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Abstract: Human beings have the ability to quickly recognize novel concepts with the help of scene
semantics. This kind of ability is meaningful and full of challenge for the field of machine learning.
At present, object recognition methods based on deep learning have achieved excellent results with
the use of large-scale labeled data. However, the data scarcity of novel objects significantly affects
the performance of these recognition methods. In this work, we investigated utilizing knowledge
reasoning with visual information in the training of a novel object detector. We trained a detector to
project the image representations of objects into an embedding space. Knowledge subgraphs were
extracted to describe the semantic relation of the specified visual scenes. The spatial relationship,
function relationship, and the attribute description were defined to realize the reasoning of novel
classes. The designed few-shot detector, named KR-FSD, is robust and stable to the variation of
shots of novel objects, and it also has advantages when detecting objects in a complex environment
due to the flexible extensibility of KGs. Experiments on VOC and COCO datasets showed that the
performance of the detector was increased significantly when the novel class was strongly associated
with some of the base classes, due to the better knowledge propagation between the novel class and
the related groups of classes.

Keywords: convolutional neural network (CNN); graph neural network (GNN); few-shot object
detection; knowledge reasoning; knowledge graphs (KGs)

1. Introduction

The application of artificial intelligence technology in specific industrial contexts has
become more and more common [1]. Object detection is the basis of many computer vision
tasks, such as instance segmentation, image captioning, object tracking and so on [2]. Object
detection aims to find all interested objects in the image by determining their categories
and locating their positions. Due to the different appearance and posture of various
objects, coupled with the interference of imaging light, occlusion and other factors, object
detection has always been a challenging problem. Driven by big data, the deep learning
model can be effectively trained with the help of abundant annotation data. In recent
years, the performance of object detection algorithm based on deep learning methods has
improved consistently. However, object detection methods based on deep learning show
obvious shortcomings in open and complex scenes, partly because of a lack of labeled data.
Insufficiently labeled data will lead to overfitting of the trained model. Although simple
data enhancement and regularization techniques can alleviate this problem, it has not been
completely solved.

Since the data in the real world has the characteristics of long tail distribution, object
detection in the open world is an urgent and difficult problem. The performance is often
degraded by the scarcity of new data. Human beings can make good use of experience
knowledge to learn to solve new problems with the help of only a few examples. Few-shot
learning aims to learn like human beings by making use of prior knowledge and only a
small number of samples of new problems. In recent years, many researches [3–9] have
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been provided on few-shot object detection. Abundant labeled objects are taken as base
classes while unlabeled objects are treated as new classes. With the aid of abundant data in
base classes, novel objects can be detected by the trained few-shot detector with limited
data in novel classes.

This project proposes to establish the relationship between the base classes and the
novel classes with the help of external semantic knowledge [10]. The KGs containing
text and attribute knowledge takes objects as nodes and the relationship between objects
as edges in order to form a graph. The related concepts in the graph structure have
statistical strength and can be extended to novel classes. In this work, we study how to
use this semantic relationship to integrate knowledge reasoning and visual information
into a unified framework to achieve optimal compatibility. Specifically, we represent the
concept of each class through semantic embedding, use graph neural network (GNN) as a
semantic visual mapping network for knowledge reasoning, and combine image features
and semantic features through classifier weight fusion to obtain better detection results.

The remainder of this paper is organized as follows. Section 2 reviews related works
and explains our contributions. Section 3 introduces the proposed method. Section 4 shows
the experimental results. Section 5 shows the experimental analysis. Section 6 summarizes
our conclusions and future works.

2. Related Work and Contribution
2.1. Few-Shot Learning

The concept of few-shot learning first emerged from computer vision field [11].
It has attracted extensive attention in recent years. There are many algorithm models
with excellent performance in image recognition tasks [12,13], such as the famous proto-
typical network [14] and the matching network [15]. The method based on meta learning
not only trains the model on the target task, but also learns meta knowledge from many
different tasks. Meta knowledge is used to adjust the model so that the model can converge
quickly when facing a new task.

In the task of few-shot image recognition, Gregory et al. [16] designed a twin network,
with identical structure and shared weights, to extract features from two images respectively,
and calculated the similarity of the two images. The relationship network proposed by
Flood et al. was transformed from a predefined fixed similarity measurement function to a
learnable nonlinear similarity measurement function trained by neural network [17].

