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Abstract: In an RGB-LED-based optical camera communication system, it is an essential goal to
have better performance in the data rate and BER. However, in a higher symbol rate, due to the
conventional sampling algorithm, the deterioration of transmission performance brought by the
inter-symbol interference and inter-channel interference is significant. Innovatively, in this paper, the
sub-image obtained by a captured frame of received video is encoded by a channel-attention-Net-
based encoder to generate a descriptor without existing sampling methods. Moreover, we propose an
LSTM-based equalizer to decode the descriptor and mitigate transmission performance deterioration.
Utilizing the long-short-term memory of an LSTM unit, an equalizer not only can reduce bit error rates
but also increase the data rate. The experimental results show that at a symbol rate of 46 kbaud/s, a
record-high data rate at 44.03 kbit/s is achieved under random data transmission while still meeting
the pre-forward error correction requirement.

Keywords: optical camera communication; rolling shutter effect; visible light communication;
machine learning; machine vision

1. Introduction

Recently, visible light communication (VLC) has attracted considerable attention as
a short-range communication technology due to its characteristics of higher bandwidth
and lower time delay [1]; it is even regarded as one of the next wireless communication
technologies (6G) [2]. VLC technology provides opportunities to the applications of indoor
positioning, mobile payment and navigation [3]. In most research, VLC needs photodi-
odes as dedicated receivers, which delays its commercialization. Thus, optical camera
communication (OCC) mostly using a charge-coupled device (CCD) or complementary-
metal-oxide-semiconductor (CMOS) cameras as the receiver is researched as a specific type
of VLC to overcome the issue [4]. CMOS-based commercial optical cameras are being
widely utilized in mobile phones with their rapid development; thus, it provides conditions
for OCC technology development [5].

The color-shift keying (CSK) modulation scheme recommended by [6] has been widely
adopted in RGB-LED-based OCC systems, offering higher communication efficiency. Three
bits are represented by one symbol in an 8-CSK modulation scheme [7], which poten-
tially enhances the data rate performance compared with the on–off keying modulation
scheme [8]. However, the inter-symbol interference (ISI) will be introduced by the CMOS-
based camera’s sampling [1], which will significantly degrade the RGB-LED-based OCC
system performance. Most conventional decoding algorithms employed for mitigating ISI
and inter-channel interference (ICI) [9] do not perform well in higher-speed transmission
environments and only offer data rates of 8.64 kbit/s and 17 kbit/s, respectively [10,11].
More ingenious algorithms are desperately needed for making innovations for conventional
sampling and equalization methods.

In recent years, deep learning technology represented by convolutional neural network
(CNN) and recurrent neural network (RNN) provides methods to solve these problems
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faced by decoding in OCC systems [12]. In the deep learning field, CNN-based neural
networks are sought highly for solving the image classification and region-of-interest (ROI)
detection problems, since they specialize in features extraction and nonlinear mapping.
However, most previous research only focus on using CNNs for ROI detection [13,14]
and equalization [15], which means that the processing of demodulation still requires
signal sampling. Conventional signal sampling algorithms are susceptible to ISI and ICI,
resulting in performance deterioration. Introducing CNN-based decoding algorithms for
extracting features for images received provides a potential solution for avoiding signal
sampling and mitigates ISI and ICI. Toward the time-sequence prediction problem, RNN
seems to be a more feasible solution. Long-short-term-memory (LSTM)-based RNN [16] is
widely used in natural language processing (NLP) [17], emotional analysis [18], and other
time-sequence problems. In VLC, an LSTM-based monitor is used to estimate network
performance by calculating the signal-to-noise ratio (OSNR) [19]. However, in the field of
rolling-shutter-effect (RSE)-based OCC, the application of RNN is still in its infancy, no
researchers pay attention to utilizing LSTM-based equalizers, which reflects that most of
the existing equalizers only take spatial-wise equalization into consideration.

