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Abstract: Video super-resolution can generate corresponding to high-resolution video frames from
a plurality of low-resolution video frames which have rich details and temporally consistency.
Most current methods use two-level structure to reconstruct video frames by combining optical
flow network and super-resolution network, but this process does not deeply mine the effective
information contained in video frames. Therefore, we propose a video super-resolution method that
combines non-local features and multi-scale features to extract more in-depth effective information
contained in video frames. Our method obtains long-distance effective information by calculating
the similarity between any two pixels in the video frame through the non-local module, extracts
the local information covered by different scale convolution cores through the multi-scale feature
fusion module, and fully fuses feature information using different connection modes of convolution
cores. Experiments on different data sets show that the proposed method is superior to the existing
methods in quality and quantity.

Keywords: non-local feature; multi-scale; optical flow reconstruction network; video super-resolution

1. Introduction

Video super-resolution is also called multi-frame image super-resolution. Compared
with single-image super-resolution, video super-resolution can use time series information
to reconstruct the results, so it can achieve better reconstruction results.

Before the popularization of deep learning methods, sparse coding and manual feature
extraction were mainly used to deal with video super-resolution [1,2]. In reference [3],
convolutional neural network is first proposed to deal with video super-resolution. The
methods of [4–7] did not align the adjacent video frames, and used 2D or 3D convolution
for feature extraction to realize video super-resolution. The recurrent neural network [8,9]
is also used to solve the super-resolution reconstruction of video frame sequence. The
existing video super-resolution methods [10–15] predict the motion trajectory by calculating
the optical flow relationship between adjacent frames, and then the input video frames
are warped to align the adjacent video frames. The problem with this method is that the
accuracy of the video frame alignment directly affects the subsequent super-resolution
work. Time correlation has also been proved to be very important for super-resolution of
video frames [16–19], the use of temporal correlation can effectively improve the accuracy
of video super-resolution.

Video super-resolution methods [20–23] based on deep learning adopt different deep
learning strategies in the super-resolution part to reconstruct the video frame, though the
performance of these methods is still limited by the accuracy of low-resolution optical
flow. In the SOF-VSR [24] method, in order to solve the problem of limited accuracy
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of low-resolution optical flow, high-resolution optical flow is generated to provide the
corresponding relationship between video frames, thereby improving the super-resolution
performance. The above methods have proposed targeted solutions to the existing problems
of video super-resolution, but these methods do not fully mine the effective information
contained in the video frame itself in the process of super-resolution, and the extraction
of feature information only stays at a single scale. In order to solve these problems, we
propose the method in this paper.

To generate high-resolution video frames, we propose an end-to-end network. Firstly,
a non-local module, using the information of all points in the video frame to calculate the
corresponding output of a certain point, is introduced into the network structure. Then,
the effective information is further excavated by calculating the similarity between long-
distance pixels in the video frame. Secondly, the high-resolution optical flow is calculated
through the optical flow reconstruction network (OFRnet) connected in parallel.

The proposed OFRnet is a pyramid structure with a three-layer network. Video frames
are first downsampled in the OFRnet, and then amplified step-by-step through different
network layers to obtain the required high-resolution optical flow. Compared with SOF-
VSR method, the similar optical flow network structure is adopted, but in our OFRnet,
multi-scale feature fusion block (MSFFB) is used to extract more feature information in the
process of generating high-resolution optical flow.

In the super-resolution networks, we propose MSFFB, which contains convolution
kernels with different sizes and different convolution kernel connection methods. Com-
pared with the existing video super-resolution methods, our method obtains better PSNR
and SSIM values on different test datasets. As shown in Figure 1, we shows some results of
different reconstruction methods by ×4 scale on calendar video sequence.

Figure 1. Results of different reconstruction methods by ×4 scale on calendar video sequence.

Our algorithm has two main contributions:

1. The non-local module overcomes the limitation of convolution operation in the feature-
extraction process, fully excavates the global information of the video frames, expands
the receptive field, and improves the utilization of effective information.

2. Multi-scale feature fusion blocks are connected by different convolution kernels
with different sizes, which makes the feature information extracted by different
convolutions be fused efficiently, so the reconstruction results contain more details.