2.2. Knowledge Graphs

In daily life, if we know some static attributes of new things in advance including
color, texture, shape, etc., as well as relationship attributes, such as the relationship with
some easily recognizable objects of base classes, it will become easier to learn said new
things. Therefore, when visual information is difficult to obtain, this explicit relational
reasoning is more important. This relationship can be constructed through knowledge
graphs (KGs). The definition of a knowledge graph is usually based on heuristic methods in
common sense knowledge rule database [18,19]. For multi-label recognition, [20] provided
an object co-occurrence-based knowledge graph. Ref. [21] provided a reasoning method
over knowledge graphs and showed that reasoning over knowledge graphs can obtain
conclusions from existing data. An increasing number of KGs have been constructed and
published recently, by both academia and industry, such as Google Knowledge Graph,
Microsoft Satori, and Facebook Entity Graph [22–24].

2.3. Object Detection

The challenges of object detection include but are not limited to the following aspects:
different viewpoints, illumination and intra changes of class, scale changes, object rota-
tion, dense and occluded object detection, small objects, and accurate object positioning
etc. [2]. For the detection of scarce objects or the object under given conditions, due to
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the lack of labeled data, the conventional detection model usually struggles to achieve the
ideal accuracy.

Some works [25–28] have focused on the problem detecting objects in limited data
scenarios. LSTD [3] proposed a method of promoting the transfer of knowledge from the
source domain to the target domain. RepMet adopted distance measurement learning
classifiers in ROI classification header [4]. MSPLD proposed to iterate between model
training and high confidence sample selection [5]. Meta R-CNN and FSRW proposed using
the attention vector of each class to readjust the feature mapping of the corresponding
class [6,7]. MetaDet used meta level knowledge about model parameter generation to deal
with category specific components of new classes [8]. In FSOD, the similarity between a
small number of support sets and query sets was explored to detect new objects [9].

The performance of a few-shot detector is greatly affected by the scarcity of novel
objects. However, the semantic relationship between the novel objects and the base objects
is constant [10]. This kind of semantic relationship can be easily extracted from a knowledge
graph of the real world. Therefore, we proposed a few-shot object detection method based
on knowledge reasoning, shown in Figure 1, to detect and infer novel objects when some
basic properties of the novel objects and the relationships with base objects are provided
in advance.
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We summarized the contributions as follows:

(1) A few-shot object detection method based on knowledge reasoning was proposed.
It applied knowledge graphs together with the visual information to the novel
object detection.

(2) We designed a general expression pattern of knowledge graphs, which can be flexibly
applied to express the relationship between visible objects, and has good scalability.

(3) By using GNN, a novel object can be recognized by the method of knowledge
reasoning. The proposed methodology achieves state-of-the-art performance on
object detection.

3. Methodology
3.1. Few-Shot Object Detection

The set of the known object classes is denoted as U, where U = {C1, C2, · · · , CN}
and N is the number of the recognized object classes in the image. We assume that there
exist unknown object classes in the image, and the set of unknown classes is denoted as V,
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where V =
{

C?
1, C?

2
, · · · , C?

j , · · ·
}

. It is assumed that there are K1 object instances with their
class labels and locations and K2 unknown object instances with their locations in the input
image Im. The i-th object instance is denoted as Oi, where Oi = [li, xi, yi, wi, hi], li ∈ U and
xi, yi, wi, hi denote the bounding box center coordinates, width, and height, respectively.
The j-th unknown object instance is denoted as O?

j , where O?
j =

[
l?
j , xj, yj, wj, hj

]
, l?

j ∈ V and
xj, yj, wj, hj denote the bounding box center coordinates, width, and height respectively.

In a dataset of novel classes, the number of objects for each class is k for k-shot detection
task. The few-shot detection model is constructed on the base of a two-stage detection
framework. At the second stage, the labels of some uncertain object instances can be
inferred by KGs.

