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Abstract: A vehicle adaptive cruise system can control the speed and the safe distance between
vehicles rapidly and effectively, which is an integral part of an intelligent driver assistance system.
Adaptive cruise predictive control algorithms based on variable compass operator pigeon-inspired
optimization (PIO) and PSO are proposed to improve the time response characteristics of multi-
objective adaptive cruise system predictive control. Firstly, a longitudinal kinematic model of an
adaptive cruise system was established and linearly discretized. Secondly, the multi-objective optimal
cost function and parameter constraints were designed by integrating factors such as distance error,
relative speed, acceleration and impact, and a mathematical model of the adaptive cruise predictive
control optimization problem was constructed. Finally, PIO and PSO were used to solve the optimal
control law for MPC and simulated by Matlab. The results show that the adaptive cruise system
can reach a steady state quickly with the control laws of PIO or PSO. However, due to the global
optimization and fast convergence characteristic, variable compass operator PIO has better time
response characteristics.

Keywords: variable compass operator; adaptive cruise; predictive control

1. Introduction

A vehicle adaptive cruise control system can control the speed and the safe distance
between vehicles rapidly and effectively, which is an integral part of intelligent driver assis-
tance systems. The common methods of adaptive cruise control systems include optimal
control [1], sliding mode variable structure control [2], fuzzy neural network control [3],
model predictive control [4] and multi-mode switching control [5], among others. The
adaptive cruise control method can improve safety and fuel economy of a vehicle system [6].
A method of eco-ACC has been designed to reduce energy consumption and increase the
life of the battery [7]. The performance of five typical policies in adaptive cruise control
(ACC) systems has been analyzed, namely, the constant spacing policy, constant time
headway, traffic flow stability, constant safety factor and human driving behavior spacing
policies [8]. Several scholars have conducted studies on the stability of vehicle adaptive
cruise [9–12]. When the number in a convoy reaches a certain size, the ACC system is prone
to oscillation during frequent acceleration and deceleration. An adaptive optimal control
was proposed to ensure tracking performance and stability [13]. In addition, a sliding mode
was introduced and the chattering problem was overcome and achieved better results [14].
A sliding mode control strategy based on neural network has been proposed [15]. With the
rapid development of communication technology, many scholars have conducted studies
on the CACC method [16]. A distributed nonlinear consensus delay-dependent control
algorithm for a connected vehicle platoon has been provided [17]. Deep learning has
been used in automatic driving and longitudinal motion control [18]. Model predictive
control (MPC) can effectively solve the problem of multiple optimization objectives and con-
straints and compensate for uncertainties such as model time variation and disturbances,
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which have become a hot spot for research and application in recent years [19]. Many
scholars have solved the multi-objective optimization problems of ACC based on model
predictive control algorithms. Compared with traditional LQR or fuzzy control algorithms,
MPC significantly improves the control accuracy and energy-saving of ACC [20–22]. A
bi-directional hierarchical adaptive cruise control method with reduced collision probability
has been proposed in a MPC framework [23,24]. A distributed model predictive control
(DMPC) algorithm to reduce the steady-state errors has been proposed [25]. Based on a
particle swarm optimization algorithm, the safety, economy, comfort and tracking ability
of convoys during deceleration has been effectively improved [26]. Combining MPC and
particle swarm optimization (PSO), multi-objective optimization including driving stability,
safety and economy has been verified [27,28].

With the advantage of global optimization and fast convergence characteristic, PIO
and PSO are suitable for solving the optimal control law of adaptive cruise predictive
control. In order to improve the time response characteristics of adaptive cruise system
predictive control under the constantly changing speed of the leading vehicle, this paper
studies a vehicle adaptive cruise predictive control algorithm based on variable compass
operator pigeon-inspired optimization. A longitudinal kinematic model of the adaptive
cruise system is established, the multi-objective optimization cost function and multi-
parameter constraints are designed, the predictive control optimization mathematical model
is constructed, and the optimal control law is solved based on variable compass operator
pigeon-inspired optimization. Finally, the feasibility and superiority of the algorithm are
verified through simulation.

