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Abstract: Remote sensing change detection (CD) using multitemporal hyperspectral images (HSIs)
provides detailed information on spectral–spatial changes and is useful in a variety of applications
such as environmental monitoring, urban planning, and disaster detection. However, the high
dimensionality and low spatial resolution of HSIs do not only lead to expensive computation but
also bring about inter-class homogeneity and inner-class heterogeneity. Meanwhile, labeled samples
are difficult to obtain in reality as field investigation is expensive, which limits the application
of supervised CD methods. In this paper, two algorithms for CD based on the tensor train (TT)
decomposition are proposed and are called the unsupervised tensor train (UTT) and self-supervised
tensor train (STT). TT uses a well-balanced matricization strategy to capture global correlations from
tensors and can therefore effectively extract low-rank discriminative features, so the curse of the
dimensionality and spectral variability of HSIs can be overcome. In addition, the two proposed
methods are based on unsupervised and self-supervised learning, where no manual annotations
are needed. Meanwhile, the ket-augmentation (KA) scheme is used to transform the low-order
tensor into a high-order tensor while keeping the total number of entries the same. Therefore, high-
order features with richer texture can be extracted without increasing computational complexity.
Experimental results on four benchmark datasets show that the proposed methods outperformed their
tensor counterpart, the tucker decomposition (TD), the higher-order singular value decomposition
(HOSVD), and some other state-of-the-art approaches. For the Yancheng dataset, OA and KAPPA of
UTT reached as high as 98.11% and 0.9536, respectively, while OA and KAPPA of STT were at 98.20%
and 0.9561, respectively.

Keywords: multitemporal hyperspectral images; change detection; unsupervised; self-supervised;
tensor train; low-rank

1. Introduction

The ability to comprehend global change in its entirety is essential for giving timely
and accurate information about the Earth [1–5]. Multitemporal remote sensing images are
currently used in a wide range of change detection applications, including ecological change
studies [6], natural disaster investigations [7], and especially in the urban development
race [8]. Meanwhile, the high spectral resolution of hyperspectral images (HSIs) has
attracted the attention of researchers in the CD community as compared to synthetic
aperture radar (SAR) images and multispectral images. It is because subtler variations
can be detected via HSIs with the detailed composition of various reflected objects. The
abundant spectral information contained in HSIs have been made full use of in a lot of
HSI CD methods [9,10]. Moreover, CD can also be regarded as a classification task where
different types of changes, including changes in the background, are considered as different
classes [11,12]. With the rapid developments in deep learning [13–16], satisfactory results
in HSI CD have also been achieved.
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However, there still exist some challenging problems in HSI CD. Apart from the
useful change information, there are also a lot of redundant information contained in
HSIs which may lead to pseudo changes. Meanwhile, the high dimensionality of HSIs
increases the computational complexity, and the low spatial resolution can bring about
inter-class homogeneity and inner-class heterogeneity. Therefore, some unsupervised
methods such as K-Means [17] cannot precisely differentiate between a region that has
undergone change and one which has not. Tensor-based methods [18–20] treat HSIs as
three-order tensors, with two dimensions for spatial and one for spectral, and make use of
tensor algebra [21,22] to extract low-rank discriminative features from the original HSIs. As
the density matrices [23] that represent the quantum states are two-order tensors in nature,
the effectiveness of tensor algebra in extracting discriminative features can be confirmed
by virtue of matricization and quantum information theory [23]. Another challenge in
HSI CD comes from the expensive cost of obtaining manual annotations, which not only
requires high-level geographical expertise but also takes a lot of time. Therefore, supervised
learning methods are not practical in the field of HSI CD, where accurate ground truth
is necessary.

To tackle the above-mentioned problems, this study proposes two novel tensor train
(TT)-based techniques for multitemporal HSI CD. The first one is an unsupervised TT-based
technique called UTT. The second one is a self-supervised TT-based technique named STT.
The motivations are as follows. First, tensor algebra is well-suited for HSI processing as
HSIs are three-order tensors in nature. TT decomposition is one type of low-rank tensor
decomposition [24] that can effectively remove the redundancy and overcome the curse of
dimensionality. Second, TT can capture more global information between temporal images
than TD as TT is based on a well-balanced matricization scheme [25] (k-modes versus the
rest), while TD is based on an unbalanced matricization scheme (one mode versus the rest).
Therefore, the features extracted by TT contain more changed information and are thus
more discriminative. Third, manual annotations are difficult to obtain as field investigation
is expensive and high-level geographical expertise is necessary. The proposed UTT and
STT are based on unsupervised and self-supervised learning, respectively, which indicates
that laborious manual annotations are not needed. Additionally, the ket-augmentation
(KA) [26] scheme can obtain higher-order tensor representations of change features while
retaining the total number of entries. This means that high-order rich texture features can
be obtained without increasing computational complexity. In addition, TT decomposition
is more efficient for the tensor augmented by KA because the local structure of the data can
be exploited effectively in terms of computational resources [25].

The proposed UTT and STT work as follows. High-order difference tensors are
firstly produced using KA and substraction for both UTT and STT. Then, UTT directly
employs low TT-rank optimization to reconstruct the difference tensor, while STT combines
clustering and classification in a self-supervised manner. Classification is used as the
pretext task in order to make the features learnt friendlier to binary clustering, which is
the main task. Clustering centroids and the classification network are optimized jointly in
STT. For STT, clustering is used to produce the initial pseudo labels and divide the learnt
features into the categories of changed or unchanged, while TT is used to extract low-rank
features and perform pseudo classification. Both the UTT and STT approaches are followed
by binary clustering in order to categorize the changed and unchanged features.

The novelty and contributions of this study can be summarized as follows:

(1). Inspired by the knowledge from quantum information theory, this work theoretically
proves that TT decomposition exhibits greater ability than the traditional TD in cap-
turing global correlations between changed and unchanged tensor entries. Thus, TT
is used to extract spectral–spatial low-rank features for multitemporal HSI CD, which
decomposes a high-order tensor into a set of low-order tensors by approximating the
optimal TT rank.
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(2). KA is used to obtain higher-order tensor representations of changed features. This
technique leverages the representation of changed features and provides discrimina-
tive information for CD while retaining the total number of entries.

(3). Two novel TT models that do not require manual annotations are proposed for CD. In
the first model, UTT bypasses SVD, which is a usual but computationally expensive
algorithm for optimization, in order to extract changed and unchanged features. In
the second one, STT leverages pseudo clustering labels to train an accurate change
classifier built on TT. Experimental results show that STT is more accurate than UTT,
while UTT is more efficient. Moreover, they both outperform state-of-the-art models
upon comparison.

The remainder of this work is structured in the following manner. Closely related
works are briefly reviewed in Section 2. The background knowledge is introduced in
Section 3. In Section 4, proof of the superiority of TT and details of the algorithm for the
suggested approaches as well as their implementation are presented. Experiments on four
real-world datasets are conducted in Section 5, and the conclusion is discussed in Section 6.

2. Related Works

This section gives a brief review of some closely related works, including change
detection in multitemporal hyperspectral images, self-supervision for image analysis, and
tensor analysis.

2.1. Change Detection in Multitemporal Hyperspectral Images

Change detection methods can be mainly divided into four categories according to
the ways of extracting the changed information.

Firstly, algebra-based methods [18,27–29] leverage algebra operations to extract the
changed information. These methods are based on an assumption that changes can be
reflected in the difference between corresponding pixel values. Absolute distance (AD)
and Euclidian distance (ED) [27] consider each pixel as a vector and calculate the absolute
distance and the Euclidian distance between each pixel as the changed information. For
these methods, the detection accuracy highly relies on the accuracy of radiometric and
geometric correction results.