Combining their advantages of feature extraction and learning to store information
over time intervals, we provide an appropriate decoding scheme fusion of the function of
demodulation and spatial-wise and time-wise equalization. In this work, to our knowledge,
we are the first to put forward a CNN-LSTM-based decoding scheme in which CNN serves
as an encoder, and LSTM serves as a decoder and equalizer in OCC. The main contributions
of this work are summarized as follows:

• We design a novel neural network named channel-attention-enhanced LSTM (CAE-
LSTM-Net) for an OCC decoding system, which is inspired by the channel attention
mechanism and LSTM. It is an end-to-end network that can decode signals without
conventional sampling from images received by a CMOS-based camera, which is
different from all existing algorithms for RGB-LED-based RSE-based OCC systems.
Since our decoding method does not need conventional sampling, it is not easily
affected by sampling offset caused by ISI. Based on our equalizer, we also fuse the
function of spatial-wise and time-wise equalization that is for the first time considered
by an equalizer for an OCC system.

• We propose a header-location-based image segmentation algorithm with satisfac-
tory supportability for precise sub-image demodulation that combines signal tracing
processing and gamma correction.

• To our knowledge, the performance of the proposed decoding algorithm in data rate
and BER is record-high in the RSE-based OCC. We also prove experimentally that the
decoding scheme based on CAE-LSTM-Net outperforms those comprised of other
existing CNNs when the transmitted symbol is modulated by 8-CSK.

Organization

The remainder of this paper is organized as follows. Section 2 introduces the back-
ground. Section 3 explains the methodology of our CAE-LSTM-Net-based decoding algo-
rithm. Section 4 introduces the experimental setup. Section 5 presents the experimental
evaluation and analysis. Finally, in Section 6, the conclusion is presented.

2. Background
2.1. Principal of Using CMOS Sensor in OCC

An image sensor is classified by two main technologies: one is CCD supporting global
shutter, and the other is CMOS supporting rolling shutter, as we can learn from [20–22].
The construction process of an image using the global shutter effect is shown in Figure 1.
All the pixels on the sensor are exposed simultaneously, and the readout data are accessed
at the end of exposure. With an RSE-based camera, the captured image is generated row
by row of pixels, which means that the pixels exposure and data readout are performed
sequentially by each row in a CMOS sensor. All scanlines captured at different exposure
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times are stitched into an image at last, as shown in Figure 2. Utilizing an RSE-based camera,
changing states of light source will be captured in one image. However, if the transmitter,
comprised of RGB-LED in our work, is modulated at a higher-speed, ISI will be introduced
probably. The main incentive of ISI is that there are overlaps between the exposure time of
each row, and two states of light source will be captured in them, which will result in an
invalidation of pixel-row per symbol in a large proportion of rows. Additionally, there is a
processing gap time between the constructions of two adjacent frames when no row can be
activated during this period. In [23,24], a special packet design and packet combination are
proposed to solve the problem in which the signal emitted during the processing gap-time
of the CMOS sensor cannot be captured. However, finding a more effective scheme to
mitigate intense ISI in higher-speed signal transmission is still an impediment for OCC
technology development.

Figure 1. Sketch map of the global shutter of the CCD sensor.

Figure 2. Sketch map of the rolling shutter of the CMOS sensor.

2.2. Principal of CNN-Based Encoder in OCC

CNN has been used in image recognition for identifying humans, objects, etc. For the
task of feature extraction, CNNs utilizes convolution to generate output information, which
is known as a “Feature map”. The convolution kernel which contains the transformation
arguments that are applied to the input argument can easily extract the features that it
wants to highlight. After convolution, nonlinear activation function and pooling layers
are extensively used in CNN to explicitly model the nonlinear relationship between input
and output information. In the training process, an optimization algorithm is used to
iterate the optimal parameters of kernels that characterize the network perception. In the
specific case of image classification, softmax operation in the last layer is responsible for
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generating the image class and its corresponding probability value. Essentially, a great
majority of CNNs that applied in the classification task are comprised of two stages: one is
the convolution-based feature extraction stage, and the other is the ANN-like nonlinear
mapping stage, which is used to transform a features descriptor generated by the first
stage into an output classification result, as shown in Figure 3. However, the output
result is bounded, and it means that all layers in CNN are only activated by current input
information, which is highly effective for an independent classification problem but not
for time-variant application scenarios. Therefore, in this work, we take advantage of CNN
as a feature encoder to generate a descriptor of input image, and it is not configured to
accomplish the task of transforming the higher-level features to an output class.

Figure 3. Sketch map of the feature maps obtained by LeNet-5 [25]. The descriptor of input image is
generated in the second stage of neural network.

