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Abstract: Quasi-particle formed by electron and the dressed deformed lattice is important to ac-
curately interpret the properties of various disordered/amorphous materials. However, a unified
understanding of the drag effect, in particular the negative Coulomb drag in hopping systems,
remains an open challenge. This work proposes a theoretic framework to account for both positive
and negative Coulomb drag in dual-1D-hopping systems by considering both the electron-electron
correlation and the electron-phonon correlation. It is found that lattice relaxation in the active line
of the hopping system may give rise to an inverse energetic pumping force in the passive line,
causing negative Coulomb drag. The mobility of the negative coulomb drag can approach the scale
of 10−5cm2V−1s−1, especially at low temperature, high carrier-density, and narrow inter-spacing
separation. More intriguingly, the positive drag could be recovered by varying the energy fluctuation
and suppressing the electron-phonon interactions, but with a much lower magnitude. Our work
could serve as a universal model for the Coulomb drag effect in the hopping system.

Keywords: hopping regime; negative coulomb drag; positive coulomb drag

1. Introduction

The Coulomb drag effect originated from the broken electron-hole symmetry and
electron interactions [1,2]. It can be significant in a mesoscopic system of two interacting
conducting circuits, where the current in one circuit could drive the motion of carriers in
the other one due to the momentum transfer caused by electron interactions. This phe-
nomenon becomes more evident in low-dimensional systems such as Luttinger liquid [3],
quantum wire structures [4–7], and graphene layers [8,9]. Existing theoretical [10–14] and
experimental research [15–20] are mostly based on the theory that the momentum and
energy transfer occur between spatially separated electron gases due to the Coulomb cou-
pling. Therefore, high mobility materials or structures were usually employed to study this
effect. Meanwhile, the concept of momentum transfer is not applicable for the low mobility
systems where charge transport occurs in the hopping regime among localized states. Only
a limited volume of research has discussed possible mechanisms for realizing the hopping
drag effect in such a system. M. E. Raikh et al. [21] employed a charge pumping mechanism
in the structure of two neighboring pairs of sites; by considering the electron-electron
interaction, they theoretically realized the directional migration of carriers by the Coulomb
drag effect. V. I. Kozub et al. [22] considered the influence of electron-hole pairs, and then
a novel negative Coulomb drag [23] by dipole–dipole interactions between the critical
resistors in the active and the passive layer was remarkably realized.
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Besides the direct Coulombic correlation between electrons, the coupling between
the electrons and the surrounding lattice, i.e., the polaron effect [24], is also essential
for determining the transport characteristics, especially in materials with relative ‘soft’
lattice featured by low-frequency vibration modes like organic solids [25]. Due to the
finite relaxation time, the deformed lattices usually lag behind the moving electrons [26],
forming an effective polarized center that might further modify the other electron’s motion.
This introduces an effective electron-electron interaction, which should be emphasized in
treating the hopping drag problems.

The study of the Coulomb drag effect can be used to explore the physical properties of
low-dimensional systems, can be used to detect spontaneous charge fluctuations due to
many-body associations [27], and distinguish Fermi liquids from Luttinger liquids [3]. It can
also play an important role in designing nanodevices, such as single-electron transistors [28]
and quantum cellular automata [29].

2. Methods and Calculation

In this letter, we theoretically predicted the possibility of negative hopping drag by
introducing the lattice distortion dressed behind the electron. A reversing electric field
could be formed in the passive line with such a polaronic effect, leading to a pumping effect
on the electron in the opposite direction. The negative drag effect was derived with the
Miller-Abrahams hopping framework [30] under varying parameters, including energetic
disorder, lattice relaxation time, and correlation strength. Moreover, the positive drag effect
could recur at the decrease of the relaxation time in a rigid lattice but is much weaker than
that of the negative one. Here, we present the detailed results, analysis, and discussions
about the realization of the hopping drag effect.

Two parallel chains with hopping conduction were assumed with discrete, separated
distance, at which scale the interchain tunneling is negligible while the coulomb correlation
works [20]. In the system of localized sites, polarons are the main quasi-particles carrying
charges [31], which are formed by electrons (holes) dressed with deformed lattices. In
systems with soft lattices such as organic semiconductors, the low-frequency phonon modes
will lead to strong asynchronization between the electron and the lattice deformation. This
is illustrated by the transition process in the configuration coordinate of Figure 1, where
the ionization and neutralization of a site in carriers’ hopping could proceed in 4 steps [32],
(1) the neutral site suddenly accepts an electron after a vertical transition, but the lattice is
adiabatic at this moment, and the waiting time for this configuration before the lattice’s
relaxation is assumed to be τ1; (2) the lattice relaxation occurs, and the ionized site reaches
the new equilibrium configuration with duration time τ2; (3) the ionized site loses the
electron in a vertical transition, leaving the deformed lattice for a period of time τ3; (4) the
deformed lattice restores to the equilibrium position of the neutral site, lasting for a period
of τ4 before accepting a new electron.