The rest of the paper is arranged as follows. In the second section, the development
of video super-resolution based on convolutional neural network is introduced. In the
third section, the network structure and the specific functions of each module proposed in
this paper are elaborated in detail. In the fourth section, the ablation experiment is carried
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out to show the specific functions of different network modules. Finally, the fifth section
summarizes the paper.

2. Related Work

In this section, we briefly introduce single-image super-resolution methods and differ-
ent methods of video super-resolution.

2.1. Single-Image Super-Resolution

With the development of deep learning, many very effective single-image super-
resolution methods have been proposed. Compared with traditional methods, deep learn-
ing methods have achieved more effective super-resolution results. Dong et al. [25] first
applied the deep learning method to the super-resolution of a single image, and used
a three-layer convolutional neural network to learn the mapping relationship between
low-resolution images and high-resolution images. Shi et al. [26] proposed a sub-pixel
convolution method, which effectively reduces the computational complexity of the net-
work. In addition to being used in single-image super-resolution, this method can also
reconstruct video sequences in real-time. Kim et al. [27] proposed a very deep convolution
neural network. The network model has 20 layers, which improves the accuracy of image
reconstruction. Lai et al. [28] proposed a Laplace pyramid network. This method does
not use bicubic interpolation preprocessing, which reduces the computational complexity.
On the basis of ResNet [29], Ledig et al. [30] proposed SRResNet method to remove the
ReLU layer in the residual block and improve the reconstruction effect. EDSR [31] is based
on SRResNet except for the batch-normalization layer, which makes the residual learning
method more suitable for low-level super-resolution problems. Hu et al. [32] proposed
a channel and spatial modulation network to enhance the valuable information in the
network and suppress the redundant information. Kim et al. [33] proposed the method
of deep recursive convolution network to reconstruct the image, which can improve the
network performance without introducing additional parameters. Ahn et al. [34] proposed
cascade method for super-resolution, which makes this method closer to practical applica-
tion. Zhang et al. [35] proposed residual dense network to make full use of the hierarchical
characteristics of all convolution layers. Zhang et al. [36] proposed a very deep residual
channel attention network to solve the problem that low-frequency information is treated
equally in the network. The above methods have certain reference significance for the
proposal of video super-resolution methods.

2.2. Video Super-Resolution
2.2.1. Methods with Video Frames Alignment

On the basis of SRCNN [25] processing a single image, Kappeler et al. [3] completed
the super-resolution reconstruction of multi frame images in spatial information and tem-
poral information, which is generally considered to be the first application of deep learning
method in the field of video super-resolution. Liao et al. [11] generated an ensemble SR-
drafts through two classical optical flow methods with different parameters, and then pre-
dicted the final HR frame by a deep convolutional neural network. Caballero et al. [10] first
proposed the end-to-end video super-resolution network named VESPCN, which contains
two main parts: sub-pixel convolutional super-resolution and spatio-temporal network.
Since then, end-to-end network structures have been widely used in video super-resolution.
Tao et al. [12] used a sub-pixel motion compensation (SPMC) layer to effectively deal with
motion compensation and feature map scaling, and used an LSTM-based framework to
deal with multi-frame input. Chu et al. [18] proposed a spatio-temporal discriminator
called TecoGAN to obtain realistic and coherent video super-resolution. Sajjadi et al. [14]
input the HR image generated previously into the network when generating the next frame
image, and the method can not only produce time-continuous results but also reduce the
computational complexity. Haris et al. [37] proposed recursive back-projection network
that integrated spatial and temporal relations to generate target frames. Bao et al. [38]
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proposed an adaptive warping layer to complete the frame interpolation of sequence im-
ages. In order to make full use of the shared redundancy between consecutive frames,
Kalarot et al. [39] took the output of the first stage as the input of the second stage, and
gradually improved the quality of the reconstructed image. Chen et al. [40] improved the
accuracy of low-resolution face recognition by constructing the nearest-neighbor network.
Haris et al. [41] proposed an end-to-end network model, which can perform video frame
insertion at the same time of video super-resolution. Most of these methods use motion
estimation for motion compensation, so as to achieve the purpose of video frame alignment
and improve the quality of reconstruction results.