2.3. The LSTM Model

Recurrent neural networks (RNNs) are fundamentally different from the feed-forward
neural network. In RNN, the temporal correlations between previous information and
current circumstance is modeled explicitly, which is aiming at solving sequence-based
problems. However, it is difficult to learn long-range dependencies with traditional RNNs
due to the gradient vanishing or exploding problem [26,27]. In order to overcome these
issues, in [16], Hochreiter et al. propose the long short-term memory (LSTM) architecture
that is further improved by Gers et al. [28]. The structure of the LSTM unit and the
sequence classification model are depicted in Figures 4 and 5. In brief, a gating mechanism
is introduced by their works, which provides avenues for increasing network insensitivity
to gap length. The formulations of all function nodes in an LSTM unit are given by:

ft = σ
(

W f xxt + W f hht−1 + b f

)
, (1)

it = σ(Wixxt + Wihht−1 + bi), (2)

C̃t = φ
(
WC̃xxt + WC̃hht−1 + bg

)
, (3)

ot = σ(Woxxt + Wohht−1 + bo), (4)

Ct = C̃t � it + Ct−1 � ft, (5)

ht = φ(Ct)� ot. (6)

where W f x, W f h, Wix, Wih, WC̃x, WC̃h, Wox, and Woh are weight matrices corresponding
to the input of activation functions; σ and φ represent the sigmoid activation function
and tanh function respectively; and � means an element-wise multiplication. In the deep
learning literature, there are three gates in an LSTM block, the forget gate f , the input
gate i, and the output gate o, and all of them take advantage of the sigmoid output range
from 0 to 1. It is intuitive that the decisions for the three gates are dependent on the
previous output ht−1 and the current input xt. Specifically, the input gate, forget gate,
and output gate are responsible for deciding what to preserve in the internal state, what
to forget from the previous state, and which input signals should pass from C̃t to the
output ht, respectively. In application, the dimension of input signal xt should be specified
at first as a hyperparameter, and it depends on the dimension of all internal vectors.
The relationship between input xt and output ht is associated with the memory cell state



Electronics 2022, 11, 1272 5 of 16

Ct−1 and intermediate output ht−1 at the t − 1th time step. It means that utilizing the
LSTM block, we can construct transformation from the previous input and current input to
the current output, and we can realize equalization to mitigate ISI with consideration of
information brought by all kinds of symbol arrangement. Such equalization contributes to
both BER reduction and data rate increasing, taking advantage of long-short-term memory.

Figure 4. Sketch map of the LSTM unit.

Figure 5. The sequence classification model based on LSTM unit. xt is the input at time step t and ht

is the output at time step t.

3. Proposed Neural-Network-Based Decoding Scheme

3.1. Proposed Neural Network

This paper propose a neural network named CAE-LSTM-Net whose structure is
shown in Figure 6. The CAE-LSTM-Net comprises of two parts of neural network: one
is channel-attention-Net serving as an encoder, and the other is LSTM unit serving as a
decoder and equalizer. We introduce this network with the goal of improving the quality of
representations and equalization produced by the feature encoder and equalizer. Inspired
by channel attention [29], we take into consideration channel-wise feature recalibration in
CNN-based descriptor design. As shown in the middle part of Figure 6, the descriptor of
the sub-image from the output of the encoder at each time step is a one-dimensional vector
generated by flattening the feature maps after channel-wise recalibration. Meanwhile,
for the purpose of mitigating the ISI introduced by the exposure time overlap of the
previous symbol shown below in Figure 6 in sub-image demodulation, and enhancing the
accuracy of recognizing a specific data sequence (i.e., header of each packet) in the data
packet, it occurs to us that we can take advantage of the correlations between previous
information and current circumstance learned by the LSTM unit and build an equalizer
to learn different nonlinear equalization mapping under different symbols arrangement.
For instance, as shown in Figure 6, at the second time step, the sub-image is significantly
distorted due to ISI brought by the previous symbol at the first time step, which may
cause an error decoded bit. The proposed LSTM-based equalizer is capable of learning an
appropriate pattern that avoids decoding the current sub-image into the previous one bit,
using its short-term memory.
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Figure 6. Sketch map of the structure of the proposed CAE-LSTM-Net.