3.2. Few-Shot Detector

There are two training phases for a typical few-shot detector, the base training phase
on a base dataset and the fine-tuning phase on the union of a base dataset and a novel
dataset. Differing from these methods, we designed a CNN model to detect the known
object instances with their class labels and locations, and to further infer the class labels of
novel objects though knowledge reasoning. Compared with one-stage detectors, two-stage
detectors have better open set performance. The framework of our detector is shown in
Figure 2, where Faster R-CNN [29] was chosen as the baseline.
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Figure 2. Framework of our detector. Potential regions of objects from the feature maps, which are
represented with bounding box coordinates, are proposed by RPN. Objects of base classes are easy to
be recognized. It is difficult to recognize objects of novel classes or objects with few features.

The role of Region Proposal Network (RPN) is to search for numerous candidate
anchors (a set of candidate bounding boxes on the image), and then to determine whether
the corresponding area of an anchor has an object prospect or is a background without
object. Feature maps are generated after convolution layers. Each point of the feature maps
corresponds to multiple anchors. There are k anchors in total, and each anchor needs to be
distinguished between foreground and background. The foreground anchors are obtained
by softmax classification; that is, the candidate region box is preliminarily extracted. Each
anchor has four position offsets corresponding to [x, y, W, H], which are corrected by using
the bounding box regression. In fact, RPN has preliminarily realized the object detection
and positioning.

3.3. Knowledge Graph for a Scene
3.3.1. Knowledge Graph

A knowledge graph aims to describe various entities and their relationships in the
real world. Entities refer to things that are distinguishable and independent. Semantic
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class refers to a collection of entities with certain characteristics. The attribute values are
assigned by the entities.

Knowledge graph is defined as GK.

GK =< E, R, AT
∣∣∣E = {e1, e2, · · · , eN} ∧ R = {r1, r2, · · · , rM} ∧ AT =

{
AT1, AT2, · · · , ATN

}
> (1)

where E is the entity set and N is the number of entities in knowledge graph. R is the
relationship set and M is the number of relationships in knowledge graph. AT is the
attribute set of entities.

The attribute set of the i−th entity is defined as the following:

ATi =
{

ati
1, ati

2, · · · , ati
nu

}
(2)

where nu is the number of attributes of the i-th entity.
Two basic forms of R in knowledge graph are expressed with Formulas (3) and (4).

R1 =
{

ru(ei, ej)
∣∣ei ∈ E ∧ ej ∈ E ∧ ru ∈ R

}
(3)

R2 =
{

atk
v(ek)

∣∣∣ek ∈ E ∧ atk
v ∈ ATk

}
(4)

where R = R1 ∪ R2. There is ru(ei, ej) when ei and ej satisfy relation ru, and there is atk
v(ek)

when the entity ek has assigned the value of attribute atv.
In the knowledge map, relation is a function, which maps K graph nodes (entities,

semantic classes, attribute values) to Boolean values.

3.3.2. Scene Graph

In the object detection task, the scene graph describing semantics is defined as following:

GS =< O, C, Edge|O = {o1, o2, · · · , on} ∧ C = {c1, c2, · · · , cm} ∧ Edge ⊆ O× R×O > (5)

where O is the set of object instances, C denotes the set of object classes and Edge is a set
of edges.

According to the definition of a knowledge graph, the attribute set of object instances
is a subset of AT, and the relationship set of object instances is a subset of R. We describe
an object instance with a triplet, shown as (6).

oi =< c(oi), AT(oi), Loc(oi)|c(oi) ∈ C ∧ AT(oi) ⊆ AT ∧ Loc(oi) =< x, y, W, H >> (6)

where c(oi) is the class of the object oi, AT(oi) is the attribute set of the object oi and Loc(oi)
is the position information of the object oi.

3.3.3. Object Detection

Given the scene graph GS of the image Im, object instances to be detected are rep-
resented by a set of candidate bounding boxes denoted as B. The map is denoted as
γ : O→ B . The initial knowledge graph is built and denoted with an adjacent matrix Mob
and a feature matrix MAT , where Mob ⊆ {0, 1}n×n, MAT = {at1, · · · , atn}T ⊆ Rn×h.