Other methods realize the alignment of adjacent video frames through implicit motion
compensation. Dai et al. [42] first proposed the application of deformable convolution
in high-level visual tasks, and then continuously improved it in low-level visual tasks.
Currently, there are also methods to achieve video frame alignment through deformation
convolution. Wang et al. [43] proposed a video frame with enhanced deformable convolu-
tion to effectively fuse different video frames with different motion and blur. Tian et al. [17]
proposed an adaptive alignment reference frame of feature layer without calculating op-
tical flow to achieve the purpose of video frame prediction. Ying et al. [44] proposed
three-dimensional deformable convolution to realize motion compensation and spatial
information acquisition. Isobe et al. [45] input the previous frame and the current frame
into the network as hidden states, and saved the texture details through the middle layer
of the network.

2.2.2. Methods without Video Frames Alignment

Such methods do not align video frames, and super-resolution of video frames is
achieved by extracting spatial information and time series information. Lucas et al. [4] used
adaptation and perceptual losses to improve the ability of network to recover image details
in super-resolution tasks. By reusing previous frames and feature information, Yan et al. [46]
not only maintained real-time speed, but also produced high-quality results. Jo et al. [5]
proposed a method to reconstruct a high-resolution image from the input image with a
dynamic up sampling filter, and add details through calculation, which also improved the
reconstruction quality. Huang et al. [47] proposed a bidirectional recursive convolution net-
work for time series modeling to complete the reconstruction of video frames. This method
does not calculate optical flow, but simulates time series through recursive neural network,
which reduces the computational complexity. Yi et al. [48] avoided motion estimation and
motion compensation through improved non-local operation, achieved good performance
and greatly improved operation speed. Li et al. [49] proposed a time multi-correspondence
aggregation strategy, which can extract the self-similarity of video frames by using the
similarity of patches between video frames and a cross-scale non-local module.

Song et al. [50] used gradient mapping between high-resolution frames and low-
resolution frames to regularize multi-frame fusion to achieve video super-resolution.
Wang et al. [51] used edge enhancement method on the basis of generative adversarial
network, which further improves the visual experience of video super-resolution.
Liu et al. [52] proposed a real-time video super-resolution model based on neural
structure search, and applied this method to mobile devices.

However, most of the mentioned networks use convolution kernel with single scale
and fixed size, which has certain limitations on feature extraction. Moreover, the current
extraction method of effective information only considers the coverage area of convolution
kernel, which cannot establish the relationship between long-distance similar pixels. Some
works consider the relationship between long-distance pixels, but they only solve the case
in which low-resolution video frames are obtained by interpolation downsampling, and do
not involve the case in which low-resolution video frames are blurred. Therefore, we deeply
mine the effective information of video frames through nonlocal features and multi-scale
information fusion. Furthermore, we discuss the effect of the proposed method on the
reconstruction of low-resolution video frames with fuzzy factors.
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3. Proposed Method

In this section, the improved network structure will be explained in detail. Our
network structure consists of three parts, which are non-local module, optical flow re-
construction and super-resolution reconstruction, as shown in Figure 2. In our model
architectures, the introduced non-local module can make full use of the global information
of the video frame, because it considers the information of all feature points to calculate the
corresponding output of a feature point in the feature map. Parallel to it is OFRnet, which
uses multi-scale feature fusion blocks, the main function of this module is to align differ-
ent video frames. Finally, the results of the non-local module and OFRnet are connected
and sent to the SRnet. SRnet is composed of multi-scale feature fusion blocks in series to
perform the final super-resolution. Among them, the multi-scale feature fusion block is a
feature extraction module we proposed. The module has convolution kernels of different
sizes and is connected in different ways to fully fuse feature information of different scales.

Figure 2. The framework of the proposed video super-resolution network.

3.1. Network Architecture

Recently, optical flow reconstruction networks (OFRnet) are widely used in video
super-resolution methods [24,53,54], many of them utilize adjacent frames of video to esti-
mate the optical flow. Our OFRnet is a three-layer pyramid structure. After low-resolution
video frames are sent to the optical flow reconstruction network, they are downsampled
first, and then amplified step-by-step through different network layers. In different network
layers of our OFRnet, we uses multi-scale feature fusion block (MSFFB) to extract and
fuse the feature information extracted by different scale convolution kernels. Through the
layer-by-layer amplification in OFRnet, the high-resolution optical flow containing more
detailed information is finally obtained.