3.2. Channel-Attention-Net-Based Encoder of Proposed Neural Network

How to generate an appropriate descriptor of a sub-image using its internal feature is
still a challenge. Theoretically, there are two aspects of CNN design that deserve special
attention: one is better modeling spatial dependencies [30,31], and the other is interdepen-
dencies between channels. For the task of extracting strong discriminative features, we
enhance the network’s sensitivity of channel-wise and plane-wise informative features
by using the channel attention mechanism and residual mapping. As shown in Figure 7,
the proposed encoder consists of two main architectures: residual unit and recalibration
unit. These two architectures are shown in Figure 8. In basic blocks, the residual unit is
responsible for fitting spatial residual distribution, and it benefits CNN to learn constructive
solutions in backpropagation, resulting in a reduction of training error [32]. To transform
lower-level extracted features to higher-level, we lay out two multichannel kernels in each
residual unit, adopting a ReLU layer to model the nonlinear relationship between each layer
of the feature map. A normal residual structure is not quite sensing the features in the third
dimension ideally. Therefore, we design a recalibration unit to explicitly model channel
interdependencies, using channel-wise global information to recalibrate filter responses.
Utilizing the global layer and fully connected layer, we obtain the characterization of each
channel of the input feature map. BatchNormalization layers constrain the output vector
that is in the same distribution, which improves the smoothness of the optimization land-
scape in the process of iterating out the weight of each channel of input feature maps [33].
In the last stage of the encoder, the generation of a vector descriptor of the input sub-image
is achieved by using average pooling. In details of the channel-attention-Net-based encoder,
the size of the input image is 7 × 10, and the sizes of all convolution kernels are set to 3 × 3.
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Figure 7. The structure of channel-attention-Net-based encoder which comprised of two basic blocks
in this case.

Figure 8. Sketch map of the architectures of residual unit and recalibration unit in basic block.

3.3. LSTM-Based Equalizer of Proposed Neural Network

The proposed equalizer based on LSTM is shown in Figure 6, which comprised
an vector input layer, a hidden layer, and a classification layer. In this work, LSTM is
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introduced to decode a vector descriptor generated by the proposed encoder and equalize
channel distortion, which is equal to a time-series classification problem. In the “one-to-one”
form, LSTM takes an input, a time-series window t of descriptor vector xt (one descriptor
vector x at each time step of window t), and at each time step of the time-series window t,
it finally outputs a classification result, which is given by the softmax vector.

The overlaps between the exposure time of symbols cause a degree of ISI happening
in the sub-image that needs to be demodulated now (at time step t). The generation of
an output vector of the LSTM unit at time step t is a comprehensive consideration of
long-short-term memory and the latest training data vector, which means that parameters
in short-term memory can be used to quickly process ISI brought by a previous one symbol,
and those parameters in long-term memory are used to increase the accuracy of recognizing
symbols of specific data transmitted repeatedly, which contributes to recognizing more
headers of data packets so that more packets could be decoded. Due to the effective use
of long-short-term memory by an LSTM unit, it will learn a pattern so that it can make
specific compensation for mitigating ISI happening in the current sub-image decoding after
obtaining the output vector of the previous time steps so as to reduce the classification error.

3.4. Decoding Scheme

Our proposed decoding scheme can be summarized briefly: we segment each extracted
frame into a series of sub-images in order and decode one sub-image in one time step using
CAE-LSTM-Net. The proposed decoding scheme of the RGB-LED-based OCC system is
shown in Figure 9.