Secondly, transformation-based methods [30–32] convert the original remote sensing
data into another feature space. Then, the CD result is obtained in the new space. In local
subspace-based change detection (LSCD) and adaptive subspace-based change detection
(ASCD) [30], background subspace is constructed, and the change detection result can be
achieved by calculating the subspace distance. The new feature space is more discriminative
and is able to differentiate between changed and unchanged. However, some spectrum
information is unavoidably lost during the process of transformation in the methods of the
second category.

Thirdly, classification-based methods [11,12] categorize the HSIs obtained at different
stages separately, and the change detection results can be achieved by comparing the
classification results. In [11], the support vector machine (SVM) was used to perform
classification independently, and the final CD map could be achieved via post-classification
fusion. Since two classification results were obtained separately, environmental factors dur-
ing the process of HSI acquisition, such as the atmosphere, could be eliminated. However,
CD results rely highly on the classification results in this category.

Fourthly, deep learning-based methods [13–16] have become increasingly prosperous
with the development of deep learning. Dual attentive fully convolutional Siamese networks
(DASNet) [13] and the change detection generative adversarial network (CDGAN) [14],
which use the dual attention mechanism and GAN, respectively, have both achieved superior
change detection results. Deep models have strong abilities in feature representation and
are therefore suitable for solving complex tasks such as HSI CD.

Other methods [10,33–37] such as spectral unmixing [10,34–37] have also achieved
great change detection results in HSI CD. In [34], subpixel information was fully leveraged
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for HSI CD via multi-level spectral unmixing. However, all the mentioned methods above
only leverage the spectral information instead of spectral and spatial information together
due to the flattening operation they use. This means that the inherent spatial structure
information is inevitably lost.

2.2. Self-Supervision for Image Analysis

Self-supervised learning methods, as a subset of unsupervised learning methods,
aim to avoid the extensive costs of annotating large-scale datasets. It includes a variety
of pretext tasks such as image classification [38], colorizing grayscale images [39], image
inpainting [40], and image jigsaw puzzle [41]. Features can be learnt in pretext tasks, where
pseudo labels are generated automatically; thus, the learnt features perform better on the
main task where no annotations are available. Additionally, the features learnt can also be
evaluated in a variety of downstream tasks, including semantic segmentation [42], object
detection [43], and so on.

In view of the difficulty of acquiring a lot of annotated samples and the requirements
for more discriminative features, the self-supervised have won researchers’ attention in the
field of CD. For example, in [31], deep neural networks and unsupervised K-Means were
combined to learn Gaussian-distributed difference representations, and then the learnt
representations were used to detect multiple types of changes. In [44], a multiscale self-
attention deep clustering technique was proposed, which combined the convolutional neu-
ral network (CNN) with K-Means for remote sensing images CD. In [38], a self-supervised
tensor network SSTN composed of pre-train and fine-tune stages was proposed for HSI CD.
In [35], an image differencing algorithm and spectral unmixing manner were combined to
generate pseudo training data; consequently, a more accurate HSI change detector could be
obtained. These self-supervised learning approaches demonstrate how the data structure is
used to give supervisory signals in order to learn changed features from temporal images.
The self-supervised methods use temporal prediction to represent change features that are
more consistent and discriminative than when temporal differences are directly computed.
This results in better changed features, with altered areas considerably enhanced and
unchanged areas suppressed [45]. This also makes the analysis for the final change map
less complex.

2.3. Tensor Analysis

As is already known, HSIs are three-order tensors in nature, with two orders for
spatial and the rest for spectral. Tensor analysis and multilinear algebra [22], which can
capture the structural characteristics of high dimensional tensors, are therefore suitable for
hyperspectral image processing. Tensor decomposition [21], e.g., Tucker decomposition,
tensor train, tensor ring, is one of the most significant methods in tensor analysis and has
already found applications in dimension reduction [46], target detection [47], anomaly
detection [48], hyperspectral images classification [49], etc.

There have also been attempts to approach CD in multitemporal HSIs based on tensor
decomposition [18–20]. In [20], the tensor-based approach using 4-D HOSVD was proposed,
in which bitemporal HSIs were stacked to extract changed features using Tucker decom-
position (TD). In [18], a three-order Tucker decomposition and reconstruction detector
(TDRD) was proposed for HSI CD, where unpurified bitemporal HSIs were reconstructed
using TD before the changed features were extracted. Nevertheless, TD based on SVD
provides stable (i.e., non-iterative) decomposition and optimal approximations regarding
their matrix versions due to the orthonormal and diagonal characteristics of the factor ma-
trices. However, the non-diagonality of the tensor core confining the tucker decomposition
to ensure optimality at the tensor level results in a lack of changed feature extraction in
higher-order tensors [50]. Similarly, components of the Tucker rank are ranks of matrices
generated using an unbalanced matricization approach, which is a conceptual problem
(one mode versus the rest), ignores the global correlation between changed/unchanged
features in bitemporal images. Furthermore, matrix rank approximation is only effective
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when the matrix is more balanced [25]. TT is another type of tensor decomposition and can
capture the global correlation due to its well-balanced matricization scheme. Therefore, TT
is promising for the acquisition of more discriminative low-rank features and thus achieves
greater change detection results in HSI CD.

3. Background Knowledge

This section gives some background knowledge necessary to comprehend the follow-
ing contents, including tensor operations, tensor train (TT) decomposition, and quantum
information theory.

3.1. Tensor Operations

Basic notations and operations in tensor algebra that are closely related to our work are
introduced here. To better characterize the following framework, graphical representation
is accepted, as shown in Figure 1. Basic blocks such as scalar (0-order tensor), vector
(1-order tensor), matrix (2-order tensor), and high-order tensors are shown in Figure 1a.
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Let G ∈ RI1×I2×···×IN be an N-order tensor, where N represents the number of di-

mensions or modes and In(n = 1, 2, · · · , N) represents the dimension of the n-th mode.
An entry or element of G can be denoted by (G)

i1,i2,··· ,iN
, where in = 1, 2, · · · , In and

n = 1, 2, · · · , N.
Matricization is also termed as the unfolding or flattening of a tensor. It has two differ-

ent forms, namely mode-k and mode-(1, 2, . . . , k) matricization for TD and TT, respectively.
Mode-k and mode-(1, 2, . . . , k) matricization transforms a tensor G ∈ RI1×I2×···×IN into

X(k) ∈ Rm1×n1 and X[k] ∈ Rm2×n2 , where m1 = Ik, n1 = ∏N
j=1,j 6=k Ij, m2 = ∏k

j=1 Ij, and

n2 = ∏N
j=k+1 Ij. The correspondence of elements between the original tensor and the matrix

after matricization can be expressed as follows:(
X(k)

)
ik ,i1···ik−1ik+1···iN

=
(

G
)

i1,i2,··· ,iN
, (1)

(
X[k]

)
i1···ik ,ik+1···iN

=
(

G
)

i1,i2,··· ,iN
. (2)

A multi-index is an index that combines all values of indices following a specific order
and can be calculated as follows:

i1 · · · iN = iN + (iN−1 − 1)IN + (iN−2 − 1)IN IN−1 + · · ·+ (i1 − 1)
2

∏
i=N

Ii. (3)
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The vectorization of the tensor G is represented by vec(G), which is operated on the

mode-1 unfolded matrix X(1) as:

b = vec
(

G
)
= vec

(
X(1)

)
∈ R∏N

k=1 Ik . (4)

The graphical representations of mode-k matricization, mode-(1, 2, . . . , k) matriciza-
tion, and vectorization can be clearly seen in Figure 1b.