2. Longitudinal Kinematic Model of Adaptive Cruise

The longitudinal kinematics relationship of the adaptive cruise is shown in Figure 1,
where x f and xp are the current positions of the vehicle and the front vehicle, respectively;
d is the actual distance; ddes is the desired distance; v f and vp are the speeds of the vehicle
and the front vehicle, respectively; a f and ap are the accelerations of the vehicle and the
front vehicle, respectively; ∆d is the distance error; ∆v is the relative speed between the
front vehicle and the current vehicle; a f des is the expected acceleration of the current vehicle;
d0 is the minimum safe distance after stopping.
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Figure 1. Longitudinal kinematics model of adaptive cruise.

The linear discrete state-space equation for an adaptive cruise following system is
established [29,30], as shown in Equation (1).{

x(k + 1) = Ax(k) + Bu(k) + Gv(k)
y(k) = Cx(k)

(1)

where A =

 1 Ts −thTs
0 0 −Ts
0 0 1− Ts/TL

, B =

 0
0

TsKL/TL

, G =

 0
Ts
0

, C =

 1 0 0
0 1 0
0 0 1

,

x =
[

∆d ∆v a f
]T , u = a f des, v = ap, th is the time-distance, KL is the system gain, TL

is the time constant and Ts is the sampling period.
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3. Multi-Objective Adaptive Cruise Predictive Control Algorithm
Prediction Control Algorithm

Assuming that the current moment is t, the multi-objective optimization function is
established as Equation (2).

J(y, u, ∆u) =
t+N−1

∑
k=t

[y(k + 1|t)]Twy[y(k + 1|t)]+
t+N−1

∑
k=t

[u(k|t)]TwEa[u(k|t)] +
t+N−1

∑
k=t

[∆u(k|t)]Tw∆Ea[∆u(k|t)]

(2)

where N is the length of prediction time, wy is the weight coefficients of system output,
wEa is the weight coefficients of control, and w∆Ea is the weight coefficients of control
incremental.

In order to predict system output y(t) from the time t to t + N − 1, the output
y(t), y(t + 1), y(t + 2), · · · are shown in Equation (3), and so on.

y(t|t) = Cx(t)
y(t + 1|t) = Cx(t + 1) = CAx(t) + CBu(t) + CGv(t)
y(t + 2|t) = Cx(t + 2)
= CAx(t + 1) + CBu(t + 1) + CGv(t + 1)
= CA

(
Ax(t) + Bu(t) + Gv(t)

)
+ CBu(t + 1) + CGv(t + 1)

= CA2x(t) + CABu(t) + CAGv(t) + CBu(t + 1) + CGv(t + 1)
· · ·

(3)

Then the output Y from the time t to t + N − 1 can be transformed into Equation (4).

Y = Mxx(k) + MuU + MvV (4)

where Y is the system output in the predicted time period, U is the predicted control in the
predicted time period, ∆U is the predicted control increment in the predicted time period,
V is the external disturbance in the predicted time period,

Y =


y(t|t)

y(t + 1|t)
...

y(t + N − 1|t)

, U =


u(t|t)

u(t + 1|t)
...

u(t + N − 1|t)

, V =


v(t|t)

v(t + 1|t)
...

v(t + N − 1|t)

, Mx =


CA
CA2

...
CAN

,

Mu =


CB 0 0 0

CAB CB · · · · · ·

· · · · · ·
... 0

CAN−1B CAN−2B · · · 0

, Mv =


CG 0 0 0

CAG CG · · · · · ·

· · · · · ·
... 0

CAN−1G CAN−2G · · · 0


The cost function (2) has three variables, such as y, u and ∆u. In order to find the best

value of ∆u that minimizes J(y, u, ∆u), y and u should be replaced by ∆u. The relationship
between u and ∆u is shown in function (5).

U = T∆u∆U + u(t− 1)Tu (5)

Then, combining the function and the cost function (4) and (5), the cost function (2)
can be transformed into Equation (6).

J(∆U) = ∆UTK1∆U + 2K2∆U (6)

where K1 = TT
∆u
(

MT
u Wy Mu + Mu

)
T∆u + W∆u.



Electronics 2022, 11, 1377 4 of 8

K2 = [xT(t)MT
x + u(t− 1)TT

u MT
u + VT MT

v ]Wy MuT∆u + u(t− 1)TT
u WuT∆u,

∆U =


∆u(t|t)

∆u(t + 1|t)
...