The non-local module captures the information of all the feature points when calcu-
lating the corresponding output of a certain point in the feature map. The feature points
with relatively large relevance are given more weight, and their output contribution to the
current point is also greater than others during calculation. This module is conducive to
fully mine the global information contained in the entire feature map, which effectively
overcomes the limitation that the convolution operation only involves the feature points in
its neighborhood while ignores other feature points. As a result, the utilization of effective
information is improved, the range of perception is expanded, the ability to perceive the
network is enhanced as well.

As illustrated in Figure 2, SRnet, which reconstructs low-resolution frames into high-
resolution frames, is the last part of the network structure. The features extracted by
feature-extraction layer are sent to the multi-scale feature fusion blocks, and the feature
maps corresponding to different convolution kernels are fully mined and extracted. Then,
the network uses the feature fusion layer to extract all the features. Finally, a high-resolution
frame is generated through the sub-pixel layer.
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3.2. Non-Local Module

The authors of [4,5,46] use 2D convolution to extract the feature information contained
in the video frames. This method can only extract limited information because the convolu-
tion kernel can only slide in the width and height directions of the image. It only considers
the correlation between adjacent pixels or feature points in the convolution kernel, and
cannot use global information. It is a local operation. Therefore, as shown in Figure 2, video
frames are input to OFRnet and non-local modules in parallel, and we expect to capture
global information through non-local modules.

In the video classification task, Wang et al. [55] tried the non-local method for the
first time and achieved better results. Here, we introduce non-local modules into the
video super-resolution task. The module uses all the corresponding points information to
calculate the output of the corresponding point in the feature map. The non-local module
has a larger search range. It directly captures the long-distance effective information by
calculating the similarity between any two positions in the feature map, and weights
them. This is not limited to the calculation between adjacent points, but equivalent to
constructing a convolution kernel as large as the size of the feature map to calculate the
global information, so that more information can be maintained.

As mentioned above, the specific formula of non-local module in neural network is
as follows:

yi =
1

C(x) ∑
∀j

f (xi, xj)g(xj) (1)

where, x and y are the input signal and output signal, respectively, with the same size.
f (xi, xj) represents the Gaussian function f (xi, xj) = exT

i xj we chose, it can compute the
similar relationship between i and all possible associated positions j in the feature map.
g(xj) is 1× 1 convolution, it stands for the characteristic value of the input signal at position
j, and C(x) = ∑∀j f (xi, xj) is the normalized parameter.

As illustrated in Figure 3, when the non-local module calculates the output matrix
Y of the feature map X, the size of the input and output feature map are consistent, and
the output of each point is associated with all other points. Take a 3× 3 feature map as
an example, when calculating the output of the x1 point corresponding to the y1 point,
according to the similarity calculation function f in formula (1), the correlation between
this point and all other points in the feature map is firstly calculated, and the correlation
matrix F is obtained. Secondly, through the mapping function g, each point in the feature
map is transformed to obtain the mapping matrix G. Finally, multiply the corresponding
points in the two feature matrices and sum them to obtain the output y1 of this point.

3.3. Multi-Scale Feature Fusion Block

In order to fully extract the feature information of video frame sequence and improve
the utilization of network parameters, we propose a multi-scale feature fusion block, which
is applied to the OFRnet and SRnet parts of the network respectively.

The specific structure of multi-scale feature fusion block is shown in Figure 4. The
first part, the convolution kernel of 3× 3 and 5× 5 are arranged in parallel, which mainly
extract the feature information of different scales and splice the convolution results, so that
the spliced results contain the feature information of different scales. Here, 3× 3, 5× 5 and
the aforementioned 1× 1 represent the size of the convolution kernels, respectively. The
second part, convolution kernels of size 3× 3 and size 5× 5 are connected by superposition,
so as to better extract non-linear features through stacking, and fuse feature information
of different scales at the same time. Different connection methods effectively fuse and
use the feature information extracted by the convolution of different scales, so that the
reconstruction results contain richer high-frequency information.
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(a)

(b)

Figure 3. Non-local calculation in module. (a) The output matrix of feature map X through non-local
module; (b) The calculation process of non-local module.

Figure 4. The structure of the proposed MSFFB.