3.2. Tensor Train (TT) Decomposition

A tensor train decomposition represents an N-order tensor G ∈ RI1×I2×···×IN with N

3-order tensors [24], and each element of G can be expressed as follows:

G
i1,··· ,iN

=

(
X

1

)
:,i1,:

(
X

2

)
:,i2,:
· · ·
(

X
N

)
:,iN,:

, (5)

where X
k
∈ Rr[k−1]×Ik×r[k] is the k-th core tensor with r[0] = r[N] = 1. r[0], r[1], · · · , r[N] are

called TT ranks.
In index form, Equation (5) can be written as follows:

G
i1,··· ,iN

= ∑
α0,··· ,αN

(X
1
)

α0,i1,α1

(X
2
)

α1,i2,α2

· · · (X
N
)

αN−1,iN ,αN

. (6)

Figure 2 shows a typical representation of a 5-order TT decomposition in graphical no-
tations. There exist some applications, such as the low-rank tensor completion (LRTC) [25],
which make full use of the ability of low-rank features extraction of TT. Their process of ex-
tracting low-rank features can be summarized as a low TT-rank optimization problem. One
solution to solve this problem is by using singular value decomposition (SVD) [21], which
can be called TT-SVD. Another way that uses the multilinear matrix factorization model [25]
to approximate the TT rank of a tensor can bypass the computationally expensive SVD; this
is called a TT-noSVD.
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3.3. Quantum Information Theory

Quantum states can be represented using density matrices [23], which are naturally
2-order tensors. Every tensor corresponds to a quantum state if the matricization operation
is used. Therefore, it is promising to validate the effectiveness of tensor analysis using the
knowledge in the field of quantum information theory as it can help to analyze the ability
of different tensor methods in capturing useful information.

The information in the quantum field is measured by the von Neumann entropy [23],
which is an extension of the Shannon entropy in the classical field. The von Neumann
entropy is defined as follows:

S(ρ) = −tr(ρlog2(ρ)), (7)

where ρ and tr(·) represent the quantum state and the trace operation, respectively.
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The correlation between two subsystems, HA ∈ Rm and HB ∈ Rn, of the composite
system HAB ∈ Rm×n can be quantified by quantum mutual information [23]:

I(A : B) = S(ρA) + S(ρB)− S(ρAB), (8)

where ρA, ρB, and ρAB represent the quantum states of the corresponding systems HA, HB,
and HAB. The quantum mutual information can also be considered as a measure of global
correlation [51].

4. Methodology

In this section, the proof for the advantages of TT over TD is firstly shown by virtue of
quantum information theory. Then, two TT-based methods, UTT and STT are proposed
for CD. The first one performs unsupervised CD using multilinear matrix factorization
to approximate the TT rank, as shown in Figure 3, and the second one performs self-
supervised CD using TT decomposition, as shown in Figure 4. The proposed methods can
yield accurate CD results without manual annotations.
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1 1 1
[ ]
l l l

k k k

+ + +=X U V  

end for 

Update tensor 
1l+

X  using Equation (22) 

End while 

Apply K-Means to the reconstructed tensor X  

Output: Change detection results T  

 

Figure 4. Framework of the proposed STT for multitemporal HSI change detection. (a) Overall
framework of STT, (b) tensor train decomposition (TTD) layer, (c) tensor train output (TTO) layer.

4.1. Ability of Tensor Train in Capturing the Global Correlation

A core challenge in the field of HSI CD is that the features extracted cannot be discrim-
inative enough. It is because the features may not contain enough changed information.
Therefore, it is crucial to ensure the ability of the CD methods in capturing changed infor-
mation (or correlation in quantum information theory). As density matrices representing
the quantum states are 2-order tensors in nature, matricization operation and quantum
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information theory are combined here to compare the ability of TT and TD in capturing the
changed information of the tensors; the complete proof is shown below.

For any given matrix X ∈ Rm×n, if SVD is applied, then X = W ∑ VT can be produced,
where W ∈ Rm×m, ∑ ∈ Rm×n, and V ∈ Rn×n. Matrices W and V consist of eigenvectors of
XXT ∈ Rm×m and XTX ∈ Rn×n, respectively. Therefore, XXT and XTX contain significant
information from the dimensions m and n of X, respectively. In the field of quantum theory,
XXT and XTX can represent density matrices [23] in two subspaces HA ∈ Rm and HB ∈ Rn,
respectively. The density matrix is one of the forms representing a quantum state. To
correspond to the notation in quantum physics, ρA and ρB are used to replace XXT and
XTX in the following statements.

According to the Schmidt decomposition [23] and the fact that XXT and XTX have the
same nonvanishing eigenvalues, there exist orthonormal bases {|iA〉} in HA and {|iB〉} in
HB, such that:

ρA =
rk

∑
i=1

λ2
i |iA〉〈iA|, (9)

ρB =
rk

∑
i=1

λ2
i |iB〉〈iB|, (10)

where rk is the rank of X, {λi}i=1,··· ,rk
are nonvanishing singular values satisfying ∑rk

i=1 λ2
i = 1.

Then, the density matrix of a composite system AB in the space HAB ∈ Rm×n can be repre-
sented as follows:

ρAB =
rk

∑
i=1

λ2
i |iA〉〈iA| ⊗ |iB〉〈iB|, (11)

where ⊗ represents the tensor product [23] and HAB is the tensor product of two subspaces
HA ∈ Rm and HB ∈ Rn.

The global correlation between two subsystems A and B can be studied via quantum
mutual information, which is defined in Equation (8). Substituting Equation (9) into
Equation (7), the von Neumann entropy of ρA can be calculated as follows:

S(ρA) = −tr(ρA log2(ρ
A)) = −

rk

∑
i=1

λ2
i log2 λ2

i . (12)

Similarly, it can be obtained that:

S(ρB) = S(ρAB) = −
rk

∑
i=1

λ2
i log2 λ2

i , (13)

Simply, S(ρA) = S(ρB) = S(ρAB) = S, where:

S = −
rk

∑
i=1

λ2
i log2 λ2

i . (14)

With S substituted into Equation (8), it can be achieved that the global correlation
between two subsystems HA ∈ Rm and HB ∈ Rn is equal to S. According to the quantum
relative entropy and Klein inequality [23], it is shown in Equation (15) that S is bounded by
0 ≤ S ≤ log2 rk, where I represents the identity matrix:

S(ρ||I/rk) = tr(ρ log2(ρ))− tr(ρ log2(I/rk))
= −S−∑rk

i=1 λ2
i log2(1/rk)

= −S + log2 rk ≥ 0
. (15)

Here, it is assumed that I1 = I2 = · · · = IN = I for simplicity. For the mode-
k matricization of G ∈ RI1×I2×...×IN from TD, X(k) ∈ Rm1×n1 can be obtained, where
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m1 = Ik and n1 = ∏N
j=1,j 6=k Ij. Therefore, r(k), which represents the rank of X(k), satisfies the

following:

r(k) ≤ min(Ik,
N

∏
j=1,j 6=k

Ij) = I. (16)

Then, for the mode-(1, 2, . . . , k) matricization from TT, X[k] ∈ Rm2×n2 can be obtained,
where m2 = ∏k

j=1 Ij and n2 = ∏N
j=k+1 Ij. Therefore, r[k], which represents the rank of X[k],

satisfies the following equation:

r[k] ≤ min(
k

∏
j=1

Ij,
N

∏
j=k+1

Ij) = Imin(k,N−k). (17)

From the analysis above, it can be seen that the upper bound of r[k] in TT is far greater
than its counterpart r(k) in TD for k = 2, 3, · · · , N − 2 and is equivalent to it only when k is
equal to 1 or N-1. Therefore, the conclusion that the upper bound of the global correlation
that TT can capture is far greater than its counterpart TD in the vast majority of cases can
be drawn from Equation (15). Because TT can capture more changed information which
TD cannot, the superiority of TT in HSI CD is confirmed.