An architecture with three adjacent sites in one dimension was used to demonstrate
the calculated electron hopping process, as in Figure 2. Solid lines represent hopping sites,
red circles represent electrons, and positive marks denote the cloud of deformed lattices.
Spatially, the deformed lattice that acts as an effective positive charge will lag behind the
electron. The dragging process could be divided into 7 sections, i.e., from Γ1 to Γ7. Among
them, Γ1 to Γ4 relate to the 4 stages of τ1 to τ4 for site 1; Γ3 to Γ6 relate to the stages of
τ1 to τ4 for site 2; while Γ5, Γ6, and Γ7 relate to the stages of τ1, τ2, and τ3 for site 3, all
corresponding to the transitions process defined in Figure 1. Due to the motion of electrons
and quasi-particles, energetic correlation effects will be triggered in the passive line in these
7 sections.

As demonstrated in the insert figure of Figure 2, let us define that site 1 of the active
line is in the τ3 stage, while site 2 is in its τ1, i.e., the electron just drifts from site 1 to 2.
Negative electrons will negatively modulate the electrostatic potential on the nearby site in
the passive line; therefore, the electrostatic energy of an electron on the site will rise. When
it comes to the positive charged deformed lattice, oppositely, the nearby site in the passive



Electronics 2022, 11, 1273 3 of 9

line is mediated by positive electrostatic potential, and the on-site electrostatic energy
of an electron will decrease. Thus, negative electrons in the active layer and positively
deformed lattice induce opposite energy fluctuations to electrons in the passive layer. Due
to the coulombic correlations, the electron on site 2 would uplift the energy of the parallel
site 2′ along the passive line. In contrast, the unrelaxed deformed lattice on site 1 has an
inverse energy influence in the passive line compared with the electron, which lowers the
site energy in the parallel site 1′. Consequently, an effective electric field in the opposite
direction with the active line’s drift current forms between sites 1′and 2′ in the passive line.
An electron at site 2′ in the passive line has a greater probability of transitioning to site 1′

compared to site 3′, making it possible to generate a macroscopically opposite current in
the passive line contrasted to the active line.

Figure 1. The configuration coordinate for the electron transfer process. τ1 relates to the ionization
of a site in which the phonon is adiabatic without lattice deformation; τ2 relates to the relaxation of
the charged site with the lattice deformation process for a new equilibrium state; τ3 relates to the
neutralization of the charged site in which the phonon is adiabatic, and lattice deformation remains;
τ4 relates to the release of the deformation of the lattice.

Figure 2. The electron and quasi-particle transfer process in the active line and the energy fluctuation
in the passive line. The insert figure shows the site energy in the passive line described by a Gaussian
distribution. “Uncorrelated” and “Correlated” respectively indicate the states before and after being
affected by the deformed lattices and the electrons in the active line.
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The negative drag current was further calculated within the hopping framework by
employing the Miller-Abrahams hopping rate [30]

νij = ν0 × exp(−
2rij

α
−

ε j − εi +
∣∣εi − ε j

∣∣
2kT

) (1)

where vij is the hopping rate from site i to site j, v0 is the attempt-to-escape frequency, rij is
the inter-site distance, α is the localization length of charge carriers, εi and ε j are the carrier
energies on sites i and j, respectively, k is the Boltzman constant, and T is the temperature.

Our calculation sequence is to determine the Fermi level first, calculate the electron
escape frequency in the passive line vp, then calculate the electron escape frequency in the
active line va, and finally calculate the drag current vnegative. As for the electron mobility, it
can be calculated by the escape frequency:

D = v× α2 (2)

D =
k× T

q
× µ (3)

where v is the hopping rate, D is the diffusion coefficient, and µ is the mobility.
The Gaussian density of states (DOS) is introduced to depict the system disorder [30]

g(ε) =
N

σ
√

2π
× exp

(
− ε2

2σ2

)
(4)

where σ is the energy scale of the density of states, and N is the total number of localized
sites. The carrier concentration n = N/1000 is assumed in our system to determine the
Fermi level:

n =

+∞∫
−∞

g(ε)× f (ε)dε (5)

where f (ε) is the Fermi distribution.
As shown in Figure 2, let us assume there is an electron located at site 2′, whose

site energy can be described as ε2′ =
∫

εN(ε) f (ε)dε/
∫

N(ε) f (ε)dε; while the
unoccupied sites 1′ and 3′ are featured by higher expectancy energy, so that
ε1′ ,3′ =