The feature map Ii,j in Figure 4 is processed by parallel 3× 3 convolution kernel and
5× 5 convolution kernel, and the nonlinear transformation of the obtained features is
carried out through the ReLU function to obtain feature matrices P and Q. The calculation
method is as follows:

Pi,t = L(w(1)
3×3 ∗ Ii,t + b1) (2)

Qi,t = L(w(1)
5×5 ∗ Ii,t + b2) (3)

where, L is the ReLU activation function, the subscripts i and t respectively represent the
t-th frame of the i-th video sequence, and the parameters w(1)

3×3, w(1)
5×5, b1 and b2 are obtained

by network training. The symbol ∗ represents the convolution operations.
Next, the obtained feature matrices P and Q are spliced according to the channel to

obtain the feature matrix K. The feature matrices M and N are obtained by successively
passing through the 3× 3 convolution kernel and the 5× 5 convolution kernel in series.
Where M and N are calculated as follows:

Mi,t = L(w(2)
3×3 ∗ Ki,t + b3) (4)

Ni,t = L(w(2)
5×5 ∗Mi,t + b4) (5)
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where, L is the ReLU activation function, the subscripts i and t respectively represent the
t-th frame of the i-th video sequence, and the parameters w(2)

3×3, w(2)
5×5, b3 and b4 are obtained

by network training.
Finally, the 1× 1 convolution kernel is used to reduce the dimension of the feature

matrix Ni,t, so that the number of channels becomes half of the original, and the output
feature Ai,t of the module is obtained.

4. Experiments

We selected 145 video clips with 1080P HD from the CDVL database as training data,
which include different natural and urban scenes, as well as rich textures. We selected four
video clips including foreman, garden, husky and coastguard from the Derf’s collection
as the validation set. In order to compare with other video super-resolution methods
fairly, we tested our method on the benchmark dataset Vid4 [56], which contains four
different scenarios. We selected 10 scenarios from the DAVIS dataset to further compare our
methods, and named the selected data as DAVIS-10, which is consistent with the practice
of reference [57]. Each test dataset contained 31 consecutive frames in the video clip.

We downsampled the original video clips of CDVL dataset to a size of 540× 960
through bicubic interpolation as HR groundtruth. These high-resolution video clips are
further downsampled to generate low-resolution video clips with different upscaling
factors. During training, we randomly extracted three consecutive frames from low-
resolution video clips, and then randomly crop a 32× 32 patch as input. The position
of the high-resolution video clips corresponding to the patch is also cropped out as the
groundtruth. In order to increase the generalization ability of the network, we used random
rotation and reflection to enhance the data.

We used peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) to
evaluate the quality of the generated video sequences. PSNR can measure the objective
quality of video frames, and SSIM can assess the similarity of video frames. All evaluation
indicators were carried out on luminance channel in YCbCr color space of the video frames.

We trained our model with ADAM optimizer by setting β1 = 0.9, β2 = 0.999, and
we set minibatch size as 16 in PyTorch. The initial learning rate is set to 2× 10−4, and it
reduced by half every 50K iterations. We have trained a total of 400K iterations from the
beginning on NIVIDIA GTX 1080Ti GPU.

4.1. Ablation Experiments

In this section, we performed ablation experiments on the DAVIS-10 dataset. By
removing different modules of the proposed method, the effects of the different parts
of the proposed method are shown by comparing with SOF-VSR method. The bicubic
interpolation (BI) degradation model based on bicubic interpolation was also used here.

The main comparison method in this section is SOF-VSR [24]. Firstly, we used residual
dense block (RDB) to reconstruct the video frames in our network in super-resolution.
Secondly, we removed the non-local module in our network to super-resolution reconstruct
the video frames. Finally, we used our complete method to super-resolution reconstruct the
video frames. As shown in Table 1, we use PSNR/SSIM values to evaluate the performance
of the proposed method.

It can be seen from Table 1 that, compared with SOF-VSR method, the reconstruction
result of the video frame is improved in the method of removing MSFFB. Due to the
existence of the non-local module, the connection between remote pixels of the video frame
is established. When using MSFFB with the non-local module removed, compared with the
method of only introducing the non-local module, this method has richer texture and better
PSNR/SSIM values since MSFFB can extract the feature information of video frames at
different scales. Finally, the proposed method achieves the best results because it combines
the advantages of non-local module and MSFFB.
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Table 1. PSNR and SSIM of the reconstruction results by ×4 scale of the proposed method and the
variant method on the DAVIS-10 dataset. The result of the SOF-VSR* method is the result reproduced
under the same operating environment of the proposed method, and the best results are shown
in boldface.