∆u(t + N − 1|t)

, T∆u =


1 0 · · · 0
1 1 · · · 0
...

...
. . . 0

1 1 · · · 1


N×N

, Tu =


1
1
...
1


N×1

Wy = diag
[

wy wy · · · wy
]

Wu = diag
[

wEda wEda · · · wEda
]

W∆u = diag
[

w∆Eda w∆Eda · · · w∆Eda
]

The predictive input and output constraints of the adaptive cruise system are estab-
lished as Equation (7). 

∆dmin ≤ ∆d ≤ ∆dmax
∆vmin ≤ ∆v ≤ ∆vmax
a f min ≤ a f ≤ ∆d f max
a f min ≤ a f des ≤ a f max.

a f min ≤
.
a f ≤

.
a f max

ymin ≤ y(k + 1|t) ≤ ymax
umin ≤ u(k|t) ≤ umax

∆umin ≤ ∆u(k|t) ≤ ∆umax

(7)

where ∆dmax and ∆dmin are the limits of the distance error; ∆vmax and ∆vmin are the limits
of the relative vehicle speed; ∆a f max and ∆a f min are the limits of the acceleration;

.
a f max

and
.
a f min are the limits of the impact; ymin =

[
∆dmin ∆vmin ∆a f min

]
is the lower

bound of system output; ymax =
[

∆dmax ∆vmax ∆a f max
]

is the upper bound of system
output; umin = a f min is the lower bound of control quantity; umax = a f max is the upper
bound of control quantity; ∆umin = a f minTs is the lower bound of control increment;
∆umax = a f maxTs is the upper bound of control increment.

4. Predictive Control Law Based on Variable Compass Operator PIO
4.1. Pigeon-Inspired Algorithm

Inspired by the behavior of pigeons in nature, Duan Haibin [31] proposed a pigeon-
inspired optimization (PIO) algorithm. PIO has been used to solve multi-objective optimiza-
tion problems. Two different operator models are proposed by imitating the mechanism by
which pigeons use different navigation tools in different stages of finding a target.

1. Map and compass operator. Pigeons can sense the geomagnetic field and then form
a map in their mind. They use the sun’s altitude as a compass to adjust their flight
direction, and as they approach their destination, their dependence on the sun and
magnetic field decreases.

2. Landmark operator. The landmark operator is used to simulate the effect of landmarks
on pigeons in the navigation tool. As pigeons approach their destination, they will
rely more on nearby landmarks. If the pigeons are familiar with the landmarks, they
will fly directly to the destination. Otherwise, they will follow those pigeons that are
familiar with the landmarks.

In the PIO model, virtual pigeons are used to simulate the navigation process. First,
the position and speed of the pigeons are initialized, and the position and speed are
updated in each iteration based on the map and the compass operator searching in
the multidimensional space. Position and velocity are noted as Xi = [xi1, xi2, · · · xiD],
Vi = [vi1, vi2, · · · viD], where i = 1, 2, . . . , N. Each pigeon updates its position and velocity
according to Equation (8) where R is the compass factor, which takes the value range from
0 to 1. Nc is the current number of iterations and Xgbest is the optimal global position
obtained after Nc − 1 iterations.
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VNc
i = VNc

i e−R×Nc + rand
(

Xgbest − XNc−1
i

)
XNc

i = XNc−1
i + VNc

i

(8)

When the number of cycles reaches the preset value, the map and compass operator
are stopped, the landmark operator is entered, and the search for the optimal solution is
continued according to Equation (9).

Xi = XNC−1
i + rand

(
XNC−1

center − XNC−1
i

)
XNc−1

center =

(
NNc−1

∑
i=1

XNc−1

)
/Nc − 1

(9)

where NNc = NNc−1/2.
In this algorithm, in order to improve the global and local convergence speed of the

compass operator, the variable compass operator pigeon-inspired algorithm with a variable
compass operator factor (R) is used, which gradually decreases from 1 to 0.3 during the
iteration process. It can ensure a robust global search capability in the beginning stage and
increase the local convergence speed in the later stages of the search.