∫
εN(ε)(1− f (ε))dε/

∫
N(ε)(1− f (ε))dε > ε2′ . If no coulomb correlation exists,

the transition possibilities (or the hopping rates) from site 2′ to sites 1′ and site 3′ will be
the same. When correlations are introduced, for instance, at the section of Γ3, the hopping
rates are no more in equilibrium due to the imbalance in forward and backward hopping
barriers’ heights, E f orward = ε3′ − (ε2′ + U), and Ebackward = (ε1′ + ∆)− (ε2′ + U), ref. [33]
where U and ∆ are the correlation energy from electron and deformed lattice, respectively.
Due to the smaller barrier for backward hopping E f orward > Ebackward, a negative dragging
effect can be shown in this section. The hopping rates and direction in other sections
could be obtained similarly, and the total hopping rate is the superposition of all these
individual rates.

For simplicity of calculation, we assumed an even distribution of waiting time
τ1 = τ2 = τ3 = τ4. Namely, the drag rate in the passive line is calculated by
υp = 1

7 υp1 +
1
7 υp2 +

1
7 υp3 +

1
7 υp4 +

1
7 υp5 +

1
7 υp6 +

1
7 υp7, where υpi is the hopping frequency

of section Γi, defined as vpi =
vpi−le f t+vpi−right

2 , in which υp1−le f t represents the rate of hop-
ping from site 2′ to site 1′, υp1−right represents the rate of hopping from site 2′ to site 3′, and
were calculated via

vp =
1

N − n

+∞∫
−∞

vij × (1− f (ε))dε (6)



Electronics 2022, 11, 1273 5 of 9

va =
1

(N − n)× n

+∞∫
−∞

f
(
ε j
) +∞∫
−∞

vij × (1− f (εi))dεidε j (7)

where vp is the electron escape frequency caused by the energy fluctuations in the passive
line, va is the electron escape frequency caused by the voltage applied on the active line.

As we theoretically predict, the proposed negative hopping drag might significantly
influence the charge transport in soft materials like organic semiconductors, especially in
some organic materials with quasi-1D structures. One example is conjugated polymers,
where intra-chain hopping is much faster than inter-chain one. Like materials PBTTT and
IDTBT, where conductance is mainly dominated by polaronic hopping along the 1D back-
bone; therefore, correlations among chains might bring drag effect into the charge transport.
Another example is the 1D organic conductor formed by charge transfer molecules, drag
effect among the 1D chains might have a significant influence on modifying the transport
properties of the systems. Our theoretic work might provide pathways and references for
further optimizing relevant materials systems’ charge transport theoretic framework.

In order to demonstrate the impact of the lattice relaxation time, we set τ1 = τ3, τ2 = τ4,
and assumed the ratio of waiting time in the lattice relaxation sections (Section 1, 3, 5, 7
in Figure 2) throughout the entire electron transfer process is τ. Then, υp is calculated by
υp = τ

7 (υp1 + υp3 + υp5 + υp7) +
1
7 ×

7−4τ
3 (υp2 + υp4 + υp6). Based on these, the diffusion

constant D and mobility u could be further obtained via D = υ× α2, and D = k∗T
q ∗ µ,where

a is the inter-site distance. Then the drag current νnegative could be defined as

vnegative =
va × vp

va + vp
(8)

where vnegative is the drag current induced by the active current.
When it comes to a totally rigid lattice or a system with only high-frequency phonon

modes, the lattice relaxation time is negligibly short, and lattice deformation and electron
move together without any delay between them. When the lattice relaxation disappears,
the original seven drag process in Figure 1 becomes three sections in Figure 3a. In such
a situation, as shown in Figure 3a, we begin with a charge located at site 1 in the active
line and a charge located at site 2′ in the passive line. In section Γ1, due to the coulombic
correlations, the electron on site 1 would uplift the energy of the parallel site 1′, the carrier at
site 2′ has a greater probability of hopping to site 3′ than to site 1′ as Formula (1). In section
Γ2, the carrier at site 2′ has the same probability of hopping to site 3′ than to site 1′. In
section Γ3, due to the coulombic correlations, the electron on site 3 would uplift the energy
of the parallel site 3′, the carrier at site 2′ has a greater probability of hopping to site 1′ than
to site 3′ as Formula (1), which is completely inverse to section Γ1. No macroscopic current
is formed considering the whole electron transfer (sections Γ1, Γ2, and Γ3). However, when
considering a secondary order case, as shown in Figure 3b, the forward hopping charge
has some possibility of being further driven forward by the same charge in the active line
again. In contrast, the same charge would no longer drive the backward hopping charge.
The hopping frequency of positive drag can only be -described as

vp ∝ vp2 (9)