4.2. Unsupervised Tensor Train for Change Detection

Due to the effective changed information extraction ability of TT, it is used in the
proposed algorithms to extract discriminative features. The first proposed algorithm lever-
ages unsupervised learning to avoid the complex and time-consuming manual annotation
process. The proposed UTT is composed of three parts: (1) difference image generation, (2)
TT decomposition for spectral–spatial low-rank feature extraction, and (3) binary clustering
to distinguish between changed and unchanged regions via the features extracted by the
TT decomposition.

Difference image generation consists of two steps, KA and substraction. Let Y
1
∈

RJ1×J2×J3 and Y
2
∈ RJ1×J2×J3 be a set of bitemporal HSIs acquired at two different times,

t1 and t2, respectively, where J1 is the number of rows, J2 is the number of columns,
and J3 is the number of bands. They can be represented by a set of orthonormal bases{

y(k)
jk
∈ RJk

}
k=1,2,3

, as follows:

Y
t
= ∑

j1,j2,j3

(Y
t
)

j1 j2 j3
y(1)

j1
◦ y(2)

j2
◦ y(3)

j3
, (18)

where t = 1, 2 and ◦ represents outer product. To obtain high-order rich texture features [26]
and make full use of the local structure of the data in terms of computational resources [25],
KA is applied to three-dimensional HSIs Y

1
and Y

2
. This process does not increase the

computational complexity as the total number of elements does not change. Then, two
five-dimensional tensors, A

1
∈ RI1×I2×I3×I4×I5 and A

2
∈ RI1×I2×I3×I4×I5 , are obtained:

A
t
= ∑

i1,i2,i3,i4,i5

(A
t
)

i1i2i3i4i5
e(1)i1
◦ e(2)i2

◦ e(3)i3
◦ e(4)i4

◦ e(5)i5
, (19)

where t = 1, 2, I1 I2 I3 I4 I5 = J1 J2 J3, and
{

e(k)ik
∈ RIk

}
k=1,2,3,4,5

represents a set of orthonor-

mal bases in the corresponding Hilbert space. Then, substraction is conducted between A
1

and A
2

to get the high-order difference tensor:

G = A
1
−A

2
s.t G, A

1
, A

2
∈ RI1×I2×I3×I4×I5 , (20)

where Ik is the corresponding mode-k dimension for k = 1, · · · , 5.
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Taking into account the intrinsic complexity and structure of HSI, TT is used for
change detection in HSI as an unsupervised technique that extracts changed and unchanged
features efficiently. As proved in Section 4.1, more global correlations can be captured
with TT as compared to its tensor counterpart TD. This means that TT can extract changed
information more effectively. The process of the spectral–spatial low-rank feature extraction
of the generated high-order difference tensor G can be conducted via the following process

of TT rank optimization:

min
X[k]

N−1

∑
k=1

αkrank(X[k]) s.t X
Ω
= G

Ω
, (21)

where αk represents the weight that the TT rank of the matrix X[k] contributes to, with the
constraint ∑N−1

k=1 αk = 1, and Ω represents a given index set. After the process of low TT
rank feature extraction, the reconstructed tensor X obtained by Equation (21) is sent to

K-Means to obtain the final CD results T ∈ RJ1×J2 . The pseudocode and framework of
the proposed UTT are summarized in Algorithm 1 and Figure 3, respectively. Different
groups of variables are alternatively optimized using the block coordinate descent (BCD)
method [25], and the update of X in each loop is given by Equation (22).

Algorithm 1. Pseudocode of the proposed UTT for multitemporal HSI change detection.

Input: Observed data G ∈ RI1×I2×I3×I4×I5 , index set Ω

Parameters: αi, ri, i = 1, · · · , N − 1

Initialization: Initialize U0, V0, X0, with X0
Ω
= G

Ω
, l = 0

While not converged do:
for k = 1 to N-1 do

Unfold tensor Gl to get Xl
[k]

Ul+1
k = Xl

[k](V
l
k)

T
(Vl

k(V
l
k)

T
)

†

Vl+1
k = ((Ul+1

k )
T

Ul+1
k )

†
(Ul+1

k )
T

Xl
[k]

Xl+1
[k] = Ul+1

k Vl+1
k

end for
Update tensor Xl+1 using Equation (22)

End while
Apply K-Means to the reconstructed tensor X

Output: Change detection results T

Xl+1
i1i2i3i4i5

=


(

N−1
∑

k=1
αkfold(Xl+1

[k] ))
i1i2i3i4i5

, (i1, i2, i3, i4, i5) /∈ Ω

G
i1i2i3i4i5

, (i1, i2, i3, i4, i5) ∈ Ω
, (22)

where folding is the inverse process of unfolding, i.e., matricization in Equation (2).
The specific process of optimizing Equation (21) in UTT is described as follows. Factor-

ization model X[k] = UV is leveraged to minimize the Frobenius norm, where X[k] ∈ Rm×n

is a matrix of rank r[k], U ∈ Rm×r[k] and V ∈ Rr[k]×n.
Equation (21) can be re-modeled as follows:

min
Uk ,Vk ,X[k]

N−1

∑
k=1

αk
2

∥∥∥UkVk − X[k]

∥∥∥2

F
s.t. X

Ω
= G

Ω
, (23)
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Where Uk ∈ R∏k
j=1 Ij×r[k] and Vk ∈ Rr[k]×∏N

j=k+1 Ij . This problem is now convex when each
variable Uk, Vk, and X[k] is modified while keeping the other two fixed. Therefore, the
variables are updated alternatively following Equations (24)–(26):

Ul+1
k = Xl

[k](V
l
k)

T
(Vl

k(V
l
k)

T
)

†
, (24)

Vl+1
k = ((Ul+1

k )
T

Ul+1
k )

†
(Ul+1

k )
T

Xl
[k], (25)

Xl+1
[k] = Ul+1

k Vl+1
k , (26)

where † denotes the Moore–Penrose pseudoinverse. After updating Uk, Vk, and X[k],
elements of the tensor Xl+1 can be computed with Equation (22).

The pseudocode is summarized in Algorithm 1. The main benefit of this approach is
that it bypasses the SVD, which saves a lot of time in the computation. However, since
Equation (21) can also be optimized using SVD [21,25], UTT-SVD and UTT-noSVD are used
here to differentiate whether SVD is used in the optimization process.

4.3. Self-Supervised Tensor Train for Change Detection

STT uses self-supervised learning to avoid the complex and time-consuming manual
annotation process. Pseudo classification is used as the pretext task to learn features that
are friendly to binary clustering. K-Means is used both to generate the initial pseudo labels
and divide the learnt features into the categories of changed or unchanged, while the classi-
fication network is typically composed of two kinds of layers, i.e., the TT decomposition
(TTD) layers and the TT output (TTO) layers.

The input of STT is denoted by an N-order difference tensor G = Y(0) ∈ RI1×I2×···×IN ,

Ii = I(0)i (i = 1, 2, · · · , N). It can be obtained by difference image generation defined in
UTT. For TTD layers, features extracted from the input samples can be defined as follows:

Y(l)
j1,...,jN

= σ

I(l−1)
1 ,··· ,I(l−1)

N

∑
i1,··· ,iN

W(l)
j1,··· ,jN ,i1,··· ,iN

Y(l−1)
i1,··· ,iN

+ B(l)
j1,··· ,jN

, (27)

where Y(l) ∈ RI(l)1 ×I(l)2 ×···×I(l)N (l = 1, 2, . . . , L) is the output of the l-th TTD layer, and it

can be treated as a primary feature tensor, L is the number of TTD layers, σ is the ReLU
activation function, and θ(l) =

{
W(l), B(l)

}
is the parameter set of the l-th TTD layer, where

W(l) ∈ RI(l)1 ×···×I(l)N ×I(l−1)
1 ×···×I(l−1)

N and B(l) ∈ RI(l)1 ×···×I(l)N .

