PathMNIST. (c) OrganM-
NIST (Axial).

https://medmnist.com/
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Table 1. The details of three medical image classification hldatasets.

Datasets Classes Training Validation Test Image Modality

DermaMNIST [44,45] 7 7007 1003 2005 Dermatoscope
PathMNIST [46] 9 89,996 10,004 7180 Pathology

OrganMNIST (Axial) [47,48] 11 34,581 6491 17,778 Abdominal CT

DermaMNIST is based on HAM10000 [44,45], which is a collection of multi-source
dermoscopic images of large common pigmented skin lesions. The source images with
3× 600× 450 pixels were resized to 3× 28× 28 pixels. The dataset consists of 10,015
dermoscopic images, which are divided into seven different diseases to form a multi-class
classification task. The images were divided into a training set, verification set, and test set
in the ratio of 7:1:2.

PathMNIST is based on a prior study [46] and is mainly used to predict survival in
colorectal cancer histological sections. The source images with 3× 224× 224 pixels were
resized to 3× 28× 28 pixels. In [46], a dataset (NCT-CRC-HE-100K) containing 100,000
non-overlapping image patches from hematoxylin- and eosin-stained histological images
were split as 9:1 into a training set and verification set. In addition, a dataset (CRC-VAL-
HE-7K) with 7180 image patches from different clinical centers was treated as the test set.
The PathMNIST dataset consists of nine types of organizations, which allows for multiple
classification tasks.

OrganMNIST(Axial) is the axial acquisition from 3D Computed Tomography (CT)
in the Liver Tumor Segmentation Benchmark (LiTS) [47]. The organ labels in OrganM-
NIST (Axial) were obtained from boundary box annotations of 11 body organs in another
study [48]. The original image was resized to 1× 28× 28 pixels, which classifies 11 body
organs into multiple categories. In detail, the training and validation set were selected from
115 and 16 CT scans in the source training set, respectively. The test set was constructed
with 70 CT scans from the source test set.

4.2. Experimental Setup

For the sake of fairness, all experiments in this paper were implemented on the PyTorch
framework in an NVIDIA GeForce RTX 3090. In the practical implementation, we randomly
selected three categories as the training set, two categories as the validation set, and the
remaining two categories as the test set in DermaMNIST, so 2-way 1-shot and 2-way 5-shot
were performed in the comparative experiments. For PathMNIST, we randomly selected
three categories as the training set, three categories as the validation set, and the remaining
three categories as the test set. For OrganMNIST, we randomly selected five categories as
the training set, three categories as the validation set, and the remaining three categories as
the test set. In addition, 3-way 1-shot and 3-way 5-shot were performed in the PathMNIST
and OrganMNIST. We used ResNet18 [49] as the backbone, where we added the proposed
single-key global spatial attention module at the end of each convolution block. We adopted
the optimizer of SGD with a momentum of 0.9. The learning rate was 0.1. We also report
the 95% confidence interval, and the performances were averaged over 1000 generated
classification tasks.

4.3. Comparing with State-of-the-Art Algorithms

In order to quantify the superiority of our proposed algorithm, five well-known
few-shot learning algorithms were selected as the comparison algorithms, including the
MatchingNet [30], MAML [33], Prototype Net [31], Relation Net [50], and Transductive
Propagation Network (TPN) [51].

For DermaMNIST, as can be seen from the experimental results in Table 2, our method
achieved the best results on 2-way 1-shot and 5-shot. Specifically, our method outperformed
the state-of-the-art method by 3.25% and 1.86% in 1-shot and 5-shot, respectively. We also
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show the loss curve and the validation accuracy curve of the proposed method on the
DermaMNIST dataset, in Figures 5 and 6, respectively.

Table 3 shows the experimental results on the PathMNIST dataset; our method out-
performed all existing methods. The results on the OrganMNIST dataset are shown in
Table 4; our method achieved the best performance with the highest accuracy and the
lowest confidence interval.

Table 2. The accuracy comparison of different methods on the DermaMNIST dataset.