As shown in Figure 4a, the dependency of the negative drag mobility on the tempera-
ture T, the correlation strength from electrons (expressed by parameter U), and deformed
lattices (expressed by parameter ∆) are displayed. The negative drag mobility decreases
with the increase of temperature, showing decreased correlation effect when thermal acti-
vation weakens the system disorders’ influence. In addition, both the correlations from the
electrons (noted as U) and lattices (noted as ∆) correlation strength could effectively deter-
mine the strength of the drag effect, shown in Figure 4a. In the Miller-Abrahams hopping
framework, the energy difference determines the hopping rate, as shown in Equation (1).
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The effect of the parameters U and ∆ on the negative coulomb drag hopping rate show the
fundamental roles of their interactions in the negative drag process.

Figure 3. Mechanism for the positive hopping drag without lattice relaxation. (a) When the charge in
the active line locates at site 1, a charge carrier at site 2′ in the passive line has a larger probability of
hopping forward. In contrast, this probability is offset when the charge in the active line moves to
site 3 and no net current exists. (b) In a secondary order case, the forward hopping charge has some
possibility of being driven forward by the same charge in the active line again, but the same charge
would no longer drive the backward hopping charge.

The influence of relaxation time on mobility in the passive line is displayed in Figure 4b.
It is evident that there is a positive correlation between the lattice relaxation time τ3 and the
intensity of the negative drag effect and such dependence could be enhanced by increasing
the correlation strength either from the electron or the deformed lattice.

Figure 4c shows the dependency of the negative coulomb drag mobility on the degree
of disorders of the density of states, with a Gaussian width σ ranging from 0.1 to 0.5 eV.
With an increasing degree of disorder, the energy fluctuations in the passive line caused by
the deformed lattices and electrons in the active line will be dispersed. Consequently, the
negative drag effect will be quenched by the increasing degree of system disorder.

As shown in Figure 4d, when shortening the lattice relaxation time τ3 to zero, the
negative drag effect becomes positive as the coulomb drag mobility is positive. This verifies
our theory that the lattice relaxation in the hopping system’s active line gives rise to an
inverse energetic pumping force in the passive line, causing negative coulomb drag. When
ignoring the effect of lattice relaxation in the active line and only considering electron-
electron interactions, no negative drag occurs, and at this time, the situation is similar to
that in the research [22]. Only positive coulomb drag will occur. In the meantime, we
can find that it is a thermal activation process when the effect of the lattice deformation
correlation is wiped out. The positive drag is a thermal activation process, while the effect
of the lattice deformation correlation is wiped out. The factors leading to the positive drag
exist in the negative drag process when τ3 is finite, while we could see that the positive
frequency is approximately two orders smaller than that of negative drag, and therefore it
is only a perturbation item.
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Figure 4. (a) The negative coulomb drag mobility varies with temperature. (b) The negative coulomb
drag mobility varies with the ratio of the lattice relaxation time to the total time. (c) The negative
coulomb drag mobility varies with the ratio of the disorder. (d) The positive coulomb drag mobility
varies with temperature. In this calculation, vp = vp2 is assumed (τ = 0 ). U and ∆ mean the
correlation energy of electron-electron and electron-quasiparticle. In this calculation, α = 10−8 cm,
ν0 = 1012 s−1, σ = 0.1 eV. We assume that the voltage drop in two neighboring sites is 0.1 eV.

3. Conclusions

In conclusion, a theory combining correlations from both deformed lattice and elec-
trons is proposed for the prediction of the existence of the negative Coulomb drag effect
in the disordered chain. Asynchrony in motions of the electrons and deformed lattice in
the active line will introduce energy fluctuations in the passive line, which finally drives
the negative hopping transport. When the motions’ non-sync is removed, the negative
drag effect will be reversed to the positive one but with lower intensity. Meanwhile, the
dependency of the negative drag effect on the correlation strength and the degree of system
disorder are investigated and discussed within a Miller-Abrahams hopping framework.
This letter might provide new possibilities for utilizing the quantum effect from electron-
lattice couplings and a pathway for understanding correlations of charge transport in
disorder solids like organic semiconductors.
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