A function f (·) is defined upon graph neural network (GNN) to learn graph and it
can be implemented by a method in [30]. For the l-th layer of GNN, the weight matrix
is defined as W(l). MAT is used as the initial features of modes. The message passing
function is defined as P(·) with the following structure:

L(l + 1) = P(Mob, L(l), W(l)) (7)

where L(l + 1) are the nodes embedding after l layers of GNN, and L(l1) = MAT .
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3.4. Reasoning Based on Knowledge Graph

A knowledge subgraph is a data structure that describes the semantics of a specific
scene. It encodes object instances, attributes of objects, and relationships between objects.
The simplest way to extract the knowledge subgraph of a scene from the large knowledge
graph describing the objective world is to retrieve the subgraph in the KG according to the
recognized object instances and their attributes. The remaining available visual information
is used to supplement the knowledge subgraph to enhance the semantic expression of the
scene. The knowledge subgraph of Figure 1 is shown in Figure 3.
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Figure 3. The knowledge subgraph of Figure 1.

Two types of relationships are defined in knowledge subgraph. R1 is the set of
positional relationships and R2 is the set of functional relationships, where R1 ∪ R2 = R,
R1 ∩ R2 = φ. Figure 3 shows the knowledge subgraph of Figure 1. In this example, the
object instances and their attributions are shown in Table 1. The relationships between
instances are shown in Table 2.

Table 1. The object instances and their attributes in Figure 1.

Object Instance Attributes

people1 Gender—“female”
people2 Gender—“unknown”
places Style—“tennis court”
shoes Style—“sports shoes”, Color—“white”

object1? Color—“green”, Shape—“round”, Size—“small”
object2? Color—?, Shape—?, Size—?

Table 2. The relationships between instances in Figure 1.

Relationships Map

r1—“on” r1(people1, places), r1(people2, places)
r2—“over” r2(object1, places)
r3—“hold” r3(people2, object2)
r4—“wear” r4(people1, shoes)

In Figure 3, object instances (people 1, people 2, places, shoes) are easily detected, and
most of the attributes can be recognized (Style of places, Style of shoes, Gender of people 1,
the Color, Shape and Size of object 2). Although two object instances (object 1, object 2)
cannot be recognized and some attributes (Gender of people2, the Color, Shape and Size of
object 2) are unknown, we can clearly see that “people 2 hold object 2”, “object 1 is over
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tennis court”. The set of object instances and the attribute set of object instances are shown
as Formula (8) and Formula (9) separately.

O = {obj1, obj2, places, shoes, people1, people2} (8)

AT = {Gender, Color, Shape, Size, Style} (9)

Mob and MAT are defined as Formula (11) and Formula (12) separately.

Mob =



0
0
1
0
0
0

0
0
0
0
0
1

1
0
0
1
1
1

0
0
1
0
1
0

0
0
1
1
0
0

0
1
1
0
0
0


6×6

(10)

MT
AT =

[
ATobj1 ATplaces1 ATpeople1 ATshoes ] (11)

where ATobj1 = {“green”, “round”, “small”}, ATplaces1 = {“tennis · court”}, ATpeople1 =
{“girl”}, and ATshoes = {“sports · shoes”, “white”}. The attribute values and entities (object
instances) can be obtained by visual information and detection algorithms.

3.5. Space Projection

We projected the visual feature into the constructed semantic space to recognize the
objects based on both visual information and the semantic relation. In the second-stage of
the two-stage object detector, the extracted feature vector region proposals are forwarded
to a classification subnet and a regression subnet. In the classification subnet, the feature
vector is transformed into a vector denoted as v with d dimensions and forwarded through
fully connected layers. Then, v is multiplied by a learnable weight matrix W ∈ Rn×d to
produce a probability distribution, which is shown in (12).

Pred = softmax(W · v + b) (12)

where n is the number of classes, b is a learnable bias vector and b ∈ Rn. Cross-entropy loss
is used during training.

To reduce the domain gap, semantic embeddings are needed. Learning from the
transformer, we implemented a dynamic graph with self-attention architecture [31]. For a
new class, it is only necessary to simply insert corresponding embeddings of new classes
and fine-tune the detector, because the graph is variable and is constructed according to
the word embeddings.

4. Experiments
4.1. Datasets

To evaluate our method, we performed experiments on VOC [32] and COCO dataset [33],
which are widely used for pretraining classification models. Before training the few-shot
detector, we removed the new classes from the training dataset to initialize the backbone
network, and to guarantee that the pretrained model has not seen these novel classes.
Corresponding to the novel classes in VOC, the WordNet IDs to be removed are shown
in Table 3.