The coefficient tensor W(l) of Equation (27) in the l-th TTD layer is decomposed into N

three-order tensors X(l)
k
∈ Rr(l)

[k−1]×I(l−1)
k I(l)k ×r(l)

[k] [52] for k = 1, 2, · · · , N, while
{

r(l)
[k]

}
k=0,1,··· ,N

represents the set of TT ranks in the l-th TTD layer with r(l)
[0] = r(l)

[N]
= 1, as shown in

Equation (5) and Figure 4b. This is so that low-rank features can be efficiently extracted,
and the number of parameters can be significantly compressed. Each element in W(l) can

be represented equivalently by the following matrix product:

W(l)
j1,...,jN ,i1,··· ,iN =

(
X(l)

1

)
:,j1i1,:

(
X(l)

2

)
:,j2i2,:

· · ·
(

X(l)
N

)
:,jN iN ,:

, (28)

where
(

X(l)
k

)
:,jk ik ,:

∈ Rr(l)
[k−1]×r(l)

[k] is the lateral slice of the tensor X(l)
k

for k = 1, 2, · · · , N.



Electronics 2022, 11, 1486 12 of 24

Applying the TT format for the weight subtensor in Equation (27), the l-th TTD layer
can be redefined as follows:

Y(l)
j1,··· ,jN

= σ

I(l−1)
1 ,··· ,I(l−1)

N

∑
i1,··· ,iN

(
X(l)

1

)
:,j1i1,:

(
X(l)

2

)
:,j2i2,:

· · ·
(

X(l)
N

)
:,jN iN ,:

Y(l−1)

i1,··· ,iN

+ B(l)
j1,··· ,jN

. (29)

In our STT model, N = 5 is used so that the coefficient tensors are decomposed into
five three-order tensors.

For the TTO layers, the output of the last TTD layer Y(L) is firstly vectorized according

to Equation (4), and the output features are calculated as follows:

z = fϑ(G) = vec(Y(L)) ∈ Rd, (30)

where d = I(L)
1 I(L)

2 · · · I(L)
N is the dimension of the features. This can be seen clearly in

Figure 4c. Afterward, a fully connected layer is employed to fϑ(G) to compute the posterior

output y ∈ RC1 for the classification problem over C1 pseudo class labels corresponding to
the input tensor G as follows:

y = s( fϑ(G)×1ω) = sω( fϑ(G)), (31)

where s(·) represents the softmax activation function, andω ∈ Rd×C1 is the weight of the
fully connected layer.

For the training set
{

G
i

}
i=1,2,...,P

, which represents the high-order difference tensor

generated from each patch, P is the number of the training samples. STT achieves self-
learning through the joint training of TTD/TTO layers for pseudo-label classification and
clustering layers for binary clustering. Pseudo-labels are generated by implementing an un-

supervised method, i.e., K-Means, to the set of high-order difference tensors
{

G
i

}
i=1,2,...,P

.

The cross-entropy classification loss function is defined with regard to the parameter set
ζ =

{
θ(l),ω

}
as:

lcl f (ζ;
{

G
i

}
) = − 1

P

P

∑
i=1

ŷcl f
i log sω( fϑ(G

i
)), (32)

where
{

ŷclf
i ∈ RC1

}
i=1,2,...,P

represents the reference pseudo labels.

Then, with respect to the part of clustering, the features computed by Equation (30)
in the TTO layer are clustered by the binary clustering module to update the original
centroid matrix Mptc ∈ Rd×C2 for the changed cluster and the unchanged one, where
C2 = 2, as illustrated in Figure 4. The difference between the output features of STT in
Equation (30) and the clustering results is used as the other part of the self-learning loss for
the optimization of STT, which is computed as follows:

lclt = 1
P

P
∑

i=1

∥∥∥∥ fϑ(G
i
)−Moptcŷopt

i ‖
2
F

s.t ŷj,i
opt ∈ {0, 1}, 1Tŷi

opt = 1, ∀i, j,
(33)

where Moptc ∈ Rd×C2 is an updated centroid matrix with initial values Moptc = Mptc and
ŷopt = ŷpt. Afterwards, the new centroid can be updated as [17]:

Moptc
k = Moptc

k −

Moptc
k − fϑ(G

i
)

nk,i

 ŷopt
k,i s.t k = 1, 2, · · ·C2, (34)
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where nk,i is the number of times the algorithm allocated a sample to cluster k before
handling the incoming sample G

i
, and 1/nk,i can be used to regulate the learning rate as a

gradient step size.
In the STT model, the pseudo classification and the binary clustering process are

performed alternatively. The classification loss and cluster loss are combined as the total
network loss:

L(ζ;
{

G
i

}
) = lclt + µlcl f , (35)

where µ is a hyper-parameter to constrain the balance between classification and clustering.
The STT learns low-rank changed features in a self-supervised manner using the pre-
clustering pseudo labels and the binary clustering layers throughout the training process.

For STT training, the Adam optimizer [53] is used to minimize the loss function with
regard to the parameter set ζ =

{
W(l), B(l),ω

}
. The STT parameters are learnt in a better

way by computing the gradient of loss function L(ζ;
{

G
i

}
) directly, with reference to the

cores of the TT-representation of
{

W(l)
}

l=1,2,...,L
[52].

The backpropagation (BP) method is used to update the whole parameter set ζ ={
θ(l),ω

}
during the training process. Firstly, BP starts to calculate the gradients of the loss

function with reference to the parameters in the output layer, which isω in our case. Then,
the BP method is applied to calculate the gradients of the parameter set from the TTO layer
to the first TTD layer using the chain rule. After the gradients are calculated, the Adam
optimizer is used to update them at the same time.

In the testing phase of the STT model, the optimized and updated parameters ζ ={
W(l), B(l),ω

}
are used on the samples generated from every pixel to obtain the binary

change detection map T ∈ RJ1×J2 . The optimization algorithm for STT is summarized in
Algorithm 2. The maximum number of epochs is specified so that iterations can be halted
for practical reasons. The framework of the proposed STT is summarized in Figure 4.

TT decomposition overcomes the curse of dimensionality by reducing the number
of network parameters significantly as compared to the tucker decomposition. Let I =

max
{

I(l)1 , I(l)2 , · · · , I(l)N

}
be the maximum dimension and r = max

{
r(l)
[0] , r(l)

[1] , · · · , r(l)
[N]

}
be

the maximum TT rank, then the storage complexity of each weight subtensor is O(rN + NIr)
in the Tucker format, and the storage complexity is O(NIr2) if each subtensor is stored
in the TT format. This reveals that the number of parameters in the TT format scales
linearly in N, whereas it scales exponentially in the Tucker format. Another advantage of
the TT decomposition is its simple practical implementations. TT decomposition achieves
the optimal low TT-ranks due to its balanced matricization scheme using current algo-
rithms such as the SVD-based or the alternative low-rank matrix approximation, whereas
tucker decomposition is uncertain to achieve the optimal ranks because of its unbalanced
matricization scheme.

5. Experiments

To demonstrate the efficacy and efficiency of the proposed model, experiments on four
hyperspectral datasets are conducted. The detailed analysis is as follows.