Method PSNR SSIM

SOF-VSR* 34.19 0.923
Proposed without MSFFB 34.26 0.924

Proposed without Non-local 34.29 0.927
Proposed 34.52 0.930

Figure 5 shows the histogram of PSNR comparison the reconstruction results of the
SOF-VSR method and different modules removed by the proposed method in the ablation
experiment. From the figure, we can see the impact of removing different modules on the
super-resolution results of different video sequences. The proposed method combines the
advantages of each module and achieves the highest PSNR value in the super-resolution
reconstruction results of different video sequences.

Figure 5. Reconstruction of different video sequences on DAVIS-10 dataset with ×4 scale, the
reconstruction results of different methods are compared. The vertical axis represents the PSNR value
and the horizontal axis represents the video frame sequence.

In order to further verify the restoration effect of the algorithm on the texture details
in the video frames, we used the Sobel operator to extract the details of the video frames,
constructed a mask with algorithms with small restoration deviations, and observed the
restoration effects of different algorithms on different intensities of details. Table 2 compares
the percentage of the dominant points in the Sobel texture region of the label image between
the SOF-VSR method and the proposed method. The HR column represents the percentage
of the Sobel texture of the label image in the whole image, while the S/HR column and
P/HR column represent the percentage of the dominant point of the Sobel texture area of
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reconstruction results of the SOF-VSR method and proposed method, respectively, to the
Sobel texture area of the label image.

The (P+S)/HR column represents the percentage of the sum of the dominant points
of the proposed method reconstruction result and the dominant points of the SOF-VSR
method reconstruction result to the Sobel texture of the label image. The (P-S)/HR column
represents the percentage of the difference between the dominant points of the proposed
method reconstruction result and the dominant points of the SOF-VSR method reconstruc-
tion result to the Sobel texture of the label image. It can be seen from this column that the
texture reconstruction details of the proposed method in different pixel intervals are better
than SOF-VSR method.

Table 2. The percentage of reconstruction results of different methods with ×4 scale in Sobel texture
region of label image on city video sequence of Vid4 dataset.

Threshold Value HR S/HR P/HR (P+S)/HR (P-S)/HR

<150 2.74 36.95 42.84 79.79 5.89
<100 6.84 38.73 44.42 83.15 5.69
<50 16.70 38.80 45.56 84.36 6.76
=0 31.23 36.63 43.36 79.99 6.73
>20 4.91 30.33 36.69 67.02 6.36
>50 14.82 34.10 40.93 75.07 6.83

>100 24.50 36.06 43.06 79.12 7.00
>150 28.54 36.59 43.42 80.01 6.83

In the first column of Table 2, <150 means that the Sobel texture area sets all points
with a pixel value less than 150 to 0, that is, only the strongest fine nodes are considered.
Similarly, <100 means that more strong texture details are counted, =0 means that no action
has been taken on each method to reconstruct the results, while >20 means to set all points
greater than 20 to 0, that is, the weakest texture point is obtained. Similarly, >150 means
to count more weak texture details. The purpose is to view the reconstruction results
of different methods in the strong texture pixel interval and weak texture pixel interval
of the image, so as to compare which interval is more suitable for different methods of
super-resolution reconstruction. It can be seen from Table 2 that in each different pixel
interval, our method is better than the SOF-VSR method.

Figure 6 is a comparison between the reconstruction results of the proposed method
in the ablation experiment and the reconstruction results of the SOF-VSR method in the
texture area of the video frame. This figure intuitively shows the difference between the
reconstruction results of the proposed method and the SOF-VSR method in the contour
and texture of the object in the video frame. Figure 6c shows the distribution of the
pixel points in the image texture with the advantage of the SOF-VSR method in the result
comparison, and Figure 6d shows the distribution of the points in the image texture with the
advantage of the proposed method in the result comparison. For more intuitive comparison,
Figure 6(e1,f1,g1) enlarges the texture area of the label image, Figure 6(e2,f2,g2) enlarges the
texture area of the reconstruction result of SOF-VSR method and Figure 6(e3,f3,g3) enlarges
the texture area of the reconstruction result of proposed method. From the comparison, it
can be seen that the reconstruction result of proposed method has richer texture.