In the COCO dataset, since the classes have the character of long-tail distribution, we
selected the data-scarce classes on the distribution tail as the novel classes and used Google
Knowledge Graph, Microsoft Satori, and Facebook Entity Graph as the base to extract the
knowledge subgraph for a specific scene.
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Table 3. The removed new classes.

Datasets WordNet IDs [10]

aeroplane n02690373, n02692877, n04552348

bird

n01514668, n01514859, n01518878, n01530575, n01531178, n01532829, n01534433, n01537544, n01558993,
n01560419, n01580077, n01582220, n01592084, n01601694, n01608432, n01614925, n01616318, n01622779,
n01795545, n01796340, n01797886, n01798484, n01806143, n01806567, n01807496, n01817953, n01818515,
n01819313, n01820546, n01824575, n01828970, n01829413, n01833805, n01843065, n01843383, n01847000,
n01855032, n01855672, n01860187, n02002556, n02002724, n02006656, n02007558, n02009229, n02009912,
n02011460, n02012849, n02013706, n02017213, n02018207, n02018795, n02025239, n02027492, n02028035,
n02033041, n02037110, n02051845, n02056570, n02058221

boat n02687172, n02951358, n03095699, n03344393, n03447447, n03662601, n03673027, n03873416, n03947888,
n04147183, n04273569, n04347754, n04606251, n04612504

bottle n02823428, n03062245, n03937543, n03983396, n04522168, n04557648, n04560804, n04579145, n04591713

bus n03769881, n04065272, n04146614, n04487081

cat n02123045, n02123159, n02123394, n02123597, n02124075, n02125311, n02127052

cow n02403003, n02408429, n02410509

horse n02389026, n02391049

motorbike n03785016, n03791053

sheep n02412080, n02415577, n02417914, n02422106, n02422699, n02423022

sofa n04344873

4.2. Implementation Details

We trained the KR-FSD on the base of Faster R-CNN with Stochastic Gradient Descent
(SGD), and set the batch size to 16. In base training phase, the learning rate was set to 0.02,
the momentum was set to 0.9, and the weight decay was set to 0.0001. The learning rate
was set to 0.001 in the fine-tuning phase. We sampled the input image randomly from the
base set and the novel set with a 50% probability, and then randomly selected an image
from the chosen set.

4.3. Results on VOC and COCO Datasets

In Table 4, we show the performance (AP50) of the novel classes on the VOC dataset.
We used the same data splits and a fixed list of novel samples provided by [6]. In the
VOC dataset, 5 classes were selected as novel classes from 20 object classes. The remaining
15 classes were base classes. Each novel class had only a few annotated object instances,
such as 1 annotated object instance, 5 annotated object instances, and 10 annotated object
instances. Compared with the state-of-the-art methods (FSRW [6] and Meta R-CNN [7]),
our approach can achieve superior performance.

Table 4. Performance (AP50) of the novel classes in the VOC dataset compared with state-of-the-
art methods.

Shot Method
Novel Sets

Bird Bus Cow Mbike Sofa Mean

1

FSRW 13.5 10.6 31.5 13.8 4.3 14.8

Meta R-CNN 6.1 32.8 15 35.4 0.2 19.9

ours 35.2 49.8 56.3 61.4 22.6 45.8

5

FSRW 31.5 21.1 39.8 40.0 37.0 33.9

Meta R-CNN 35.8 47.9 54.9 55.8 34.0 45.7

ours 42.2 55.7 60.6 62.3 41.8 52.5
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Table 4. Cont.

Shot Method
Novel Sets

Bird Bus Cow Mbike Sofa Mean

10

FSRW 30.0 62.7 43.2 60.6 39.6 47.2

Meta R-CNN 52.5 55.9 52.7 54.6 41.6 51.5

ours 44.5 65.8 62.7 65.8 42.5 56.3

Table 5 shows the averaged APs of our method on the COCO dataset. In the COCO
dataset, the minival set was used for testing and the rests were used for training. Twenty
classes were selected as novel classes from 80 classes. The remaining 60 classes were the
base. The novel classes overlapped with the classes in VOC. Each novel class had only a
few annotated object instances, such as 10 annotated object instances, 20 annotated object
instances, and 30 annotated object instances.