5.1. Datasets

The proposed algorithms are tested on four real-world bitemporal HSI datasets. Each
dataset consists of three images, two sets of HSIs, and a ground-truth map. The first dataset,
“Yancheng”, is shown in Figure 5a,e (bands 20, 100, and 10 as RGB). It has 450 × 140 pixels
and depicts the countryside in Yancheng in Jiangsu Province, China [30]. The two HSIs
were acquired on 3 May 2006 and 23 April 2007. After noise removal, 155 bands were
chosen for the change detection. The second dataset, “Bay Area”, is shown in Figure 5b,f
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(bands 50, 60, and 70 as RGB), with the AVIRIS sensor surrounding the city of Patterson
(California), whose spatial dimensions are 600 × 500 pixels and includes 224 spectral
bands [54]. The third dataset, “River”, is shown in Figure 5c,g (bands 20, 40, and 60 as
RGB). The two River HSI datasets were acquired in Jiangsu Province, China, on 3 May 2013
and 31 December 2013. After removing the noisy bands, this dataset has a size of 463 × 241
pixels and 198 bands [15]. The fourth dataset, “Hermiston city”, is shown in Figure 5d,h
(bands 20, 40, and 60 as RGB). In the years 2004 and 2007, the two HSIs were taken with the
HYPERION sensor over the Hermiston city area (Oregon), whose spatial dimensions are
390 × 200 pixels and includes 242 spectral bands [32].
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Algorithm 2. Pseudocode of the proposed STT for multitemporal HSI change detection.

Input: High-order difference tensors
{

G
i
∈ RI1×I2×I3×I4×I5

}
i=1,2,...,P

, pseudo-labels ŷcl f ,

maximum epochs

Parameters: ζ =
{

W(l), B(l),ω
}

, Moptc, ŷopt, C1, C2

Initialization: Initialize ζ, Mptc, ŷpt, C1, C2, ŷcl f . Maximum epochs
While not converged or maximum epochs not reached, do:

Compute lcl f and lclt with Equations (32) and (33)
Update network loss L with Equation (35)
Update parameter set ζ using Adam optimizer
Update centroids Moptc with Equation (34)

End while
Obtain features z with Equation (30)

Perform binary clustering on z
Output: Change detection results T
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5.2. Setup

For UTT, KA is applied to the HSI tensors Y
1

and Y
2

to represent low-order tensors

with higher-order tensors A
1

and A
2
. Therefore, the dimensions of high-order tensors after

KA should be firstly determined, with {Ii}i=1,2,··· ,5 in our case. Different combinations
satisfying ∏5

i=1 Ii = ∏3
j=1 Jj are attempted to achieve the best CD results, and the settings

are different for different datasets, i.e., for the Yancheng dataset, the original tensor size
of 450× 140× 155 becomes 15× 30× 7× 20× 155 after the KA scheme. The TT ranks for
the UTT model were initialized as (r[i], i = 1, 2, · · · , N − 1) by the matrix product state
(MPS) [55], and the weight parameter αk was initialized as follows:

αk =
βk

∑N−1
k=1 βk

, (36)

where βk = min(∏k
i=1 Ii,∏N

i=k+1 Ii) and k = 1, 2, · · · , N − 1. Hence, larger weights can be
applied to the more balanced matrices in this fashion. To get the initial TT ranks for UTT,
each rank r[i] is constrained by keeping only the singular values that satisfy the following:

λ
[i]
j

λ
[i]
1

> th, (37)

where j = 1, 2, · · · , r[i] and
{

λ
[i]
j

}
is arranged in descending order. The threshold th is

selected empirically. This criterion is used so that more singular values will be truncated
for low-rank matricization.

For STT, the backbone comprises two TTD layers and one TTO layer. Each TTD layer
is followed by rectified linear units (ReLU) for nonlinear mapping. The properties of the
TTD and TTO layers are investigated, and different methods are compared to determine
their parameters, such as the number of TTD/TTO layers, dimensions of the tensors
after KA, and the TT-ranks of the compressed weight matrix W(l). The dimensions of

the tensors after the KA scheme and TT ranks (r(l)
[i] , i = 1, 2, 3, 4, 5, l = 1, 2) are configured

separately for each dataset, i.e., for the Yancheng dataset, a patch size of 30× 30× 9 becomes
5× 6× 5× 6× 9 after the KA scheme, and their ranks for the corresponding dimensions
are set as (r(l)

[i] = 3, i = 1, 2, 3, 4, 5, l = 1, 2) to control the compression factor. A similar
procedure is followed for the remaining datasets with different KA and rank settings in
order to achieve the best change detection results.

To initialize the pseudo labels of the classification network in STT, the difference of
the bitemporal images is computed after KA, K-Means is used as a classical unsupervised
method on the extracted difference image, and C1 is set as 4. The best parameter settings
for µ in Equation (35), which balances the classification loss and clustering loss to achieve
the best results in the four datasets mentioned above, are µ = [0.35, 0.25, 0.015, 0.34], and C2
is set to 2. The batch size is set to 20 for all the datasets. The default parameter settings may
not give the best performance all the time, but they generally give satisfactory results. In
the training phase of the proposed self-supervised method, 80% of the samples are chosen
randomly for each bitemporal HSI, and the remaining 20% of the random samples are used
for validation. During the testing phase, all samples of each bitemporal HSI dataset are
used to generate binary change maps.

The proposed model is compared with two classical methods, LSCD and ASCD [30],
and six state-of-the-art techniques, HOSVD [20], TDRD [18], PCANet [12], DSFANet [28],
HI-DRL [31], and the tucker decomposition-based self-supervised tensor network technique
SSTN [38]. For all unsupervised methods, K-Means is used to segment output features
into changed areas and unchanged areas. For visual evaluation, white pixels represent the
changed areas, and the black pixels represent the unchanged areas.
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For numerical evaluation, overall accuracy (OA), class accuracy of unchanged area
(CA_UN), class accuracy of changed area (CA_CH), KAPPA coefficient (KAPPA), and
Area Under Receiver Operating Characteristic (ROC) Curve (AUC) are used, whereas OA,
CA_UN, and CA_CH are presented in percentages, and KAPPA and AUC range from 0
to 1. Each of the indexes indicates better results when it shows higher values. All of the
algorithms were developed using TensorFlow in a Python environment, on an NVIDIA
GeForce GTX 1080 Ti with 256 GB memory.

5.3. Results
5.3.1. Efficacy

As shown in Figure 6, the visual CD maps produced for the Yancheng dataset by
the UTT and STT methods are better than those produced by the classical methods and
the counterpart tensor techniques. This viewpoint is supported by the numerical data
in the first row of Table 1. It can be seen from Table 1 that although the CA_UN of the
proposed method, STT, is not the best, its OA and KAPPA are both the best, which confirms
that TT can capture more global correlations. It also proves that TT can detect changed
and unchanged regions in a more balanced way (CA_UN and CA_CH of STT are both
relatively higher compared to other methods). Though the CA_UN of ASCD is the best,
its OA and KAPPA are nearly the worst, which shows that ASCD cannot capture enough
global correlations to detect changed regions in a balanced way. The same conclusion can
be drawn from the visual CD maps of ASCD and STT in Figure 6c,l respectively. ASCD
smooths out the changed features, and the white (changed) regions in the CD map of ASCD
in Figure 6c are significantly fewer than STT in Figure 6l, which results in a slightly better
CA_UN but a much worse OA. It can also be seen from the white speckles on the top-right
and bottom-left corner of Figure 6d,g that results produced by HOSVD and DSFANet have
more false alarm rates. As the feature extraction process of HOSVD is based on TD, it can
be concluded that the ability of TD in capturing changed information is worse than TT.
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Figure 6. Binary detection results in the Yancheng dataset: (a) ground truth, (b) LSCD, (c) ASCD, (d)
HOSVD, I TDRD, (f) PCANet, (g) DSFANet, (h) HI-DRL, (i) SSTN, (j) UTT-SVD, (k) UTT-noSVD, and
(l) STT.