Under different downsampling methods, the performance of different methods is also
different. Here, we use ×4 scale of average downsampling and bilinear downsampling
for Vid4 dataset to obtain different low-resolution video sequences. Different methods are
used for super-resolution, and the reconstruction results are compared, as shown in Table 3.
The PSNR of the average downsampling reconstruction results of the proposed method is
slightly lower than that of the SOF-VSR method, but the proposed method has higher SSIM
reconstruction results for different downsampling methods than the SOF-VSR method,
which shows that the proposed method has good generalization ability for maintaining the
detailed structure of video frames.
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Figure 6. Texture of reconstruction results between proposed method and SOF-VSR method on city
video sequence of Vid4 dataset. Figure (a) is the label image, and Figure (b) is the texture image
processed by the Sobel operator of the label image; Figure (c) shows the dominant pixel distribution
of the reconstruction result of SOF-VSR method in the texture region, and Figure (d) shows the
dominant pixel distribution of the reconstruction result of proposed method in the texture region;
Figures (e1,f1,g1) show the enlargement of the local texture area of the label image, Figures (e2,f2,g2)
show the enlargement of the result local area of the SOF-VSR method, and Figures (e3,f3,g3) show
the enlargement of the result local area of the proposed method.
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Table 3. The reconstruction results of ×4 scale of mean downsampling and bilinear downsampling
with different methods of super-resolution. The best results are shown in boldface.

Model Method PSNR SSIM

Average SOF-VSR 24.90 0.752
Proposed 24.82 0.756

Bilinear SOF-VSR 25.49 0.742
Proposed 25.68 0.752

4.2. Comparative Experiment

We test our method on the Vid4 dataset and DAVIS-10 dataset, we use two degradation
methods to obtain different low-resolution video frames. The BI degradation method is
based on bicubic interpolation downsampling and the BD degradation method is formed
by Gaussian kernel blur and downsampling.

In the BI degradation model, we reconstruct the Vid4 dataset by ×2, ×3, ×4 upsam-
pling factors. As shown in Table 4, our method significantly improves the PSNR and SSIM
values compared with other video super-resolution methods. At the same time, we also
show the results of only adding non-local module in the proposed method, which also
improves the PSNR and SSIM values to a certain extent.

Table 4. The reconstruction results of the Vid4 dataset at different reconstruction scales. The method
marked with * only used the non-local module, and the best results are indicated in boldface.

Model Scale Method PSNR SSIM

BI

×2

Bicubic 28.42 0.866
DRCN [33] 31.57 0.924

LapSRN [28] 31.41 0.923
CARN [34] 31.96 0.931
VSRnet [3] 31.29 0.927

SOF-VSR [24] 33.17 0.947
Proposed* 33.29 0.948
Proposed 33.63 0.951

×3

Bicubic 25.26 0.730
DRCN [33] 26.82 0.805
CARN [34] 27.16 0.818
VSRnet [3] 26.75 0.807

VESPCN [10] 27.25 0.845
SOF-VSR [24] 28.09 0.861

Proposed* 28.26 0.864
Proposed 28.46 0.871

×4

Bicubic 23.75 0.630
DRCN [33] 24.94 0.707

LapSRN [28] 24.98 0.711
CARN [34] 25.27 0.725
VSRnet [3] 24.81 0.702

VESPCN [10] 25.35 0.756
SOF-VSR [24] 26.01 0.771

Proposed* 26.05 0.773
Proposed 26.21 0.782

BD ×4

SPMC [12] 25.99 0.773
SOF-VSR [24] 26.19 0.785

Proposed* 26.29 0.791
Proposed 26.43 0.797
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In the BD degradation model, as shown in Table 4, we only compare the reconstruction
×4 upsampling factor. The PSNR and SSIM values of our two methods are higher than
those of other methods, which objectively proves the effectiveness of our method.