Table 5. The averaged APs of the novel classes on the COCO dataset.

Shot Method AP50 AP75 AP

10

FSRW 12.3 4.6 5.6

Meta R-CNN 19.1 6.6 8.7

ours 21.5 8.7 10.2

20

FSRW 16.5 6.3 7.8

Meta R-CNN 22.8 9.1 10.9

ours 26.1 11.5 13.2

30

FSRW 19.0 7.6 9.1

Meta R-CNN 25.3 10.8 12.4

ours 28.6 13.2 14.1

Table 6 shows the ablative performance, where mAP = 50. KR is knowledge
reasoning component.

Table 6. Ablative performance (mAP50) on the VOC.

KERRYPNX KR 1-Shot 2-Shot 3-Shot 5-Shot 10-Shot

Faster
R-CN 32.8 44.7 46.1 49.8 55.8

ours
√

45.8 46.2 47.3 52.5 56.3

4.4. Experiments on Relation Reasoning

In order to verify the effectiveness of KG-based reasoning in detection, we selected
three groups of data for effectiveness experiments. In the data group, the performance
of each class was counted respectively by selecting one class as the novel class and the
remaining classes as the base classes.

In the first experiment, we primarily counted the performance of sofa, TV, cat and chair.
The object instances (such as TV, chair, and cat) in many scenes are strongly associated with
the sofa. We frequently see “TV and sofa together”, and “cat sitting on chair” or “cat sitting
on sofa”. In KGs, the distances between these entities (sofa and TV, cat and sofa, cat and
chair) are shorter. Because these classes are closely related, the performance of all classes
will be significantly improved when knowledge reasoning is integrated into visual features.
The performance is shown in Figure 4.
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Figure 4. The first experiment on relation reasoning. The classes (sofa and TV, cat and sofa, cat and
chair) have strong correlation. The performances of correlated classes are increased.

In other two experiments, sofa almost has no association with other classes (mbike,
bus, car, bird, cow, horse). Therefore, the distances between sofa and other entities (mbike,
bus, car, bird, cow, horse) are longer. However, we often see bus, car and mbike at the same
time, and sometimes see cow and horse together. Figures 5 and 6 show that almost all
the performances of correlated classes are increased slightly, due to the better knowledge
propagation between the two groups of classes.
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Figure 5. The second experiment on relation reasoning. Sofa has almost no association with
other classes (mbike, bus, car). The performances of correlated classes (mbike, bus, car) are
increased slightly.
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Figure 6. The third experiment on relation reasoning. Sofa almost has no association with other
classes (bird, horse, cow). The performances of correlated classes (horse, cow) are increased slightly.
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5. Experimental Analysis

This work combines visual information and knowledge reasoning method in order to
recognize novel classes. Experiments on VOC datasets showed that the performance was
increased slightly at lower shot levels, such as 1-shot, and the performance was competitive
compared with previous state-of-the-art methods at 5-shot and 10-shot, which is shown in
Table 4. The average APs of the novel classes on the COCO dataset were increased slightly
at 10-shot, 20-shot and 30-shot, which are shown in Table 5. Knowledge reasoning is proved
to be meaningful for recognition tasks, as shown in Figures 4–6. When the novel classes
were strongly associated with the base classes, the performance was noticeably increased,
because there was better knowledge propagation between the novel classes and the related
groups of classes.

6. Conclusions

In this paper, we proposed a few-shot object detection method based on knowledge
reasoning. Since the semantic relation between the base classes and the novel classes in
some scenes can be inferred by KGs, it is helpful to learn the novel concepts by applying
knowledge reasoning with the available visual information. We built a few-shot detection
model on the base of Faster R-CNN, and applied reasoning to some uncertain object
instances at the second stage. To demonstrate the performance, we carried out experiments
on VOC datasets and COCO datasets. Compared with state-of-the-art methods, our
approach achieved better results at several few-shot detection settings. In future work, we
will further carry on research on few-shot recognition and detection driven by knowledge
and data.
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