Method
2-Way

1-Shot 5-Shot

MatchingNet 55.52± 1.14% 61.91± 1.57%
MAML 56.14± 0.97% 63.27± 1.12%
PrototypeNet 56.84± 0.88% 62.74± 1.18%
Relation Net 58.74± 0.84% 63.82± 1.20%
TPN 60.12± 0.86% 67.52± 1.14%
Ours 63.37 ± 0.80% 69.38 ± 1.03%

0 50 100 150 200 250 300
Epochs

35
40
45
50
55
60
65
70
75
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cu
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cy
(%
)

1-Shot
5-Shot

Figure 5. Validation accuracy curve on the DermaMNIST dataset.
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Figure 6. Loss curve on the DermaMNIST dataset.
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Table 3. The accuracy comparison of different methods on the PathMNIST dataset.

Method
3-Way

1-Shot 5-Shot

MatchingNet 46.38± 0.82% 53.28± 1.29%
MAML 51.58± 0.81% 58.39± 0.92%
PrototypeNet 51.29± 0.77% 59.19± 0.82%
Relation Net 53.48± 0.81% 60.73± 0.87%
TPN 52.91± 0.83% 59.29± 0.84%
Ours 54.82 ± 0.78% 61.92 ± 0.81%

Table 4. The accuracy comparison of different methods on the OrganMNIST dataset.

Method
3-Way

1-Shot 5-Shot

MatchingNet 44.59± 0.96% 50.84± 1.12%
MAML 48.47± 0.87% 56.86± 0.96%
PrototypeNet 49.39± 0.83% 57.83± 0.72%
Relation Net 50.93± 0.84% 58.61± 0.89%
TPN 51.86± 0.87% 57.35± 0.85%
Ours 53.48 ± 0.81% 59.38 ± 0.84%

4.4. Ablation Experiments

In this subsection, the ablation experiments are performed to demonstrate the ef-
fectiveness of our innovation. The ablation results on DermaMNIST, PathMNIST, and
OrganMNIST are shown in Tables 5–7, respectively. Both of the proposed contributions
improved the performance because collateral-type location coding allows the model to
exploit feature information related to location only, while single-key global spatial attention
allows the model to make each pixel in the feature map perceive global information in a
cost-effective manner.

Table 5. Ablation on the DermaMNIST dataset.

Method
2-Way

1-Shot 5-Shot

Baseline 59.28± 1.01% 63.81± 1.29%
+ Collateral Location Coding 61.27± 0.98% 65.72± 1.21%
+ Single-Key Global Spatial Attention 62.79± 0.91% 65.14± 1.18%
Full 63.37 ± 0.80% 69.38 ± 1.03%

Table 6. Ablation on the PathMNIST dataset.

Method
3-Way

1-Shot 5-Shot

Baseline 49.91± 0.95% 56.28± 1.04%
+ Collateral Location Coding 51.39± 0.91% 58.21± 0.97%
+ Single-Key Global Spatial Attention 52.96± 0.84% 58.49± 0.89%
Full 54.82 ± 0.78% 61.92 ± 0.81%
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Table 7. Ablation on the OrganMNIST dataset.

Method 3-Way

1-Shot 5-Shot

Baseline 50.48± 0.98% 55.71± 1.07%
+ Collateral Location Coding 51.41± 0.93% 57.39± 0.91%
+ Single-Key Global Spatial Attention 51.83± 0.88% 57.57± 0.89%
Full 53.48 ± 0.81% 59.38 ± 0.84%

5. Conclusions

In this paper, we proposed a few-shot learning framework for medical image classifi-
cation, in which we specifically proposed a collateral location encoding to help the network
recognize only location-dependent features, and we proposed a single-key global spatial
attention that allows the model to perceive global spatial information in a cost-effective
manner. Experiments on three publicly available medical datasets confirmed the effective-
ness of our algorithm. Noticing that a large amount of valuable medical data is underused,
we find it urgent to fuse various medical classification data sources seeking a further boost
in performance. Therefore, in our future work, we will focus on how to embed unannotated
samples from different medical data sources into a few-shot learning framework to further
improve model effectiveness.
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