4.2. Adaptive Cruise Prediction Control Law Based on Variable Compass Operator PIO

In this paper, the variable compass operator PIO is used in the optimal control law,
where ∆u is used as the control variable. The steps are as follows:

1. At the moment t, real-time sampling is used to obtain the adaptive cruise system’s
input and state variables;

2. Determine the objective function and constraints by calculating K1, K2, T;
3. Use the variable compass operator pigeon-inspired algorithm to calculate the new

control sequence;
4. Repeat step 2 and step 3 to find the optimal control sequence ∆U that satisfies the re-

quirements;
5. Choose the first component of ∆U as the control input increment and update the

optimal control value u(t) = ∆u(t|t) + u(t− 1);
6. Let t = t + 1 and return to step 1.

5. Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm originated from the behavior of
birds. The basic idea of the particle swarm optimization algorithm is to find the optimal
solution through cooperation and information sharing among individuals in the group.
The steps for PSO are as follows:

1. Initialize all particles;
2. Update the velocity and position according to Formula (10), where w = 0.3;
3. Evaluate the fitness value;
4. Update the historical optimal position of each other particle;
5. Update the global optimal location of the group.

VNc
i = w ·VNc

i + rand() ·
(

Xpbest − XNc
i

)
+ rand() ·

(
Xgbest − XNc

i

)
XNc+1

i = XNc
i + VNc

i

(10)

6. Simulations

The adaptive cruise prediction control algorithm based on variable compass operator
pigeon-inspired optimization proposed in this paper was verified by a simulation where
the front car first decelerates and then accelerates. The initial speed of the front car is 20
m/s, which decelerates to 12 m/s at about 6 s, then accelerates to 20 m/s again at about 12
s and maintains this speed. The simulation parameters are shown in Table 1.
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Table 1. The simulation parameters.

Parameter Value Parameter Value

Time-distance th/s 1.5 Upper limit ∆dmin/m −5
System gain KL 1.05 Weight coefficient wy diag(0.12,1,0)

Time constant TL/s 0.393 Weight coefficient wEda 0.1
Sampling period Ts/s 0.1 Weight coefficient w∆Eda 0.001

Lower limit a f min/
(
m · s−2) −2 Predict period N 40

Upper limit a f max/
(
m · s−2) 2 Particle swarm size m 100

Lower limit
.
a f min/

(
m · s−2) −1 Learning factor c1 2

Upper limit
.
a f max/

(
m · s−2) 1 Learning factor c2 2

Lower limit ∆dmax/m 5 Inertia weight th/s 0.5

The simulation results for variable compass operator PIO compared with PSO are
shown in Figures 2 and 3.
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From the simulation results, the adaptive cruise system can reach a steady state quickly
under the control law of PIO or PSO. Further, the vehicle reaches a stable distance of 35 m in
10.2 s with variable compass operator PIO, while the PSO algorithm reaches 35 m in 11.2 s.
Therefore, the adaptive cruise adjustment process with variable compass operator PIO is
about 1 s faster than PSO. Compared with the PSO algorithm, the dynamic response time
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of adaptive cruise predictive control based on variable compass operator PIO is reduced
by 8.9%.

Since the variable compass operator factor (R) decreases during the iteration process,
the optimizing speed with variable compass operator PIO is better than PSO under limited
iterations. In Figure 1, the control variable ∆u is similar for variable compass operator PIO
and PSO when the car is in a state of continuous acceleration or deceleration. However,
during the state change between acceleration and deceleration, the control variable ∆u is
better with variable compass operator PIO because the speed v f changes faster to decrease
the car’s distance more quickly than PSO.

7. Conclusions

A vehicle adaptive cruise predictive control algorithm based on variable compass
operator PIO is suggested. Simulations of two methods were conducted and the results
show that variable compass operator PIO and PSO were both effective. Compared with
PSO, the dynamic response time of adaptive cruise predictive control based on variable
compass operator PIO reached a stable state more rapidly. The method of calculating the
optimal solution for MPC with PSO and variable compass operator PIO is not only suitable
to vehicle adaptive cruise control, but is also effective for other problems with MPC.

Further, the parameters of algorithm and cost function have a larger impact on the
system’s dynamic performance, which is worth pursuing further. Developing more effective
optimization methods is also a potential direction for future research.
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