We select calendar and city video sequences from Vid4 dataset to intuitively display
the super-resolution results of different methods. As shown in Figure 7, this is the results of
reconstructing ×4 upsampling factor under the BI degradation model. On calendar video
frames, our two methods have clear handwriting and object contour, while other methods
have problems such as blurred handwriting and object edge. On the city video frames,
our method can clearly distinguish the windows of buildings, while in the magnification
results of other methods, the windows of buildings are blurred.

Figure 7. Visual comparisons of reconstruction results of ×4 scale on calendar and city video
frames. The left side of the dashed line is the reconstruction result of the BI degradation model. The
magnified area is the HR in sequence, and the reconstruction results of methods Bicubic, CARN,
SOF-VSR, Proposed*, Proposed. The right side of the dashed line is the reconstruction result of the BD
degradation model, and the zoomed-in area is HR, the reconstruction results of methods SOF-VSR,
Proposed* and Proposed based on BD degradation model. The method marked with * only used
non-local module.

The reconstruction results of the ×4 upsampling factor in the BD degradation model
are also shown. It can be seen from Figure 7 that our method clearly reconstructs the
contour of the object.

In the DAVIS-10 dataset, we also show the reconstruction results of different methods
under BI degradation model and BD degradation model. As shown in Table 5, the PSNR
and SSIM values of our method are higher than other methods in the reconstruction results
of ×2, ×3 and ×4 upsampling factors.

We select two different video frames to visually display the ×4 upsampling factor
reconstruction results of different methods in BI degradation model in Figure 8. Analyzing
the reconstruction of the boxing video sequence, it is not difficult to see that the letters
behind athletes appear blur or adhere after using other reconstruction methods, while
the reconstruction results of our method are clear and accurate. On the demolition video
sequence, compared with other methods, the result of the proposed method can achieve a
clear character outline on the building.

On displaying the reconstructed boxing and demolition video sequences of the BD degra-
dation model with an upsampling factor of×4, we can see that the contours of the letters in our
reconstruction result are clear, while the letters reconstructed by other methods are blurred.
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Table 5. The reconstruction results of the DAVIS-10 dataset at different reconstruction scales. The
method marked with * only used non-local module, and the best results are indicated in boldface.

Model Scale Method PSNR SSIM

BI

×2

Bicubic 36.43 0.958
DRCN [33] 40.62 0.979

LapSRN [28] 40.30 0.978
CARN [34] 40.99 0.981
VSRnet [3] 39.00 0.972

SOF-VSR [24] 41.38 0.983
Proposed* 41.00 0.982
Proposed 41.35 0.984

×3

Bicubic 32.94 0.912
DRCN [33] 36.08 0.947
CARN [34] 36.70 0.952
VSRnet [3] 34.94 0.936

SOF-VSR [24] 36.80 0.955
Proposed* 36.63 0.953
Proposed 37.02 0.958

×4

Bicubic 30.97 0.870
DRCN [33] 33.49 0.911

LapSRN [28] 33.54 0.911
CARN [34] 34.12 0.921
VSRnet [3] 32.63 0.897

SOF-VSR [24] 34.32 0.925
Proposed* 34.26 0.924
Proposed 34.52 0.930

BD ×4

SPMC [12] 33.02 0.911
SOF-VSR [24] 34.28 0.927

Proposed* 34.43 0.930
Proposed 34.69 0.933

Figure 8. Visual comparisons of reconstruction results of ×4 scale on boxing and demolition video
frames. The left side of the dashed line is the reconstruction result of the BI degradation model. The
magnified area is the HR in sequence, and the reconstruction results of methods Bicubic, CARN,
SOF-VSR, Proposed*, Proposed. The right side of the dashed line is the reconstruction result of the BD
degradation model, and the zoomed-in area is HR, the reconstruction results of methods SOF-VSR,
Proposed* and Proposed based on BD degradation model. The method marked with * only used
non-local module.
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5. Conclusions

In this work, from the perspective of feature space, we use the non-local module to
process the feature points that are far away from each other in the feature map, which
overcomes the limitation of convolution operation, amplifies the receptive field of the
network and improves the quality of the network reconstruction results. Furthermore,
we propose a multi-scale feature-fusion block to extract different video frame features by
convolution kernel of different scales. Compared with the existing video super-resolution
methods, our method achieves the better reconstruction results on test datasets Vid4 and
DAVIS-10.
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