In this OCC system, each data packet is transmitted three times repeatedly within
(1/frame rate) second to ensure that a data packet can be recorded completely at least once
in a captured frame. Each packet transmission had a 16-bit header and a payload, as shown
in Figure 10. The signal is transmitted by a video recording with 60 frames per second
(fps) and decoded offline. In an optical camera, the resolution of each frame in a captured
video is 1080 × 1920. Firstly, an appropriate column of pixels is selected, and image
enhancement is performed in these pixels. Utilizing the averaging-based signal tracing
algorithm proposed in [9] and gamma correction, the signal intensity can be normalized,
and the nonlinear distortion introduced by hardware can be compensated. These processes
also make a large contribution to increasing the gaps between symbols and improving
the recognition rate. The 8-CSK modulation is adopted in this work; it means that on–off
keying is employed for each channel so that each symbol includes three bits. Before image
incision, the reference position should be sought out by the threshold method [34], which
is called header location hereinafter. Since the header of each packet transmission only
comprises of the two symbols, one is the “brightness”, and the other is the “darkness”,
both of them are easily observed. As shown in Figure 9a–f, a G channel signal best serves
to recognize the header symbol. However, even though in the demodulation of the most
distinct symbols, we can find that intense distortion happens in the other two channels,
which means that the performance of conventional decoding algorithms with a sampling
process will be deteriorated in most other cases as well. It is the reason why conventional
algorithms are probably not feasible solutions for higher-rate transmission. After header
location and interpolation, the sub-image with a size of 9 pixels in row is cut starting from
the reference position. In the second dimension, if L is the column of selected pixels, then
the column matrix of a sub-image is set from L − 4 to L + 5. A frame is regarded as a basic
processing sequence; we input all sub-images to the trained channel-attention-enhanced
LSTM sequentially from time step 0 to time step t. The output sequence comprised the
output from time step 0 to time step t in chronological order. Each frame is used to recover
only one data packet in timing recovery.
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Figure 9. Offline processing of OCC decoding scheme. (a–c) are respectively R, G, and B signals of
the raw column selected; (d–f) are respectively the R, G, and B signals of the selected column after
enhancement; (g) Block diagram of the proposed offline OCC decoding scheme.

Figure 10. The signal construction with repetitive packet transmission in a color channel. For all
packets, the headers comprised the same three sequences.

4. Experimental Setup
4.1. Dataset Setup

The experimental setup is shown in Figure 11. The transmitted packet constructed
from random data was fed into a field-programmable gate array (FPGA, Xilinx Spartan 6,
XC6SLX16). The symbol rate was set from 32 kbaud/s to 46 kbaud/s. We used the output
signal from I/O port to drive an RGB-LED. A mobile phone (HUAWEI P20 PRO) with
a CMOS-based optical camera was set at the data receiver side after a 40-CM free-space
signal transmission. Note that a convex-convex lens and a diffuser were set in front of
the phone. For the experiment, the mobile phone records a video at a frame rate of 60 fps,
and the resolution is 1080 × 1920. For the parameters of an optical camera, the sensitivity
(ISO) was set to 250, and the other parameters were set automatically by the software.

Figure 11. Block diagram and scene of the experimental setup. CMOS-based camera in HUAWEI
P20PRO is the receiver and single RGB-LED drived by I/O ports of FPGA is the transmitter.

4.2. Training Detail

For a traditional equalizer, the weights are reset after each retraining, so there is
no memory effect. However, neural networks have a memory effect on the training



Electronics 2022, 11, 1272 10 of 16

samples, which is harmful to communication systems, because obviously, the sequence to
be transmitted should be unpredictable. Thus, in this work, we used two videos capturing
random messages generated separately for the training process and test process in order
to avoid the performance over estimation. The number of training epochs is set to 25
and the Adaptive Momentum Estimation (Adam) optimizer is used after calculating the
Softmax loss. Note that some hyperparameters such as regularization items, the number
of basic blocks and kernels, and the number of hidden neurons in LSTM will be changed
under different symbol rate conditions, for the purpose of searching global optimal solution
effectively.

5. Results and Discussion
5.1. Sensitivity of Parameters

The sensitivity of neural network performance to some main structure parameters
is investigated in this study. Table 1 summarizes the optimal parameters of our neural
network. In this table, Kernels, Blocks, Hidden numbers, and LSTM layers mean the
quantity of kernels in each convolutional layer, blocks in the channel-attention-Net-based
encoder, hidden neurons in the LSTM unit, and LSTM layers, respectively. Figure 12a
demonstrates the BER performance at various data rates. At lower-rate scenarios, we can see
that the enhancement brought by more blocks is not significant. However, when the signal
is modulated in a higher-rate at 40 to 46 kbaud/s, more blocks in the proposed encoder are
necessary to generate a higher-level descriptor. Additionally, more convolutional kernels
are conducive to improve the identification ability of the convolutional layer to the input
map, as shown in Figure 12c, since there will be more feature extractors. Furthermore, it
can be concluded from Figure 12b that there will be a more desirable performance when
increasing the complexity of the LSTM-based equalizer, but we should consider that it can
compromise the computational complexity and system performance.