Similar conclusions can be drawn for the River dataset, as shown in the visual CD
maps in Figure 7 and the numerical data in the second row of Table 1. It can be seen
from Table 1 that though CA_UN and CA_CH of STT are not the best, its OA and KAPPA
turn out to be the best. On the contrary, although TDRD and HI-DRL have advantages in
detecting changed and unchanged regions, respectively, they cannot capture enough global
correlations such that they cannot detect changed and unchanged regions in a balanced
way. That is why they have the best CA_CH and CA_UN, respectively, but their OA
and KAPPA are relatively lower than STT. The visual CD maps in Figure 7 can further
validate the advantages of the proposed TT-based CD methods. Figure 7b,d,e show that the
bottom-left corner has visible white speckles as compared to UTT and STT. PCANet detects
more white regions (pseudo changes), while HI-DRL suppresses the changed features
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excessively so that it ignores real changes, as shown in Figure 7f,h, respectively. ASCD in
Figure 7c smooths out the changed features and results in the lower prediction of changed
and unchanged features, which greatly affect the accuracy. The visual results demonstrate
that the proposed methods do not only reduce the white noise, but they also discriminate
the changed and unchanged features effectively.

Table 1. Evaluation of change detection results in different datasets.

Data
Set Metric LS

CD
AS
CD

HO
SVD

TD
RD

PCA-
Net

DSFA-
Net

HI-
DRL SSTN UTT-

SVD
UTT-

noSVD STT

Yancheng

CA_UN(%) 94.33 99.94 97.79 95.67 94.11 97.01 99.10 98.19 98.17 98.15 97.79
CA_CH(%) 85.13 75.89 98.69 95.09 98.35 92.40 92.00 96.25 97.78 98.03 98.69

OA(%) 91.73 93.13 98.04 97.31 95.31 95.71 97.09 97.64 98.07 98.11 98.20
KAPPA 0.7959 0.8176 0.9524 0.9345 0.8890 0.8942 0.9270 0.9420 0.9528 0.9536 0.9561

River

CA_UN(%) 92.71 97.92 92.37 92.03 83.17 97.06 98.76 97.34 92.16 93.71 98.44
CA_CH(%) 44.13 40.32 90.72 94.03 68.55 66.21 58.48 72.84 91.01 85.95 69.24

OA(%) 88.48 92.93 92.23 92.21 81.52 94.25 94.23 94.58 92.30 93.10 95.90
KAPPA 0.3364 0.4768 0.6283 0.6365 0.3590 0.6768 0.6640 0.7210 0.6285 0.6462 0.7237

Bay Area

CA_UN(%) 86.90 99.54 87.30 85.96 89.36 82.19 97.59 93.17 90.72 91.81 94.29
CA_CH(%) 31.44 11.02 42.96 45.28 38.50 48.64 25.02 36.60 42.73 39.54 38.72

OA(%) 73.32 77.86 76.44 75.37 78.23 73.97 81.71 80.79 78.97 78.98 81.02
KAPPA 0.2028 0.1500 0.3220 0.3006 0.3040 0.3046 0.2970 0.3460 0.3708 0.3652 0.3841

Hermiston

CA_UN(%) 94.77 99.74 98.14 76.82 85.48 98.76 99.76 99.33 98.20 98.48 99.02
CA_CH(%) 80.88 70.13 93.36 55.55 67.78 91.35 83.86 93.88 93.29 92.95 95.02

OA(%) 92.99 95.95 97.53 74.09 83.19 97.81 97.72 98.63 97.57 97.76 98.83
KAPPA 0.7068 0.7938 0.8922 0.2181 0.4140 0.9018 0.8910 0.9380 0.8936 0.9010 0.9384
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Figure 7. Binary detection results in the River dataset: (a) ground truth, (b) LSCD, (c) ASCD, (d)
HOSVD, (e) TDRD, (f) PCANet, (g) DSFANet, (h) HI-DRL, (i) SSTN, (j) UTT-SVD, (k) UTT-noSVD,
and (l) STT.

The visual CD results and numerical data of the Bay Area and Hermiston datasets
are shown in Figure 8 and the third row of Table 1, and in Figure 9 and the fourth row of
Table 1, respectively. For the Bay Area dataset, although the OA of HI-DRL is the best, its
CA_CH is nearly the worst, which limits the practical application of this method in HSI
CD. Similarly, ASCD and DSFANet cannot detect changed and unchanged regions in a
balanced way despite the highest CA_UN and CA_CH that they respectively have, which
brings out relatively lower OA and KAPPA compared to STT. As for the Hermiston dataset,
although the CA_UN of STT is slightly lower than HI-DRL, its CA_CH is significantly better
than HI-DRL and all other methods, which makes STT obtain the best OA and KAPPA
compared to all other classical and state-of-the-art methods. The visual results of CD maps
in Figures 8 and 9 can further validate the mentioned conclusions.
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Figure 8. Binary detection results in the Bay Area dataset: (a) ground truth, (b) LSCD, (c) ASCD, (d)
HOSVD, (e) TDRD, (f) PCANet, (g) DSFANet, (h) HI-DRL, (i) SSTN, (j) UTT-SVD, (k) UTT-noSVD,
and (l) STT.
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Figure 9. Binary detection results in the Hermiston dataset: (a) ground truth, (b) LSCD, (c) ASCD, (d)
HOSVD, (e) TDRD, (f) PCANet, (g) DSFANet, (h) HI-DRL, (i) SSTN, (j) UTT-SVD, (k) UTT-noSVD,
and (l) STT.

A comparison of AUC values between different methods is also made, and the results
are shown in Figure 10 and Table 2, respectively. It can be seen from Figure 10a,b that
the ROC curve of STT in the Yancheng and Hermiston datasets is almost at the upper left
corner as compared to other methods. In Figure 10c of the River dataset, UTT without SVD
outperforms the other methods, which shows that TT-based methods outperform other
methods not only in OA and KAPPA, but also in AUC. The numerical results in Table 2
also validate our conclusion. In the Bay Area dataset shown in Figure 10d, although all
methods have a lower AUC compared to other datasets, STT still obtained the highest
AUC. However, as an evaluation index, the AUC of ROC has its own limits. For example,
different ROC curves may have similar AUC. This can be observed in Table 2 and Figure 10.
For the Bay Area dataset, the AUC of ASCD is 0.6927 and the AUC of UTT-noSVD is 0.6907,
which are very close. Meanwhile, the indexes such as OA and KAPPA in Table 1 show that
UTT-noSVD largely outperforms ASCD. Therefore, an evaluation of the CD methods by
different indexes is recommended.

Table 2. Evaluation of AUC values for different methods.

Methods Yancheng Hermiston River Bay Area

LSCD 0.9400 0.9224 0.8629 0.5968
ASCD 0.9796 0.9420 0.8082 0.6927

HOSVD 0.9960 0.9908 0.9719 0.6685
TDRD 0.9968 0.8022 0.9807 0.6699

DSFANet 0.9887 0.9841 0.9273 0.6595
UTT-SVD 0.9964 0.9910 0.9813 0.6863

UTT-noSVD 0.9967 0.9919 0.9817 0.6907
STT 0.9970 0.9951 0.9531 0.6978

The above analysis shows that the proposed technique surpasses the current clus-
tering unsupervised algorithms in terms of OA, CA_UN, CA_CH, KAPPA, and AUC
accuracy. This is because the characteristics learned using these techniques are not dis-
criminative enough for clustering. Unlike unsupervised techniques such as subspace
projection, HOSVD, and SSTN, our TT-based clustering methodology uses a balanced ma-
tricization scheme to capture the global correlation of tensor elements for change detection
and can thus suppress the unchanged features and enhance changed features at the same
time. In Figure 11, the discriminative efficacy of STT is further highlighted. Because of
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the overlapping samples from multiple classes, the initial high-order difference tensors
are obviously unsuitable for clustering, as shown in Figure 11a,c for the Yancheng and
Hermiston datasets, respectively. Meanwhile, as shown in Figure 11b,d, the features of
different categories learned by STT are considerably separated. The accuracy of clustering
and change detection increases due to the discriminative features having high intra-class
similarity and inter-class dissimilarity.
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Figure 11. Scatter plots produced by t-SNE of all samples from the Yancheng dataset (a,b) and
Hermiston dataset (c,d). Red circles represent unchanged samples, and blue circles represent changed
samples. Yancheng (a) original difference tensor, (b) features learnt by STT, Hermiston (c) original
difference tensor, (d) features learnt by STT.

5.3.2. Ablation Study

To validate the effectiveness of the proposed TT methods for CD, an ablation study
is conducted for unsupervised TT CD. The experiments are carried out using UTT with
SVD, named UTT-SVD, and are compared with the proposed UTT without SVD, named
UTT-noSVD. As shown in Figure 6j,k, the proposed UTT-noSVD provides better visual
results. Moreover, the numerical evaluation listed in Table 1 validates our point of view
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for the Yancheng dataset. The ablation experiments for the other datasets for UTT-SVD
and the UTT-noSVD are shown in Figure 7j,k for the River dataset, Figure 8j,k for the
Bay Area dataset, and in Figure 9j,k for the Hermiston dataset. All the results show that
UTT-noSVD is more efficient and provide better results as compared to the UTT-SVD. Their
corresponding OA and KAAPA accuracy values, listed in Table 1, also support our point of
view.

Similarly, for STT, an ablation study is conducted by lower-dimensional input patch
size without using the KA scheme. Lower three-dimensional input patches are compared
with the proposed higher five-dimensional input patch sizes. In Figure 12, the visual
change detection maps of the River and Bay Area datasets clearly show that the proposed
STT model performs better on a higher dimension (5-dimensional input patches), as seen
in Figure 12a,c, as compared to a lower dimension (3-dimensional input patches), as seen
in Figure 12b,d. This is because high-order rich texture features can be extracted after using
KA. Table 3 demonstrates OA and KAPPA accuracy by using different input dimensions
for the River and Bay Area datasets. The visual results and numerical evaluation show that
STT using a higher dimension performs better than that with low-dimension input patches.
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Table 3. Ablation study: STT with 5-dimensional vs. 3-dimensional input patches.

Methods
River Bay Area

OA (%) KAPPA OA (%) KAPPA

STT(3-Dimensional) 95.62 0.7080 80.36 0.3820
STT(5-Dimensional) 95.90 0.7237 81.02 0.3841

5.3.3. Efficiency

Table 4 lists the time cost per iteration and the total time cost of convergence of
comparable techniques. Each time cost is the average value observed from all four HSI
datasets. While the same strategy and the same computation platform is adopted, LSCD
and ASCD are three times slower than UTT-noSVD and HOSVD, and four times slower
than UTT-noSVD for the Yancheng dataset. For the Bay Area dataset, LSCD is 40 times
slower than the proposed UTT-noSVD, ASCD is 25 times slower, and HOSVD is 8 times
slower than UTT-noSVD. For the River dataset, LSCD is 38 times slower, ASCD is 19 times,
and HSOVD is 11 times slower than the proposed UTT-noSVD. Similarly, for the Hermiston
city dataset, UTT-noSVD outperforms the LSCD, ASCD, and HOSVD methods with an
18, 7, and 8-fold difference, respectively. The efficiency of UTT-noSVD is benefited from
bypassing SVD to compute the TT-ranks and applying KA to the hyperspectral data.
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Table 4. Execution time of various methods using different experimental datasets (seconds).

Methods Yancheng Bay Area River Hermiston

LSCD 3.945 217.662 38.804 18.838
ASCD 3.866 129.609 20.487 7.421

HOSVD 4.908 43.480 11.830 9.316
UTT-SVD 8.992 262.747 5.709 21.018

UTT-noSVD 1.476 5.441 0.934 0.678

The convergence curve of STT for the Yancheng dataset is shown in Figure 13a. It
shows that network loss (combined loss) converges more smoothly and reduces the error
efficiently as compared to the use of individual classification and cluster loss. For the
Hermiston dataset, the STT convergence curves for the cluster, classification, and network
losses are shown in Figure 13b. It shows that the combination of cluster loss with classi-
fication loss produces better convergence. The convergence graphs in Figure 13c,d also
validate the efficiency of the proposed self-supervised TT technique for the River and Bay
Area dataset, respectively.
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5.3.4. Discussions

The experiments above demonstrate the capability of TT-based CD in multitemporal
HSIs. The strength of UTT and STT can be summarized as follows:

(1). The inter-class homogeneity and inner-class heterogeneity of HSIs are addressed by
UTT and STT effectively by exploiting the ability of TT in capturing global correlations.
To be specific, UTT and STT can detect changed and unchanged regions in a more
balanced way due to the correlations that TT captures between the changed and
unchanged information contained in the original HSIs. This can be validated by
the better OA, KAPPA, and AUC values of UTT and STT as compared to the TD-
based methods HOSVD [20], TDRD [18], and SSTN [38], whose low-rank features are
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extracted in an unbalanced way. The T-SNE results in Figure 11 also indicate that the
features extracted by the TT-based methods are discriminative enough to differentiate
between the changed and unchanged regions in HSI CD.

(2). Both UTT and STT successfully handle the high dimensionality of HSIs by TT de-
composition, which decomposes N-order weight tensors into small three-order tensor
cores by approximating the low-order optimal TT ranks. Hence, the dimensionality
can be reduced and the redundant information can be removed. At the same time,
the execution time of UTT-noSVD is obviously lower than other existing unsuper-
vised HSI CD methods such as LSCD [30]. Costly manual annotations can also be
removed as unsupervised learning and self-learning are introduced into UTT and STT,
respectively.

(3). Tensor augmentation is achieved through the KA scheme, which involves replacing a
low-order tensor with a higher-order tensor without changing the number of tensor
entries. Therefore, a high-order tensor with richer texture features can be achieved
without increasing computation complexity. It can be seen in Figure 12 and Table 3
that KA indeed works in our proposed methods.

Despite all of the benefits of the TT-based change detection methods UTT/STT, there
is still potential for improvement. Here are few points that could be further studied. First,
UTT/STT both use K-Means for binary classification as well as during the pre-clustering
stage to cluster the changed and unchanged features. The cluster number specification
in the advance non-handling of outliers and their dependency on convex data cause the
K-Means to be inadequate for complicated datasets. Similarly, during pre-clustering,
pseudo-labels can be generated by more advanced methods to improve the accuracy of
STT. Second, although STT and UTT are used for change and background classification
for bitemporal images, they could be further applied to multiple change detection with
multitemporal images.

6. Conclusions

Inspired by knowledge from the quantum information theory, this paper proves
that TT decomposition is capable of capturing more global correlations between the
changed/unchanged information than TD. Based on this, two novel approaches are pro-
posed for HSI CD. The unsupervised UTT technique is based on multilinear matrix fac-
torization and is more efficient since it bypasses the expensive SVD. STT, the second one,
is a self-supervised technique. STT performs much better than the direct unsupervised
technique, UTT. TT-based CD methods use a well-balanced matricization strategy so that
they can detect changed and unchanged regions in a more balanced way. Tensors are
augmented from low-order to higher-order through a KA scheme while not changing the
total number of entries in order to extract changed features efficiently without increasing
computational complexity. Then, the proposed TT-based CD methods are tested on four
real-world bitemporal HSI datasets. Experiments have demonstrated that the proposed
TT-based CD methods outperform their tensor counterparts TDRD, HOSVD, SSTN, and
other state-of-the-art techniques in OA, CA_UN, CA_CH, KAPPA, and AUC. With such
high accuracy and no need for manual annotations, the proposed methods exhibit the po-
tential of applications to deal with emergencies such as landslide detection and earthquake
damage estimation. For future work, more real-world multitemporal HSI datasets will be
acquired to further investigate the proposed methods and update the UTT/STT so that it
could be adapted for change detection in multitemporal HSIs.
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