Figure 12. BER performance under different parameters of neural network structures. In addi-
tion to the parameters investigated in each experiment, the other parameters are set as shown in
Table 1. (a) Sensitivity of neural network performance to the quantity of blocks in encoder; (b) Un-
der 46 kbaud/s, sensitivity of neural network performance to the quantity of hidden neurons and
layers of LSTM-based equalizer; (c) Sensitivity of neural network performance to the quantity of
convolutional kernels in encoder.
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Table 1. Optimal parameters in compromising consideration.

Symbol Rate (kbaud/s) Kernels Blocks Hidden Numbers LSTM Layers

32 32 2 512 1
36 32 2 512 1
40 32 3 512 1
46 64 3 1024 1

5.2. Performance Comparison

Table 2 summarizes the performance comparisons in data rate and BER of our RGB-
based OCC system with the proposed decoding algorithms and several recently proposed
OCC systems. In RSE-based OCC systems, to increase the transmission distance and data
rate, most researchers make an effort to modify the modulation and demodulation algo-
rithms and replace white light LED with RGB-LED. In [8,35], researchers adopt nonlinear
fitting algorithms to equalize the distortion brought by the sampling offset, and they make
progress in the performance of data rate and BER of the OCC system. In [36], this study
utilizes ANN as an amplitude equalizer, but there is no significant improvement of data
rate and BER performance. As the symbol rate goes faster, the performance deterioration
caused by intensive ISI and ICI is inevitable in higher-speed OCC, which is mainly due
to the sampling offset, which means that we need a much better decoding scheme and
equalizer. In [5], this study proposes a Manchester-code-based decoding algorithm without
sampling in mobile OCC, using CNN. However, owing to the disadvantages of Manchester
code in utilizing RGB mode and the limited ability of the proposed CNN, it only adopts a
single LED and has a data rate of about 2 kbit/s. Compared with the algorithm proposed
in [15], in a similar experimental environment, under the circumstance without using an
XOR compensation scheme, we achieve a data rate growth from 39 to 44.03 kbit/s. Actually,
XOR compensation is not very meaningful to an OCC system, since it decodes much redun-
dant data. In [15], 2D-CNN is just used for equalization after sampling by conventional
algorithm, which means that it can be replaced by an ANN-based or SVM-based equalizer,
and it is vulnerable to sampling offset caused by ISI. Giving the credit to higher-quality
feature extraction and well-designed equalizer, the CAE-LSTM-Net proposed in this paper
is not susceptible to interference, and it achieves a record-high data rate and the FEC
requirement, combining feature extraction and equalization in an end-to-end way without
sampling for decoding. Frankly speaking, our algorithm needs more computing resources
because of its higher-complexity neural network, but it probably can be solved by special
chips and circuits.

Table 2. Performance comparison.

Hardware Technics Data Rate BER Distance Time

RSE-based CMOS sensor

Manchester decoding, Block detection [23] 1.1 kbit/s No mention 35 cm 2012
OOK(Second-order
polynomial fitting) [8]

0.896 kbit/s 3.25 × 10−1 to
6.05 × 10−4

25 cm 2015

OOK(Polynomial fitting) [35] 1.68 kbit/s 3 × 10−3 to
4 × 10−6

25 cm 2015

CSK(RGB,MIMO) [37] 2.88 kbit/s 3.16 × 10−3 10 cm 2016
OOK(UFSOOK) [24] 10.32 kbit/s 1.01 × 10−4 20cm 2017
OOK(LR) [38] 0.78 kbit/s Less than 3.8 × 10−3 1.5 m 2019
CSK(RGB channel separation) [39] 0.96 kbit/s Less than 3.8 × 10−3 2.5 m 2020
V4PPM [40] 4.8 kbit/s No mention 4 m 2015
OOK and FSK(RGB-MIMO,ANN) [36] 1.2 kbit/s 3.53 × 10−3 2.5 m 2021
OOK (XOR compensation and 2D-CNN equalizer) [15] 43.7 kbit/s 3.80 × 10−3 40 cm 2019
Manchester code and CNN-based decoder and equalizer [5] 2.16 kbit/s 3.80 × 10−5 45 cm 2020
This work 44.03 kbit/s 3.61 × 10−3 40 cm 2022
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5.3. Ablation Study

In order to demonstrate that the proposed CAE-LSTM-Net-based decoding algorithm
has a state-of-the-art performance, we experimentally investigate the performance im-
provement brought by the LSTM-based equalizer and channel-attention-Net-based encoder.
We first perform experimental comparison at two different conditions: one is with an
LSTM-based equalizer, and the other is without an LSTM-based equalizer. In the second
condition, we place the Softmax layer following the channel-attention-Net-based encoder,
and we use its output as the classification result at time step t. Additionally, the traditional
equalizer based on ANN is also investigated for comparison. Figures 13 and 14 illustrate
the comparison of BER performance and data rate performance at a symbol rate from 32
to 46 kbaud/s. The BER performance of the scheme with a channel-attention-Net-based
encoder and ANN-based equalizer is better than that without an ANN-based equalizer,
but the difference between them is not apparent. The reason is that each classification prob-
lem is separate, which means that a sharp accuracy deterioration will happen when most of
the pixels in the sub-image stand for the wrong symbol due to ISI. Using the proposed CAE-
LSTM-Net, the short-term memory of LSTM is appropriately utilized to mitigate decoding
system performance deterioration. As shown in Figure 13, using CAE-LSTM-Net, the BER
can be reduced from 9.23 × 10−3 to 3.61 × 10−3 at a symbol rate of 46 kbaud/s, and BERs
are meeting the pre-forward error correction (FEC, BER = 3.8 × 10−3) requirement in all
cases. As shown in Figure 14, the proposed LSTM-based equalizer outperforms those with
an ANN-based equalizer or without a specific equalizer in data rate performance. The data
rate is significantly improved by using an LSTM-based equalizer. The reason is that the
long-term memory of LSTM contributes to recognizing the specific symbol sequence of
the packet header, which means that it can use the correctly recognized symbol sequence
in the header to assist in identifying the rest of the parts. Through increasing the header
recognition accuracy, more packets can be collected, and the data rate goes higher.

Next, we investigate the sensitivity of BER and data rate performance to the identifica-
tion ability of the encoder. Here, we build two CNN-based encoders for comparison, one is
with the CAE-LSTM-Net-like structure but replacing the recalibration unit with a residual
unit, and the other is with a structure comprised of basic convolutional layers, ReLU layers
and BatchNormalizaiton layers such as LeNet-5, as shown in Figure 3. These encoders are
named residual-Net and convolution-Net, respectively, and the scale of their weights are set
to be the same level as that of channel-attention-Net for fair comparison. Figures 15 and 16
demonstrate the BER and data rate performance using encoders of different structures.
As shown in Figure 15, the channel-attention-Net-based encoder significantly improves the
BER performance in all cases of symbol rate. In a lower symbol rate, BER will not increase in
a linear relationship with the increasing of symbol rate, and the residual-Net-based encoder
can perform satisfactorily. However, when the symbol rate is higher than 40 kbaud/s, only
the scheme with a channel-attention-Net-based encoder still meets the FEC requirement,
which means that more sufficient feature extraction contributes to generating a descriptor
with better quality and mitigating ISI. As shown in Figure 16, in the conditions of higher
symbol rate, the channel-attention-Net based encoder outperforms in data rate. Better
recognition of the header is the main reason for the increase of data rate.
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Figure 13. BER performance by using different equalizers.

Figure 14. Data rate comparison by using different equalizers.

Figure 15. BER performance by using different CNN-based encoders.
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Figure 16. Data rate comparison by using different CNN-based encoders.

6. Conclusions

We have proposed a neural network structure based on channel-attention-Net and
LSTM, which is named CAE-LSTM-Net for data decoding in an OCC system. Benefiting
from the CNN’s capability of extracting features, our proposed channel-attention-Net can
generate a precise descriptor of input images. Transforming the decoding problem of a
frame into a time-series classification problem, we proposed an LSTM-based equalizer to
mitigate the performance deterioration caused by ISI. The experimental results demonstrate
that our proposed CAE-LSTM-Net-based decoding scheme significantly improves the
performance of data rate and BER in an OCC system. Based on the proposed decoding
algorithms, a record-high data rate of 44.03 kbit/s is achieved by the RGB-LED-based OCC
system, also meeting the FEC requirement.
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